Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = N, P-doped carbon shell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2835 KiB  
Article
Template–Free–Induced Synthesis of an Fe–N–C Electrocatalyst with Porous Yolk–Shell Structure Towards Oxygen Reduction Reaction
by Lili Wang, Li Chen, Zhiwen Li, Shaohua Zhang, Hezhen Wang, Ling Xu and Yan Xie
Catalysts 2025, 15(4), 384; https://doi.org/10.3390/catal15040384 - 16 Apr 2025
Viewed by 464
Abstract
Significant research has focused on cost–effective, highly active, and exceptionally stable non–noble metal electrocatalysts (NNMEs) to boost the performance of the oxygen reduction reaction (ORR). Of note, the development of design and synthesis of Fe–N–C electrocatalysts is essential but remains challenging. Herein, the [...] Read more.
Significant research has focused on cost–effective, highly active, and exceptionally stable non–noble metal electrocatalysts (NNMEs) to boost the performance of the oxygen reduction reaction (ORR). Of note, the development of design and synthesis of Fe–N–C electrocatalysts is essential but remains challenging. Herein, the Fe and N co–doped porous carbon material with a yolk–shell (YS) structure, termed SA–H2TPyP@PDA–Fe (900), was fabricated by self–assembly of metal–free porphyrin as a yolk and polymerization of dopamine as a shell with an addition of iron salts, followed by the high–temperature pyrolysis and acid–leaching. As a result, active sites, like FeN4 and N–doped C, within rich porous YS carbon structures, play an important role for ORR in an alkaline media. The SA–H2TPyP@PDA–Fe (900) electrocatalyst shows positive ORR performances than those of SA–H2TPyP (900) and SA–H2TPyP@PDA (900), indicating the dominating function of the YS carbon structure decorated with Fe–based species. This efficient route of template–free–induced preparation of the YS structure discovers the design and synthesis of NNMEs for ORR. Full article
(This article belongs to the Special Issue Electrocatalytic Hydrogen and Oxygen Evolution Reaction)
Show Figures

Figure 1

13 pages, 2230 KiB  
Article
A Novel N/P-Doped Carbon Shells/Mn5.64P3 with Hexagonal Crystal Structure Hybrid as a Prospective Anode for Lithium-Ion Batteries
by Fei Wang, Jingxia Gao, Hui Li, Junle Zhang, Aiyun Jiang, Yong Liu and Fengzhang Ren
Molecules 2025, 30(6), 1346; https://doi.org/10.3390/molecules30061346 - 17 Mar 2025
Viewed by 382
Abstract
The tailored crystalline configuration coupled with submicron particles would be conducive to superior ionic conductivity, which could further improve the cycle life of lithium-ion batteries (LIBs). Here, manganese phosphide (Mn5.64P3) particles with hexagonal crystal structure embedded into nitrogen/phosphorus (N/P) [...] Read more.
The tailored crystalline configuration coupled with submicron particles would be conducive to superior ionic conductivity, which could further improve the cycle life of lithium-ion batteries (LIBs). Here, manganese phosphide (Mn5.64P3) particles with hexagonal crystal structure embedded into nitrogen/phosphorus (N/P) co-doped carbon shells (Mn5.64P3-C) are successfully prepared by the self-template and recrystallization–self-assembly method. The electrochemical properties of as-synthesized Mn5.64P3-C as anode materials for LIBs are systematically investigated. The XRD and HRTEM combined with SAED indicate that the prepared Mn5.64P3-C hybrid with the ratio of 1:10 of Mn:C present a hexagonal crystal structure covered with a carbon layer. During charging/discharging at the current density of 0.5 A g−1, the Mn5.64P3-C electrode exhibits the reversible capacity of 160 mAh g−1 after 3000 cycles with high-capacity retention. The ex-situ XRD of initial discharge/charge process at different voltages implies that the Mn5.64P3 could be transformed to the amorphous LixMnyPz. The N/P co-doped carbon shells can provide high specific area for electrolyte infiltration, and act as the buffer matrix to suppress the loss of the Mn5.64P3 active material during cycling. The Mn5.64P3 with the hexagonal crystal structure and N/P co-doped carbon shells could promote the further optimization and development of manganese phosphide for high-performance LIBs. Full article
Show Figures

