Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = NMR spider spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4433 KiB  
Article
Comparative Structural and Biophysical Investigation of Lycosa erythrognatha Toxin I (LyeTx I) and Its Analog LyeTx I-b
by Amanda Neves de Souza, Gabriele de Azevedo Cardoso, Lúcio Otávio Nunes, Christopher Aisenbrey, Evgeniy Salnikov, Kelton Rodrigues de Souza, Ahmad Saad, Maria Elena de Lima, Jarbas Magalhães Resende, Burkhard Bechinger and Rodrigo Moreira Verly
Antibiotics 2025, 14(1), 66; https://doi.org/10.3390/antibiotics14010066 - 10 Jan 2025
Viewed by 1281
Abstract
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation [...] Read more.
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. Methods: To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with 2H3-Ala and 15N-Leu to facilitate structural studies via NMR spectroscopy. Results: Circular dichroism and solid-state NMR analyses revealed that, while both peptides adopt α-helical conformations in membrane mimetic environments, LyeTx I-b exhibits a more amphipathic and extended helical structure, which correlates with its enhanced membrane interaction. The thermodynamic properties of the peptide–membrane interactions were quantitatively evaluated in the presence of phospholipid bilayers using ITC and DSC, highlighting a greater propensity of LyeTx I-b to disrupt lipid vesicles. Calcein release studies reveal that both peptides cause vesicle disruption, although DLS measurements and TEM imaging indicate distinct effects on phospholipid vesicle organization. While LyeTx I-b permeabilizes anionic membrane retaining the vesicle integrity, LyeTx I promotes significant vesicle agglutination. Furthermore, DSC and calcein release assays indicate that LyeTx I-b exhibits significantly lower cytotoxicity toward eukaryotic membranes compared to LyeTx I, suggesting greater selectivity for bacterial membranes. Conclusions: Our findings provide insights into the structural and functional modifications that enhance the antimicrobial and therapeutic potential of LyeTx I-b, offering valuable guidance for the design of novel peptides targeting resistant bacterial infections and cancer. Full article
(This article belongs to the Special Issue Mechanisms of Antimicrobial Peptides on Pathogens, 2nd Edition)
Show Figures

Figure 1

16 pages, 6221 KiB  
Article
Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae
by Max W. VanDyck, John H. Long, Richard H. Baker, Cheryl Y. Hayashi and Candido Diaz
Biomimetics 2024, 9(5), 256; https://doi.org/10.3390/biomimetics9050256 - 23 Apr 2024
Viewed by 2627
Abstract
Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low [...] Read more.
Orb-weaver spiders produce upwards of seven different types of silk, each with unique material properties. We focus on the adhesive within orb-weaving spider webs, aggregate glue silk. These droplets are composed of three main components: water, glycoproteins, and a wide range of low molecular mass compounds (LMMCs). These LMMCs are known to play a crucial role in maintaining the material properties of the glycoproteins, aid in water absorption from the environment, and increase surface adhesion. Orb-weavers within the Cyrtarachninae subfamily are moth specialists and have evolved glue droplets with novel material properties. This study investigated the biochemical composition and diversity of the LMMCs present in the aggregate glue of eight moth-specialist species and compared them with five generalist orb-weavers using nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the novel drying ability of moth-specialist glue was accompanied by novel LMMCs and lower overall percentages by silk weight of LMMCs. We measured no difference in LMMC weight by the type of prey specialization, but observed novel compositions in the glue of all eight moth-catching species. Further, we quantified the presence of a previously reported but unidentified compound that appears in the glue of all moth specialists. These silks can provide insight into the functions of bioadhesives and inform our own synthetic adhesives. Full article
(This article belongs to the Special Issue Silk-Based Bioinspired Materials: Design and Applications)
Show Figures

