Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Mucispirillum schaedleri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8037 KiB  
Article
Alteration of Gastrointestinal Function and the Ameliorative Effects of Hericium erinaceus Polysaccharides in Tail Suspension Rats
by Peng Zang, Pu Chen, Junli Chen, Jingchao Sun, Haiyun Lan, Haisheng Dong, Wei Liu, Nan Xu, Weiran Wang, Lingwei Hou, Bowen Sun, Lujia Zhang, Jiaqiang Huang, Pengjie Wang, Fazheng Ren and Siyuan Liu
Nutrients 2025, 17(4), 724; https://doi.org/10.3390/nu17040724 - 18 Feb 2025
Cited by 1 | Viewed by 1832
Abstract
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), [...] Read more.
Background/Objectives: Long-term spaceflight in a microgravity environment frequently results in gastrointestinal dysfunction, presenting substantial challenges to astronauts’ health. Hericium erinaceus, a plant recognized for its dual use as food and medicine, contains a key functional component called Hericium erinaceus polysaccharide (HEP), which is purported to promote gastrointestinal health. This study aims to investigate the protective effects of HEP against gastrointestinal disturbances induced by simulated weightlessness and to elucidate its regulatory mechanisms. Methods: Sprague Dawley rats subjected to a tail suspension model were administered either a standard diet or a diet supplemented with 0.125% HEP over a period of 4 weeks (the intake of HEP is approximately 157.5 mg/kg bw/d, n = 8), metagenomics and targeted metabolomics to investigate the effects of HEP on gastrointestinal hormone secretion disorders, gut microbiota dysbiosis, and intestinal barrier damage induced by simulated weightlessness. Results: Dietary supplementation with HEP was observed to significantly alleviate weightlessness-induced gastrointestinal hormone disruptions, enhancing motility and intestinal barrier function while reducing inflammation. In addition, HEP improved gut microbiota by boosting beneficial bacteria as Oscillibacter sp.1-3, Firmicutes bacterium ASF500, and Lactobacillus reuteri, while reducing harmful bacteria like Escherichia coli and Mucispirillum schaedleri at the species level. Furthermore, HEP altered the serum metabolic profile of the rats, reducing inflammation by upregulating the tryptophan metabolism pathway and enhancing the production of short-chain fatty acids. Conclusions: HEP effectively protects against gastrointestinal dysfunction induced by simulated weightlessness by regulating hormone secretion and maintaining intestinal homeostasis. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

14 pages, 4031 KiB  
Article
Dynamic Shifts in Antibiotic Residues and Gut Microbiome Following Tilmicosin Administration to Silkie Chickens
by Qiying Liang, Chunlin Xie, Haile Berihulay Gebreselase, Yushan Yuan, Jingyi He, Lu Xie, Chenglong Luo and Jian Ji
Animals 2024, 14(23), 3428; https://doi.org/10.3390/ani14233428 - 27 Nov 2024
Viewed by 1128
Abstract
Tilmicosin, an antibiotic widely used in animal husbandry to prevent and treat bacterial infections, raises concerns due to its residual accumulation, which impacts both animal health and food safety. In this study, we conducted a comprehensive analysis of tilmicosin clearance patterns in different [...] Read more.
Tilmicosin, an antibiotic widely used in animal husbandry to prevent and treat bacterial infections, raises concerns due to its residual accumulation, which impacts both animal health and food safety. In this study, we conducted a comprehensive analysis of tilmicosin clearance patterns in different tissues, assessed physiological impacts through blood biochemistry, and investigated changes in gut microbial composition with 16S rRNA sequencing of the tilmicosin-treated Silkie chickens. Initially, we observed rapid peaks in tilmicosin residues in all tissues within 1 day after treatment, but complete metabolism took longer, extending beyond 9 days. Moreover, tilmicosin treatment significantly decreased serum levels of total bile acid, blood urea nitrogen, and uric acid, while increasing the levels of direct bilirubin, total bilirubin, and glutathione peroxidase at day 3, followed by a decrease from day 5 onwards. The effects of tilmicosin use on microbial composition and diversity lasted for an extended period, with the relative abundance of Proteobacteria remaining significantly different between the control and tilmicosin-treated groups at 120 days. Additionally, correlation analysis revealed a strong positive correlation between Mucispirillum_schaedleri and tilmicosin residue in all tissues, while Parabbacteroide_distasonis, Faecalibacterium_prausnitzii, and others exhibited negative correlations with tilmicosin residue. Overall, our study indicates a significant correlation between intestinal microbes and antibiotic residues, providing a theoretical basis for guiding the withdrawal period after antibiotic use. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