Figure 1

11 pages, 5061 KiB  
Article
Interface Engineering Induced N, P-Doped Carbon-Shell-Encapsulated FeP/NiP2/Ni5P4/NiP Nanoparticles for Highly Efficient Hydrogen Evolution Reaction
by Ting Zhang, Jianguo Zhong, Wei Gao and Yuxin Wang
Coatings 2024, 14(7), 817; https://doi.org/10.3390/coatings14070817 - 1 Jul 2024
Cited by 3 | Viewed by 1733
Abstract
Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER [...] Read more.
Modifying the electronic structure of a catalyst through interface engineering is an effective strategy to enhance its activity in the hydrogen evolution reaction (HER). Interface engineering is a viable strategy to enhance the catalytic activity of transition metal phosphides (TMPs) in the HER process. The interface-engineered FeP/NiP2/Ni5P4/NiP multi-metallic phosphide nanoparticles confined in a N, P-doped carbon matrix was developed by a simple one-step low-temperature phosphorization treatment, which only requires 72 and 155 mV to receive the current density of 10 mA/cm2 in acid and alkaline electrolyte, respectively. This enhanced performance can be primarily attributed to the heterointerface of FeP/NiP2/Ni5P4/NiP multi-metallic phosphides, which promotes electron redistribution and optimizes the adsorption/desorption strength of H* on the active sites. Furthermore, the N, P-doped carbon framework that encapsulates the nanoparticles inhibits their aggregation, leading to an increased availability of active sites throughout the reaction. The results of this study open up a straightforward and innovative approach to developing high-performance catalysts for hydrogen production. Full article
Show Figures

Figure 1

12 pages, 2339 KiB  
Article
Effect of the Second-Shell Coordination Environment on the Performance of P-Block Metal Single-Atom Catalysts for the Electrosynthesis of Hydrogen Peroxide
by Yidi Wu, Yuxiang Zhang and Sen Lin
Catalysts 2024, 14(7), 421; https://doi.org/10.3390/catal14070421 - 30 Jun 2024
Cited by 1 | Viewed by 1743
Abstract
Hydrogen peroxide (H2O2) is an important chemical with a diverse range of industrial applications in chemical synthesis and medical disinfection. The traditional anthraquinone oxidation process, with high energy consumption and complexity, is being replaced by cost-effective and environmentally friendly [...] Read more.
Hydrogen peroxide (H2O2) is an important chemical with a diverse range of industrial applications in chemical synthesis and medical disinfection. The traditional anthraquinone oxidation process, with high energy consumption and complexity, is being replaced by cost-effective and environmentally friendly alternatives. In order to explore suitable catalysts for the electrocatalytic synthesis of H2O2, the stability of B,N-doped graphene loaded with various p-block metal (PM) single atoms (i.e., PM-NxBy: x and y represent the number of atoms of N and B, respectively) and the effects of different numbers and positions of B dopants in the second coordination shell on the catalytic performance were studied by density functional theory (DFT) calculations. The results show that Ga-N4B6 and Sb-N4B6 exhibit enhanced stability and 2e oxygen reduction reaction (ORR) activity and selectivity. Their thermodynamic overpotential η values are 0.01 V, 0.03 V for Ga-N4B6’s two configurations and 0.02 V, 0 V for Sb-N4B6’s two configurations. Electronic structure calculations indicate that the PM single atom adsorbs OOH* intermediates and transfers electrons into them, resulting in the activation of the O-O bond, which facilitates the subsequent hydrogenation reaction. In summary, Sb-N4B6 and Ga-N4B6 exhibit extraordinary 2e ORR performance, and their predicted activities are comparable to those of known outstanding catalysts (such as PtHg4 alloy). We propose effective strategies on how to enhance the 2e ORR activities of carbon materials, elucidate the origin of the activity of potential catalysts, and provide insights for the design and development of electrocatalysts that can be used for H2O2 production. Full article
(This article belongs to the Special Issue Computational Catalysis for Sustainability)
Show Figures

