Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Silk Samples
2.2. NMR of Spider Silk
2.2.1. NMR Sample Preparation and Silk Weighting
2.2.2. NMR/Correlated Spectroscopy (COSY) Parameters and Statistical Analysis
2.3. Ancestral-State Reconstruction of Chemical Components of Spider Glue
3. Results
3.1. Observations of Spider-Silk Residue and Percentage of LMMCs Lost from Web Samples
3.2. Solution-State 1H NMR of Aggregate Glue LMMCs
3.3. Ancestral-State Reconstruction from Spider-Glue Components
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opell, B.D.; Bond, J.E. Capture Thread Extensibility of Orb-Weaving Spiders: Testing Punctuated and Associative Explanations of Character Evolution. Biol. J. Linn. Soc. 2000, 70, 107–120. [Google Scholar] [CrossRef]
- Sahni, V.; Blackledge, T.A.; Dhinojwala, A. A Review on Spider Silk Adhesion. J. Adhes. 2011, 87, 595–614. [Google Scholar] [CrossRef]
- Foelix, R. Biology of Spiders; Oxford University Press: New York, NY, USA, 2011. [Google Scholar]
- Opell, B.D.; Hendricks, M.L. The Role of Granules within Viscous Capture Threads of Orb-Weaving Spiders. J. Exp. Biol. 2010, 213, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V.; Blackledge, T.A.; Dhinojwala, A. Changes in the Adhesive Properties of Spider Aggregate Glue during the Evolution of Cobwebs. Sci. Rep. 2011, 1, 41. [Google Scholar] [CrossRef] [PubMed]
- Sahni, V.; Blackledge, T.A.; Dhinojwala, A. Viscoelastic Solids Explain Spider Web Stickiness. Nat. Commun. 2010, 1, 19. [Google Scholar] [CrossRef]
- Amarpuri, G.; Zhang, C.; Diaz, C.; Opell, B.D.; Blackledge, T.A.; Dhinojwala, A. Spiders Tune Glue Viscosity to Maximize Adhesion. ACS Nano 2015, 9, 11472–11478. [Google Scholar] [CrossRef] [PubMed]
- Diaz, C.; Tanikawa, A.; Miyashita, T.; Amarpuri, G.; Jain, D.; Dhinojwala, A.; Blackledge, T.A. Supersaturation with Water Explains the Unusual Adhesion of Aggregate Glue in the Webs of the Moth-Specialist Spider, Cyrtarachne akirai. R. Soc. Open Sci. 2018, 5, 181296. [Google Scholar] [CrossRef] [PubMed]
- Stowe, M.K. Prey specialization in the Araneidae. In Spiders: Webs, Behavior and Evolution; Shear, W.A., Ed.; Stanford University Press: Redwood City, CA, USA, 1986; pp. 101–131. [Google Scholar]
- Boutry, C.; Blackledge, T.A. Evolution of Supercontraction in Spider Silk: Structure-Function Relationship from Tarantulas to Orb-Weavers. J. Exp. Biol. 2010, 213 Pt 20, 3505–3514. [Google Scholar] [CrossRef] [PubMed]
- Blackledge, T.A.; Kuntner, M.; Agnarsson, I. The Form and Function of Spider Orb Webs: Evolution from Silk to Ecosystems. In Advances in Insect Physiology; Spider Physiology and Behaviour; Casas, J., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 41, pp. 175–262. [Google Scholar] [CrossRef]
- Eisner, T.; Alsop, R.; Ettershank, G. Adhesiveness of Spider Silk. Science 1964, 146, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Nentwig, W. Why Do Only Certain Insects Escape from a Spider’s Web? Oecologia 1982, 53, 412–417. [Google Scholar] [CrossRef]
- Eberhard, W.G. The Natural History and Behavior of the Bolas Spider Mastophora dizzydeani SP. n. (Araneidae). Psyche 1980, 87, 143–169. [Google Scholar] [CrossRef]
- Robinson, M.H.; Robinson, B. Evolution beyond the Orb Web: The Web of the Araneid Spider Pasilobus sp., Its Structure, Operation and Construction. Zool. J. Linn. Soc. 1975, 56, 301–313. [Google Scholar] [CrossRef]
- Yeargan, K. The Biology of Bolas Spiders. Annu. Rev. Entomol. 1994, 39, 81–99. [Google Scholar] [CrossRef]
- Diaz, C.; Maksuta, D.; Amarpuri, G.; Tanikawa, A.; Miyashita, T.; Dhinojwala, A.; Blackledge, T.A. The Moth Specialist Spider Cyrtarachne akirai uses Prey scales to Increase Adhesion. J. R. Soc. Interface 2020, 17, 20190792. [Google Scholar] [CrossRef]