Figure 1

24 pages, 8927 KiB  
Article
Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer
by Ekaterina N. Lyukmanova, Pavel A. Mironov, Dmitrii S. Kulbatskii, Mikhail A. Shulepko, Alexander S. Paramonov, Elizaveta M. Chernaya, Yulia A. Logashina, Yaroslav A. Andreev, Mikhail P. Kirpichnikov and Zakhar O. Shenkarev
Toxins 2023, 15(6), 378; https://doi.org/10.3390/toxins15060378 - 3 Jun 2023
Cited by 7 | Viewed by 3762
Abstract
Phα1β (PnTx3–6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. [...] Read more.
Phα1β (PnTx3–6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1β and its 15N-labeled analogue. Spatial structure and dynamics of Phα1β were determined via NMR spectroscopy. The N-terminal domain (Ala1–Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41–Cys52) stapled to ICK by two disulfides exhibits the µs–ms time-scale fluctuations. The Phα1β structure with the disulfide bond patterns Cys1–5, Cys2–7, Cys3–12, Cys4–10, Cys6–11, Cys8–9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1β has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1β significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1β as a gating modifier toxin, probably interacting with S1–S4 gating domains from a membrane-bound state. Full article
(This article belongs to the Special Issue Ion Channels, Venom, and Toxins)
Show Figures

Figure 1

18 pages, 5682 KiB  
Article
Recombinant Spider Silk Fiber with High Dimensional Stability in Water and Its NMR Characterization
by Tetsuo Asakura, Hironori Matsuda, Akira Naito, Hideyasu Okamura, Yu Suzuki and Yunosuke Abe
Molecules 2022, 27(23), 8479; https://doi.org/10.3390/molecules27238479 - 2 Dec 2022
Cited by 3 | Viewed by 2549
Abstract
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to [...] Read more.
Spider dragline silk has unique characteristics of strength and extensibility, including supercontraction. When we use it as a biomaterial or material for textiles, it is important to suppress the effect of water on the fiber by as much as possible in order to maintain dimensional stability. In order to produce spider silk with a highly hydrophobic character, based on the sequence of ADF-3 silk, we produced recombinant silk (RSSP(VLI)) where all QQ sequences were replaced by VL, while single Q was replaced by I. The artificial RSSP(VLI) fiber was prepared using formic acid as the spinning solvent and methanol as the coagulant solvent. The dimensional stability and water absorption experiments of the fiber were performed for eight kinds of silk fiber. RSSP(VLI) fiber showed high dimensional stability, which is suitable for textiles. A remarkable decrease in the motion of the fiber in water was made evident by 13C solid-state NMR. This study using 13C solid-state NMR is the first trial to put spider silk to practical use and provide information regarding the molecular design of new recombinant spider silk materials with high dimensional stability in water, allowing recombinant spider silk proteins to be used in next-generation biomaterials and materials for textiles. Full article
(This article belongs to the Special Issue The Chemical Properties of Silk Raw Materials)
Show Figures

Graphical abstract

19 pages, 4706 KiB  
Article
New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold
by Yuliya Korolkova, Ekaterina Maleeva, Alexander Mikov, Anna Lobas, Elizaveta Solovyeva, Mikhail Gorshkov, Yaroslav Andreev, Steve Peigneur, Jan Tytgat, Fedor Kornilov, Vladislav Lushpa, Konstantin Mineev and Sergey Kozlov
Toxins 2021, 13(1), 29; https://doi.org/10.3390/toxins13010029 - 4 Jan 2021
Cited by 10 | Viewed by 4483
Abstract
The Tibellus oblongus spider is an active predator that does not spin webs and remains poorly investigated in terms of venom composition. Here, we present a new toxin, named Tbo-IT2, predicted by cDNA analysis of venom glands transcriptome. The presence of Tbo-IT2 in [...] Read more.
The Tibellus oblongus spider is an active predator that does not spin webs and remains poorly investigated in terms of venom composition. Here, we present a new toxin, named Tbo-IT2, predicted by cDNA analysis of venom glands transcriptome. The presence of Tbo-IT2 in the venom was confirmed by proteomic analyses using the LC-MS and MS/MS techniques. The distinctive features of Tbo-IT2 are the low similarity of primary structure with known animal toxins and the unusual motif of 10 cysteine residues distribution. Recombinant Tbo-IT2 (rTbo-IT2), produced in E. coli using the thioredoxin fusion protein strategy, was structurally and functionally studied. rTbo-IT2 showed insecticidal activity on larvae of the housefly Musca domestica (LD100 200 μg/g) and no activity on the panel of expressed neuronal receptors and ion channels. The spatial structure of the peptide was determined in a water solution by NMR spectroscopy. The Tbo-IT2 structure is a new example of evolutionary adaptation of a well-known inhibitor cystine knot (ICK) fold to 5 disulfide bonds configuration, which determines additional conformational stability and gives opportunities for insectotoxicity and probably some other interesting features. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