Figure 1

8 pages, 213 KiB  
Editorial
Adsorption Technology for Water and Wastewater Treatments
by Hai Nguyen Tran
Water 2023, 15(15), 2857; https://doi.org/10.3390/w15152857 - 7 Aug 2023
Cited by 26 | Viewed by 8317
Abstract
This Special Issue includes 12 research papers on the development of various materials for adsorbing different contaminants in water, such as Sb, Cr(VI), Cu(II), Zn(II), fluorine, phenol, dyes (indigo carmine, Congo red, methylene blue, and crystal violet), and drugs (dlevofloxacin, captopril, and diclofenac, [...] Read more.
This Special Issue includes 12 research papers on the development of various materials for adsorbing different contaminants in water, such as Sb, Cr(VI), Cu(II), Zn(II), fluorine, phenol, dyes (indigo carmine, Congo red, methylene blue, and crystal violet), and drugs (dlevofloxacin, captopril, and diclofenac, and paracetamol). The commercial, natural, and synthetic materials used as adsorbents comprise commercial activated carbon, natural clay and montmorillonite, biosorbent based on sugarcane bagasse or algal, graphene oxide, graphene oxide-based magnetic nanomaterial, mesoporous Zr-G-C3N4 nanomaterial, nitrogen-doped core–shell mesoporous carbonaceous nano-sphere, magnetic Fe-C-N composite, polyaniline-immobilized ZnO nanorod, and hydroxy-iron/acid–base-modified sepiolite composite. Various operational conditions are evaluated under batch adsorption experiments, such as pH, NaCl, solid/liquid ratio, stirring speed, contact time, solution temperature, initial adsorbate concentration. The re-usability of laden materials is evaluated through adsorption–desorption cycles. Adsorption kinetics, isotherm, thermodynamics, and mechanisms are studied and discussed. Machine learning processes and statistical physics models are also applied in the field of adsorption science and technology. Full article
(This article belongs to the Special Issue Adsorption Technology for Water and Wastewater Treatments)
12 pages, 11383 KiB  
Article
Bimetallic Flower-like NiCoP Encapsulated in an N-Doped Carbon Shell with Enhanced Lithium Storage Properties
by Haoyu Tian, Lingyu Zhao, Linlin Wang, Zijie Xia, Wenqi Tan and Zheng Jiao
Batteries 2023, 9(7), 361; https://doi.org/10.3390/batteries9070361 - 5 Jul 2023
Cited by 5 | Viewed by 2009
Abstract
It continues to be a challenge to design innovative NiCoP composite anode materials to further improve rate capacity. In this work, bimetallic flower-like NiCoP encapsulated in an N-doped carbon shell (designated as NiCoP@NC) as a high-rate capable anode material for lithium-ion batteries (LIBs) [...] Read more.
It continues to be a challenge to design innovative NiCoP composite anode materials to further improve rate capacity. In this work, bimetallic flower-like NiCoP encapsulated in an N-doped carbon shell (designated as NiCoP@NC) as a high-rate capable anode material for lithium-ion batteries (LIBs) was successfully designed and synthesized. The novel structure design combines the advantages of flower-like NiCoP (core) and N-doped carbon (shell). Flower-like NiCoP offers numerous interface and redox reaction sites for improving lithium storage, while the N-doped carbon shell effectively buffers volume expansion and enhances electrical conductivity. The synergistic effect between NiCoP and the N-doped carbon shell proposes a marvelous high-rate capacity (320 mA h/g even at 5 A/g) and a good cycle life with high reversible capacity (369.8 mA h/g for 700 cycles at 3 A/g with 81% retention). An investigation of kinetics performance shows that the introduction of the N-doped carbon shell enhances the charge transfer, and the pseudocapacitive behavior dominates the rapid Li+ storage of the NiCoP@NC electrode. Full article
(This article belongs to the Special Issue Advances in Rechargeable Li Metal Batteries)
Show Figures