- Pocock, R.I. XXV.—The Arachnida from the Province of Natal, South Africa, Contained in the Collection of the British Museum. J. Nat. Hist. 1898, 2, 197–226. [Google Scholar] [CrossRef]
- Baba, Y.G.; Kusahara, M.; Maezono, Y.; Miyashita, T. Adjustment of Web-Building Initiation to High Humidity: A Constraint by Humidity-Dependent Thread Stickiness in the Spider Cyrtarachne. Sci. Nat. 2014, 101, 587–593. [Google Scholar] [CrossRef]
- Collin, M.A.; Clarke, T.H.; Ayoub, N.A.; Hayashi, C.Y. Evidence from Multiple Species That Spider Silk Glue Component ASG2 Is a Spidroin. Sci. Rep. 2016, 6, 21589. [Google Scholar] [CrossRef]
- Vasanthavada, K.; Hu, X.; Tuton-Blasingame, T.; Hsia, Y.; Sampath, S.; Pacheco, R.; Freeark, J.; Falick, A.M.; Tang, S.; Fong, J.; et al. Spider Glue Proteins Have Distinct Architectures Compared with Traditional Spidroin Family Members. J. Biol. Chem. 2012, 287, 35986–35999. [Google Scholar] [CrossRef]
- Stellwagen, S.D.; Renberg, R.L. Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3: Genes Genomes Genet. 2019, 9, 1909–1919. [Google Scholar] [CrossRef] [PubMed]
- Choresh, O.; Bayarmagnai, B.; Lewis, R.V. Spider Web Glue: Two Proteins Expressed from Opposite Strands of the Same DNA Sequence. Biomacromolecules 2009, 10, 2852–2856. [Google Scholar] [CrossRef]
- Vollrath, F.; Tillinghast, E.K. Glycoprotein Glue beneath a Spider Web’s Aqueous Coat. Sci. Nat. 1991, 78, 557–559. [Google Scholar] [CrossRef]
- Sahni, V.; Miyoshi, T.; Chen, K.; Jain, D.; Blamires, S.J.; Blackledge, T.A.; Dhinojwala, A. Direct Solvation of Glycoproteins by Salts in Spider Silk Glues Enhances Adhesion and Helps to Explain the Evolution of Modern Spider Orb Webs. Biomacromolecules 2014, 15, 1225–1232. [Google Scholar] [CrossRef]
- Jain, D.; Amarpuri, G.; Fitch, J.; Blackledge, T.A.; Dhinojwala, A. Role of Hygroscopic Low Molecular Mass Compounds in Humidity Responsive Adhesion of Spider’s Capture Silk. Biomacromolecules 2018, 19, 3048–3057. [Google Scholar] [CrossRef] [PubMed]
- Opell, B.D.; Jain, D.; Dhinojwala, A.; Blackledge, T.A. Tuning Orb Spider Glycoprotein Glue Performance to Habitat Humidity. J. Exp. Biol. 2018, 221 Pt 6, jeb161539. [Google Scholar] [CrossRef] [PubMed]
- Jain, D.; Zhang, C.; Cool, L.R.; Blackledge, T.A.; Wesdemiotis, C.; Miyoshi, T.; Dhinojwala, A. Composition and Function of Spider Glues Maintained During the Evolution of Cobwebs. Biomacromolecules 2015, 16, 3373–3380. [Google Scholar] [CrossRef] [PubMed]
- Vollrath, F.; Fairbrother, W.J.; Williams, R.J.P.; Tillinghast, E.K.; Bernstein, D.T.; Gallagher, K.S.; Townley, M.A. Compounds in the Droplets of the Orb Spider’s Viscid Spiral. Nature 1990, 345, 526–528. [Google Scholar] [CrossRef]
- Townley, M.A.; Bernstein, D.T.; Gallagher, K.S.; Tillinghast, E.K. Comparative Study of Orb Web Hygroscopicity and Adhesive Spiral Composition in Three Araneid Spiders. J. Exp. Zool. 1991, 259, 154–165. [Google Scholar] [CrossRef]
- Sensenig, A.T.; Lorentz, K.A.; Kelly, S.P.; Blackledge, T.A. Spider Orb Webs Rely on Radial Threads to Absorb Prey Kinetic Energy. J. R. Soc. Interface 2012, 9, 1880–1891. [Google Scholar] [CrossRef]
- Kono, N.; Nakamura, H.; Ohtoshi, R.; Moran, D.A.P.; Shinohara, A.; Yoshida, Y.; Fujiwara, M.; Mori, M.; Tomita, M.; Arakawa, K. Orb-Weaving Spider Araneus Ventricosus Genome Elucidates the Spidroin Gene Catalog. Sci. Rep. 2019, 9, 8380. [Google Scholar] [CrossRef]
- Gatesy, J.; Hayashi, C.; Motriuk, D.; Woods, J.; Lewis, R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 2001, 291, 2603–2605. [Google Scholar] [CrossRef]
- Townley, M.A.; Pu, Q.; Zercher, C.K.; Neefus, C.D.; Tillinghast, E.K. Small Organic Solutes in Sticky Droplets from Orb Webs of the Spider Zygiella atrica (Araneae; Araneidae): β-Alaninamide Is a Novel and Abundant Component. Chem. Biodivers. 2012, 9, 2159–2174. [Google Scholar] [CrossRef]