16 pages, 10525 KiB  
Article
Effects of Hibernation on Colonic Epithelial Tissue and Gut Microbiota in Wild Chipmunks (Tamias sibiricus)
by Juntao Liu, Guangyu Jiang, Hongrui Zhang, Haiying Zhang, Xiaoyan Jia, Zhenwei Gan and Huimei Yu
Animals 2024, 14(10), 1498; https://doi.org/10.3390/ani14101498 - 17 May 2024
Cited by 1 | Viewed by 1820
Abstract
The gut microbiota plays a crucial role in the host’s metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic [...] Read more.
The gut microbiota plays a crucial role in the host’s metabolic processes. Many studies have shown significant changes in the gut microbiota of mammals during hibernation to adapt to the changes in the external environment, but there is limited research on the colonic epithelial tissue and gut microbiota of the wild chipmunks during hibernation. This study analyzed the diversity, composition, and function of the gut microbiota of the wild chipmunk during hibernation using 16S rRNA gene high-throughput sequencing technology, and further conducted histological analysis of the colon. Histological analysis of the colon showed an increase in goblet cells in the hibernation group, which was an adaptive change to long-term fasting during hibernation. The dominant gut microbial phyla were Bacteroidetes, Firmicutes, and Proteobacteria, and the relative abundance of them changed significantly. The analysis of gut microbiota structural differences indicated that the relative abundance of Helicobacter typhlonius and Mucispirillum schaedleri increased significantly, while unclassified Prevotella-9, unclassified Prevotellaceae-UCG-001, unclassified Prevotellaceae-UCG-003 and other species of Prevotella decreased significantly at the species level. Alpha diversity analysis showed that hibernation increased the diversity and richness of the gut microbiota. Beta diversity analysis revealed significant differences in gut microbiota diversity between the hibernation group and the control group. PICRUSt2 functional prediction analysis of the gut microbiota showed that 15 pathways, such as lipid metabolism, xenobiotics biodegradation and metabolism, amino acid metabolism, environmental adaptation, and neurodegenerative diseases, were significantly enriched in the hibernation group, while 12 pathways, including carbohydrate metabolism, replication and repair, translation, and transcription, were significantly enriched in the control group. It can be seen that during hibernation, the gut microbiota of the wild chipmunk changes towards taxa that are beneficial for reducing carbohydrate consumption, increasing fat consumption, and adapting more strongly to environmental changes in order to better provide energy for the body and ensure normal life activities during hibernation. Full article
Show Figures

Figure 1

17 pages, 2341 KiB  
Article
Ginger Polyphenols Reverse Molecular Signature of Amygdala Neuroimmune Signaling and Modulate Microbiome in Male Rats with Neuropathic Pain: Evidence for Microbiota–Gut–Brain Axis
by Chwan-Li Shen, Julianna Maria Santos, Moamen M. Elmassry, Viren Bhakta, Zarek Driver, Guangchen Ji, Vadim Yakhnitsa, Takaki Kiritoshi, Jacob Lovett, Abdul Naji Hamood, Shengmin Sang and Volker Neugebauer
Antioxidants 2024, 13(5), 502; https://doi.org/10.3390/antiox13050502 - 23 Apr 2024
Cited by 3 | Viewed by 2958
Abstract
Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut–brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW [...] Read more.
Emerging evidence shows that the gut microbiota plays an important role in neuropathic pain (NP) via the gut–brain axis. Male rats were divided into sham, spinal nerve ligation (SNL), SNL + 200 mg GEG/kg BW (GEG200), and SNL + 600 mg GEG/kg BW (GEG600) for 5 weeks. The dosages of 200 and 600 mg GEG/kg BW for rats correspond to 45 g and 135 g raw ginger for human daily consumption, respectively. Both GEG groups mitigated SNL-induced NP behavior. GEG-supplemented animals had a decreased abundance of Rikenella, Muribaculaceae, Clostridia UCG-014, Mucispirillum schaedleri, RF39, Acetatifactor, and Clostridia UCG-009, while they had an increased abundance of Flavonifactor, Hungatella, Anaerofustis stercorihominis, and Clostridium innocuum group. Relative to sham rats, Fos and Gadd45g genes were upregulated, while Igf1, Ccl2, Hadc2, Rtn4rl1, Nfkb2, Gpr84, Pik3cg, and Abcc8 genes were downregulated in SNL rats. Compared to the SNL group, the GEG200 group and GEG600 group had increases/decreases in 16 (10/6) genes and 11 (1/10) genes, respectively. GEG downregulated Fos and Gadd45g genes and upregulated Hdac2 genes in the amygdala. In summary, GEG alleviates NP by modulating the gut microbiome and reversing a molecular neuroimmune signature. Full article
Show Figures