Figure 1

14 pages, 2617 KiB  
Article
Facile Synthesis of Nickel Phosphide @ N-Doped Carbon Nanorods with Exceptional Cycling Stability as Li-Ion and Na-Ion Battery Anode Material
by Fang Fu, Qiuchen He, Xuan Zhang, Julian Key, Peikang Shen and Jinliang Zhu
Batteries 2023, 9(5), 267; https://doi.org/10.3390/batteries9050267 - 11 May 2023
Cited by 7 | Viewed by 2651
Abstract
Nickel phosphide (Ni2P), as an anode material for both lithium- and sodium-ion batteries, offers high theoretical specific and volumetric capacities. However, considerable challenges include its limited rate capability and low cycle stability arising from its volume change and degradation during cycling. [...] Read more.
Nickel phosphide (Ni2P), as an anode material for both lithium- and sodium-ion batteries, offers high theoretical specific and volumetric capacities. However, considerable challenges include its limited rate capability and low cycle stability arising from its volume change and degradation during cycling. To solve these issues, appropriate composite micro/nanoparticle designs can improve conductivity and provide confinement. Herein, we report a simple pyrolysis method to synthesize nitrogen-doped carbon-coated Ni2P nanorod arrays (Ni2P@NC) from nickel foam and an ionic resin as a source of carbon, nitrogen and phosphorus. The N-doped open-ended carbon shells provide Ni2P containment, good electrical conductivity, efficient electrolyte access and the buffering of bulk strain during cycling. Consequently, as a LIB anode material, Ni2P@NC has impressive specific capacity in long-term cycling (630 mAh g−1 for 150 cycles at 0.1 A g−1) and a high rate capability of 170 mAh g−1 for 6000 cycles at 5 A g−1. Similarly, as a SIB anode, Ni2P@NC retains a sizable 288 mAh g−1 over 300 cycles at 0.1 A g−1, and 150 mAh g−1 over 2000 cycles at 2 A g−1. Furthermore, due to a sizable portion of its capacity coinciding with adequately low voltage, the material shows promise for high volumetric energy storage in full-cell format. Lastly, the simple synthesis method has the potential to produce other carbon-coated metal phosphides for electrochemical applications. Full article
(This article belongs to the Special Issue Transition Metal Compound Materials for Secondary Batteries)
Show Figures

Figure 1

9 pages, 2996 KiB  
Article
pH-Sensitive Fluorescence Emission of Boron/Nitrogen Co-Doped Carbon Quantum Dots
by Oguzhan Ustun, Sugra Naz Karadag, Hayrunnisa Mazlumoglu, Asli Yilmaz and Mehmet Yilmaz
Coatings 2023, 13(2), 456; https://doi.org/10.3390/coatings13020456 - 17 Feb 2023
Cited by 8 | Viewed by 3304
Abstract
Carbon quantum dots (CQDs) with their strong photoluminescence (PL) activity, high biocompatibility, robust stability, low cytotoxicity, and flexible surface structures have been employed in many fields including chemical sensing, biosensing, photocatalyst, energy storage, and biomedical applications. Of note, CQDs present an intrinsic pH-sensitive [...] Read more.
Carbon quantum dots (CQDs) with their strong photoluminescence (PL) activity, high biocompatibility, robust stability, low cytotoxicity, and flexible surface structures have been employed in many fields including chemical sensing, biosensing, photocatalyst, energy storage, and biomedical applications. Of note, CQDs present an intrinsic pH-sensitive PL nature indicating their intense potential for pH-mediated sensing and imaging. Despite the numerous studies performed in the last two decades, the pH-sensitive PL mechanism of CQDs is still under debate and must be clarified to overcome the limitations in practical applications. Therefore, in this report, we performed a systematical study to determine the pH-sensitive PL nature of boron/nitrogen co-doped CQDs (B/N CQDs). In the first part, B/N CQDs with a strong blue emission were fabricated via a hydrothermal synthesis procedure. B/N-CQDs showed a strong blue PL emission with high quantum yield and excitation-dependent nature. Under the low pH conditions (pH 3), B/N-CQDs exhibited a robust green fluorescence emission with a significant red-shift (48 nm) and the loss of the excitation-dependent nature. The change in PL nature originated from the protonation of surface groups, a decrease in negative surface charge (from −20.6 to −1.23 eV), and finally, aggregation of the nanostructure (the size of CQDs from 4.8 to 7.5 nm). However, in the case of alkaline conditions, the deprotonation surface groups significantly enhanced the surface charge and led to the emergence of a negative ‘protective shell’ with a zeta potential of −71.3 eV. In a high pH medium (pH 13), PL spectra showed the loss of excitation-dependent features and a red-shift (35 nm) in emission peak maxima with lower intensity. This report provides significant progress in the clarification of the pH-sensitive PL mechanism of CQDs. We envision that the proposed CQDs would provide unique opportunities in the fabrication of novel pH sensor systems and fluorescence imaging where a wide range of pH sensitivity is required. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Graphical abstract