- Forsskål, P.; Niebuhr, C. Descriptiones Animalium, Avium, Amphibiorum, Piscium, Insectorum, Vermium; Biodiversity Heritage Library: Washington, DC, USA, 1775. [Google Scholar] [CrossRef]
- Clerck, C. Svenska spindlar: Uti Sina Hufvud-Slågter Indelte Samt under Några och Sextio Särskildte Arter; Beskrefne och med Illuminerade Figurer Uplyste; Smithsonian Institution: Washington, DC, USA, 1757. [Google Scholar] [CrossRef]
- Gertsch, W.J. The North American bolas spiders of the genera Mastophora and Agatostichus. Bull. AMNH 1955, 106, 225–254. [Google Scholar]
- Hewitt, J. On certain South African Arachnida, with descriptions of three new species. Ann. Natal. Mus. 1923, 5, 55–66. [Google Scholar]
- Colombo, M.; Manunza, B. First record of Cyrtarachne ixoides (Simon, 1870)(Araneae: Araneidae) from Sardinia. Revista ibérica de Aracnología 2009, 17, 67–70. [Google Scholar]
- Linnaeus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus Differentiis, Synonymis, Locis; Laurentius Salvius: Holmia, Sweden, 1767; pp. 1030–1037. [Google Scholar] [CrossRef]
- Linnaeus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species Cum Characteribus Differentiis, Synonymis, Locis; Laurentius Salvius: Holmia, Sweden, 1758; Volume 821, pp. 619–624. [Google Scholar] [CrossRef]
- Fabricius, J.C. Systema Entomologiae, Sistens Insectorum Classes, Ordines, Genera, Species, Adiectis, Synonymis, Locis Descriptionibus Observationibus; Libraria Kortii, Flensbvrgi et Lipsiae [= Kortensche Buchhandlung, Flensburg & Leipzig]; 1775; Volume 832, pp. 431–441. [Google Scholar] [CrossRef]
- Tanikawa, A. Two New Species of the Genus Cyrtarachne (Araneae: Araneidae) from Japan Hitherto Identified as C. inaequalis. Acta Arachnol. 2013, 62, 95–101. [Google Scholar] [CrossRef]
- Bösenberg, W.; Strand, E. Japanische Spinnen: Von W. Bösenberg und Embrik Strand. Abh. Senckenb. 1906, 30, 93–422. [Google Scholar]
- Strand, E. Zur Kenntnis japanischer Spinnen, I und II. Arch. Naturgesch. 1918, 82, 73–113. [Google Scholar]
- Willcott, M.R. MestRe nova. J. Am. Chem. Soc. 2009, 131, 13180. [Google Scholar] [CrossRef]
- Wishart, D.S.; Tzur, D.; Knox, C.; Eisner, R.; Guo, A.C.; Young, N.; Cheng, D.; Jewell, K.; Arndt, D.; Sawhney, S.; et al. HMDB: The Human Metabolome Database. Nucleic Acids Res. 2007, 35, D521–D526. [Google Scholar] [CrossRef]
- Hoch, J.C.; Baskaran, K.; Burr, H.; Chin, J.; Eghbalnia, H.R.; Fujiwara, T.; Gryk, M.R.; Iwata, T.; Kojima, C.; Kurisu, G.; et al. Biological Magnetic Resonance Data Bank. Nucleic Acids Res. 2023, 51, D368–D376. [Google Scholar] [CrossRef]
- Blackledge, T.A.; Scharff, N.; Coddington, J.A.; Szüts, T.; Wenzel, J.W.; Hayashi, C.Y.; Agnarsson, I. Reconstructing Web Evolution and Spider Diversification in the Molecular Era. Proc. Natl. Acad. Sci. USA 2009, 106, 5229–5234. [Google Scholar] [CrossRef]
- Scharff, N.; Coddington, J.A.; Blackledge, T.A.; Agnarsson, I.; Framenau, V.W.; Szűts, T.; Hayashi, C.Y.; Dimitrov, D. Phylogeny of the Orb-Weaving Spider Family Araneidae (Araneae: Araneoidea). Cladistics 2020, 36, 1–21. [Google Scholar] [CrossRef]
- Agnarsson, I.; Blackledge, T.A. Can a Spider Web be too Sticky? Tensile Mechanics Constrains the Cvolution of Capture Spiral Stickiness in Orb-weaving Spiders. J. Zool. 2009, 278, 134–140. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-prone Reads using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved De Novo Assembly using Phased Assembly Graphs with Hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-likelihood Lhylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.81. 2023. Available online: http://www.mesquiteproject.org (accessed on 28 January 2024).