15 pages, 1526 KiB  
Article
Small Molecules in the Venom of the Scorpion Hormurus waigiensis
by Edward R. J. Evans, Lachlan McIntyre, Tobin D. Northfield, Norelle L. Daly and David T. Wilson
Biomedicines 2020, 8(8), 259; https://doi.org/10.3390/biomedicines8080259 - 31 Jul 2020
Cited by 17 | Viewed by 5046
Abstract
Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present [...] Read more.
Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. Purine nucleosides such as adenosine play important auxiliary functions in snake venoms when injected alongside other venom toxins, and they may have a similar role within H. waigiensis venom. Further research on these and other small molecules in scorpion venoms may elucidate their roles in prey capture and predator defence, and gaining a greater understanding of how scorpion venom components act in combination could allow for the development of improved first aid. Full article
(This article belongs to the Special Issue Animal Venoms–Curse or Cure?)
Show Figures

Figure 1

15 pages, 5436 KiB  
Article
Structural Basis of Oligomerization of N-Terminal Domain of Spider Aciniform Silk Protein
by Rusha Chakraborty, Jing-song Fan, Chong Cheong Lai, Palur Venkata Raghuvamsi, Pin Xuan Chee, Ganesh Srinivasan Anand and Daiwen Yang
Int. J. Mol. Sci. 2020, 21(12), 4466; https://doi.org/10.3390/ijms21124466 - 23 Jun 2020
Cited by 14 | Viewed by 3303
Abstract
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through [...] Read more.
Spider silk is self-assembled from water-soluble silk proteins through changes in the environment, including pH, salt concentrations, and shear force. The N-terminal domains of major and minor ampullate silk proteins have been found to play an important role in the assembly process through salt- and pH-dependent dimerization. Here, we identified the sequences of the N-terminal domains of aciniform silk protein (AcSpN) and major ampullate silk protein (MaSpN) from Nephila antipodiana (NA). Different from MaSpN, our biophysical characterization indicated that AcSpN assembles to form large oligomers, instead of a dimer, upon condition changes from neutral to acidic pH and/or from a high to low salt concentration. Our structural studies, by nuclear magnetic resonance spectroscopy and homology modelling, revealed that AcSpN and MaSpN monomers adopt similar overall structures, but have very different charge distributions contributing to the differential self-association features. The intermolecular interaction interfaces for AcSp oligomers were identified using hydrogen–deuterium exchange mass spectrometry and mutagenesis. On the basis of the monomeric structure and identified interfaces, the oligomeric structures of AcSpN were modelled. The structural information obtained will facilitate an understanding of silk fiber formation mechanisms for aciniform silk protein. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Graphical abstract

13 pages, 2570 KiB  
Article
The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells
by David Wilson, Glen M. Boyle, Lachlan McIntyre, Matthew J. Nolan, Peter G. Parsons, Jennifer J. Smith, Leon Tribolet, Alex Loukas, Michael J. Liddell, Lachlan D. Rash and Norelle L. Daly
Toxins 2017, 9(11), 346; https://doi.org/10.3390/toxins9110346 - 27 Oct 2017
Cited by 19 | Viewed by 6683
Abstract
Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a [...] Read more.
Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

11 pages, 1105 KiB  
Article
Five Unprecedented Secondary Metabolites from the Spider Parasitic Fungus Akanthomyces novoguineensis
by Soleiman E. Helaly, Wilawan Kuephadungphan, Souwalak Phongpaichit, Janet Jennifer Luangsa-ard, Vatcharin Rukachaisirikul and Marc Stadler
Molecules 2017, 22(6), 991; https://doi.org/10.3390/molecules22060991 - 14 Jun 2017
Cited by 21 | Viewed by 5295
Abstract
Five new compounds including the glycosylated β-naphthol (1, akanthol), a glycosylated pyrazine (2, akanthozine), and three amide derivatives including a hydroxamic acid derivative (35) were isolated from the spider-associated fungus Akanthomyces novoguineensis (Cordycipitaceae, Ascomycota). Their [...] Read more.
Five new compounds including the glycosylated β-naphthol (1, akanthol), a glycosylated pyrazine (2, akanthozine), and three amide derivatives including a hydroxamic acid derivative (35) were isolated from the spider-associated fungus Akanthomyces novoguineensis (Cordycipitaceae, Ascomycota). Their structures were elucidated by using high resolution mass spectrometry (HRMS) and NMR spectroscopy. In this study, the antimicrobial, cytotoxic, anti-biofilm, and nematicidal activities of the new compounds were evaluated. The distribution pattern of secondary metabolites in the species was also revealed in which more isolates of A. novoguineensis were encountered and their secondary metabolite profiles were examined using analytical HPLC with diode array and mass spectrometric detection (HPLC-DAD/MS). Remarkably, all isolated compounds are specifically produced by A. novoguineensis. Full article
Show Figures