15 pages, 2103 KiB  
Article
Sustainable Development of Magnetic Chitosan Core–Shell Network for the Removal of Organic Dyes from Aqueous Solutions
by Karthik Rathinam, Xinwei Kou, Ralph Hobby and Stefan Panglisch
Materials 2021, 14(24), 7701; https://doi.org/10.3390/ma14247701 - 13 Dec 2021
Cited by 12 | Viewed by 2942
Abstract
The wide use of alizarin red S (ARS), a typical anthraquinone dye, has led to its continued accumulation in the aquatic environment, which causes mutagenic and carcinogenic effects on organisms. Therefore, this study focused on the removal of ARS dye by adsorption onto [...] Read more.
The wide use of alizarin red S (ARS), a typical anthraquinone dye, has led to its continued accumulation in the aquatic environment, which causes mutagenic and carcinogenic effects on organisms. Therefore, this study focused on the removal of ARS dye by adsorption onto a magnetic chitosan core–shell network (MCN). The successful synthesis of the MCN was confirmed by ATR-FTIR, SEM, and EDX analysis. The influence of several parameters on the removal of ARS dye by the MCN revealed that the adsorption process reached equilibrium after 60 min, pH played a major role, and electrostatic interactions dominated for the ARS dye removal under acidic conditions. The adsorption data were described well by the Langmuir isotherm and a pseudo-second order kinetic model. In addition to the preferable adsorption of hydrophobic dissolved organic matter (DOM) fractions onto the MCN, the electrostatic repulsive forces between the previously adsorbed DOM onto MCN and ARS dye resulted in lower ARS dye removal. Furthermore, the MCN could easily be regenerated and reused for up to at least five cycles with more than 70% of its original efficiency. Most importantly, the spent MCN was pyrolytically converted into N-doped magnetic carbon and used as an adsorbent for various dyes, thus establishing a waste-free adsorption process. Full article
(This article belongs to the Special Issue Synthesis, Modification, and Application of Polymer Sorbents)
Show Figures

Figure 1

10 pages, 3619 KiB  
Article
Molten-Salt-Assisted Synthesis of Nitrogen-Doped Carbon Nanosheets Derived from Biomass Waste of Gingko Shells as Efficient Catalyst for Oxygen Reduction Reaction
by Wei Hong, Xia Wang, Hongying Zheng, Rong Li, Rui Wu and Jun Song Chen
Processes 2021, 9(12), 2124; https://doi.org/10.3390/pr9122124 - 25 Nov 2021
Cited by 8 | Viewed by 2647
Abstract
Developing superior efficient and durable oxygen reduction reaction (ORR) catalysts is critical for high-performance fuel cells and metal–air batteries. Herein, we successfully prepared a 3D, high-level nitrogen-doped, metal-free (N–pC) electrocatalyst employing urea as a single nitrogen source, NaCl as a fully sealed nanoreactor [...] Read more.
Developing superior efficient and durable oxygen reduction reaction (ORR) catalysts is critical for high-performance fuel cells and metal–air batteries. Herein, we successfully prepared a 3D, high-level nitrogen-doped, metal-free (N–pC) electrocatalyst employing urea as a single nitrogen source, NaCl as a fully sealed nanoreactor and gingko shells, a biomass waste, as carbon precursor. Due to the high content of active nitrogen groups, large surface area (1133.8 m2 g−1), and 3D hierarchical porous network structure, the as-prepared N–pC has better ORR electrocatalytic performance than the commercial Pt/C and most metal-free carbon materials in alkaline media. Additionally, when N–pC was used as a catalyst for an air electrode, the Zn–air battery (ZAB) had higher peak power density (223 mW cm−2), larger specific-capacity (755 mAh g−1) and better rate-capability than the commercial Pt/C-based one, displaying a good application prospect in metal-air batteries. Full article
(This article belongs to the Special Issue Sustainable Development Processes for Renewable Energy Technology)
Show Figures

Figure 1

Back to TopTop