- Diaz, C., Jr.; Roff, J. Mechanics of the Prey Capture Technique of the South African Grassland Bolas Spider, Cladomelea akermani. Insects 2022, 13, 1118. [Google Scholar] [CrossRef]
- Diaz, C., Jr.; Long, J.H., Jr. Behavior and Bioadhesives: How Bolas Spiders, Mastophora hutchinsoni, Catch Moths. Insects 2022, 13, 1166. [Google Scholar] [CrossRef]
- Cartan, C.K.; Miyashita, T. Extraordinary Web and Silk Properties of Cyrtarachne (Araneae, Araneidae): A Possible Link Between Orb-webs and Bolas. Bot. J. Linn. 2000, 71, 219–235. [Google Scholar] [CrossRef]
- Diaz, C., Jr.; Baker, R.H.; Long, J.H., Jr.; Hayashi, C.Y. Connecting Materials, Performance and Evolution: A Case Study of the Glue of Moth-catching Spiders (Cyrtarachninae). J. Exp. Biol. 2022, 225 (Suppl. S1), jeb243271. [Google Scholar] [CrossRef]
Species | Hunting Type | Dry Pipette (mg) | Pipette and Silk (mg) | Dry Pipette and Silk after Wash (mg) | LMMCs Removed (mg) | LMMC Weight Lost (%) |
---|---|---|---|---|---|---|
T. clavipes | Generalist | 463.09 | 469.51 | 466.51 | 3.00 | 46.7 |
L. cornutus | Generalist | 306.65 | 321.15 | 315.77 | 5.38 | 37.1 |
G. cancriformis | Generalist | 473.1 | 475.88 | 474.02 | 1.86 | 66.9 |
A. trifasciata | Generalist | 368.37 | 412.28 | 399.51 | 12.77 | 49.3 |
A. argentata | Generalist | 692.78 | 693.76 | 692.98 | 0.78 | 79.6 |
M. hutchinsoni | Bolas | 983.51 | 984.31 | 983.85 | 0.17 | 37.0 |
C. akermani | Bolas | 664.95 | 665.33 | 665.17 | 0.16 | 42.1 |
P. walleri | Horizontal | 1170.6 | 1176.89 | 1172.78 | 4.11 | 65.3 |
C. ixoides | Horizontal | 397.84 | 398.23 | 398.3 | −0.07 | N/A |
C. akirai | Horizontal | 284.8 | 288.16 | 287.64 | 0.52 | 15.5 |
C. bufo | Horizontal | 266.87 | 268.5 | 268.16 | 1.63 | 20.9 |
C. nagasakiensis | Horizontal | 400.23 | 400.66 | 0.03 | 0.43 | 7.0 |
C. yunoharuensis | Horizontal | 548.42 | 547.79 | 547.65 | −0.06 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
VanDyck, M.W.; Long, J.H., Jr.; Baker, R.H.; Hayashi, C.Y.; Diaz, C., Jr. Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae. Biomimetics 2024, 9, 256. https://doi.org/10.3390/biomimetics9050256
VanDyck MW, Long JH Jr., Baker RH, Hayashi CY, Diaz C Jr. Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae. Biomimetics. 2024; 9(5):256. https://doi.org/10.3390/biomimetics9050256
Chicago/Turabian StyleVanDyck, Max W., John H. Long, Jr., Richard H. Baker, Cheryl Y. Hayashi, and Candido Diaz, Jr. 2024. "Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae" Biomimetics 9, no. 5: 256. https://doi.org/10.3390/biomimetics9050256
APA StyleVanDyck, M. W., Long, J. H., Jr., Baker, R. H., Hayashi, C. Y., & Diaz, C., Jr. (2024). Special Prey, Special Glue: NMR Spectroscopy on Aggregate Glue Components of Moth-Specialist Spiders, Cyrtarachninae. Biomimetics, 9(5), 256. https://doi.org/10.3390/biomimetics9050256