Graphical abstract

18 pages, 3109 KiB  
Article
Characterizing Aciniform Silk Repetitive Domain Backbone Dynamics and Hydrodynamic Modularity
by Marie-Laurence Tremblay, Lingling Xu, Muzaddid Sarker, Xiang-Qin Liu and Jan K. Rainey
Int. J. Mol. Sci. 2016, 17(8), 1305; https://doi.org/10.3390/ijms17081305 - 10 Aug 2016
Cited by 11 | Viewed by 6629
Abstract
Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular [...] Read more.
Spider aciniform (wrapping) silk is a remarkable fibrillar biomaterial with outstanding mechanical properties. It is a modular protein consisting, in Argiope trifasciata, of a core repetitive domain of 200 amino acid units (W units). In solution, the W units comprise a globular folded core, with five α-helices, and disordered tails that are linked to form a ~63-residue intrinsically disordered linker in concatemers. Herein, we present nuclear magnetic resonance (NMR) spectroscopy-based 15N spin relaxation analysis, allowing characterization of backbone dynamics as a function of residue on the ps–ns timescale in the context of the single W unit (W1) and the two unit concatemer (W2). Unambiguous mapping of backbone dynamics throughout W2 was made possible by segmental NMR active isotope-enrichment through split intein-mediated trans-splicing. Spectral density mapping for W1 and W2 reveals a striking disparity in dynamics between the folded core and the disordered linker and tail regions. These data are also consistent with rotational diffusion behaviour where each globular domain tumbles almost independently of its neighbour. At a localized level, helix 5 exhibits elevated high frequency dynamics relative to the proximal helix 4, supporting a model of fibrillogenesis where this helix unfolds as part of the transition to a mixed α-helix/β-sheet fibre. Full article
(This article belongs to the Special Issue Silk-Based Materials: From Production to Characterization)
Show Figures

Graphical abstract

13 pages, 1810 KiB  
Article
Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks
by Sean J. Blamires, Michael M. Kasumovic, I-Min Tso, Penny J. Martens, James M. Hook and Aditya Rawal
Int. J. Mol. Sci. 2016, 17(8), 1294; https://doi.org/10.3390/ijms17081294 - 9 Aug 2016
Cited by 13 | Viewed by 5641
Abstract
The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We [...] Read more.
The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We tested this assumption for the dragline silk of three co-existing Australian spiders, Argiope keyserlingi, Latrodectus hasselti and Nephila plumipes. We found that silk amino acid compositions did not differ among spiders collected in May. We extended these analyses temporally and found the amino acid compositions of A. keyserlingi silks to differ when collected in May compared to November, while those of L. hasselti did not. To ascertain whether their secondary structures were decoupled from spidroin expression, we performed solid-state nuclear magnetic resonance spectroscopy (NMR) analysis on the silks of all spiders collected in May. We found the distribution of alanine toward β-sheet and 3,10helix/random coil conformations differed between species, as did their relative crystallinities, with A. keyserlingi having the greatest 3,10helix/random coil composition and N. plumipes the greatest crystallinity. The protein secondary structures correlated with the mechanical properties for each of the silks better than the amino acid compositions. Our findings suggested that a differential distribution of alanine during spinning could decouple secondary structures from spidroin expression ensuring that silks of desirable mechanical properties are consistently produced. Alternative explanations include the possibility that other spidroins were incorporated into some silks. Full article
(This article belongs to the Special Issue Silk-Based Materials: From Production to Characterization)
Show Figures

Graphical abstract

Back to TopTop