Figure 1

12 pages, 6099 KiB  
Communication
Mucispirillum schaedleri: Biofilm Architecture and Age-Dependent Pleomorphy
by Aléhandra Desjardins, Patricia Zerfas, Dominic Filion, Robert J. Palmer and Emilia Liana Falcone
Microorganisms 2023, 11(9), 2200; https://doi.org/10.3390/microorganisms11092200 - 31 Aug 2023
Cited by 2 | Viewed by 2279
Abstract
Round bodies in spirochete cultures have been a controversial subject since their description seven decades ago. We report the existence of round bodies (spherical cells) in cultures of Mucispirillum schaedleri, a spiral bacterium phylogenetically distant from spirochetes. Furthermore, when grown in biofilms, [...] Read more.
Round bodies in spirochete cultures have been a controversial subject since their description seven decades ago. We report the existence of round bodies (spherical cells) in cultures of Mucispirillum schaedleri, a spiral bacterium phylogenetically distant from spirochetes. Furthermore, when grown in biofilms, M. schaedleri demonstrates a unique morphology known as cording, which has been previously described only in mycobacteria. Thus, M. schaedleri has two distinct features, each previously thought to be unique to two different phylogenetically distant groups of bacteria. Full article
(This article belongs to the Section Biofilm)
Show Figures

Figure 1

19 pages, 2431 KiB  
Article
Metagenome Analysis Identifies Microbial Shifts upon Deoxynivalenol Exposure and Post-Exposure Recovery in the Mouse Gut
by Jing Jin, Chen Zhang, Xiaoxu Ren, Bowen Tai and Fuguo Xing
Toxins 2023, 15(4), 243; https://doi.org/10.3390/toxins15040243 - 25 Mar 2023
Cited by 9 | Viewed by 2864
Abstract
Deoxynivalenol (DON) is one of the most prevalent food-associated mycotoxins, and is known to cause a variety of adverse health effects on human and animals. Upon oral exposure, the intestine is the main target organ of DON. The current study unraveled that DON [...] Read more.
Deoxynivalenol (DON) is one of the most prevalent food-associated mycotoxins, and is known to cause a variety of adverse health effects on human and animals. Upon oral exposure, the intestine is the main target organ of DON. The current study unraveled that DON exposure (2 mg/kg bw/day or 5 mg/kg bw/day) can significantly reshape the gut microbiota in a mouse model. The study characterized the specific gut microbial strains and genes changed after DON exposure and also investigated the recovery of the microbiota upon either 2 weeks daily prebiotic inulin administration or 2 weeks recovery without intervention after termination of DON exposure (spontaneous recovery). The results obtained reveal that DON exposure causes a shift in gut microorganisms, increasing the relative abundance of Akkermansia muciniphila, Bacteroides vulgatus, Hungatella hathewayi, and Lachnospiraceae bacterium 28-4, while the relative abundance of Mucispirillum schaedleri, Pseudoflavonifractor sp. An85, Faecalibacterium prausnitzii, Firmicutes bacterium ASF500, Flavonifractor plautii, Oscillibacter sp. 1-3, and uncultured Flavonifractor sp. decreased. Notably, DON exposure enhanced the prevalence of A. muciniphila, a species considered as a potential prebiotic in previous studies. Most of the gut microbiome altered by DON in the low- and high-dose exposure groups recovered after 2 weeks of spontaneous recovery. Inulin administration appeared to promote the recovery of the gut microbiome and functional genes after low-dose DON exposure, but not after high-dose exposure, at which changes were exacerbated by inulin-supplemented recovery. The results obtained help to better understand the effect of DON on the gut microbiome, and the gut microbiota’s recovery upon termination of DON exposure. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

21 pages, 7065 KiB  
Article
Poria cocos Polysaccharide Ameliorated Antibiotic-Associated Diarrhea in Mice via Regulating the Homeostasis of the Gut Microbiota and Intestinal Mucosal Barrier
by Huachong Xu, Shiqi Wang, Yawen Jiang, Jialin Wu, Lili Chen, Yujia Ding, Yingtong Zhou, Li Deng and Xiaoyin Chen
Int. J. Mol. Sci. 2023, 24(2), 1423; https://doi.org/10.3390/ijms24021423 - 11 Jan 2023
Cited by 48 | Viewed by 5642
Abstract
Poria cocos polysaccharides (PCP) have been validated for several biological activities, including antitumor, anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective and modulation on gut microbiota. In this research, we aim to demonstrate the potential prebiotic effects and the therapeutic efficacies of PCP in the treatment of [...] Read more.
Poria cocos polysaccharides (PCP) have been validated for several biological activities, including antitumor, anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective and modulation on gut microbiota. In this research, we aim to demonstrate the potential prebiotic effects and the therapeutic efficacies of PCP in the treatment of antibiotic-associated diarrhea (AAD), and confirm the beneficial effects of PCP on gut dysbiosis. Antibiotic-associated diarrhea mice models were established by treating them with broad-spectrum antibiotics in drinking water for seven days. Mice in two groups treated with probiotics and polysaccharide were given Bifico capsules (4.2 g/kg/d) and PCP (250 mg/kg/d) for seven days using intragastric gavage, respectively. To observe the regulatory effects of PCP on gut microbiota and intestinal mucosal barrier, we conducted the following experiments: intestinal flora analysis (16S rDNA sequencing), histology (H&E staining) and tight junction proteins (immunofluorescence staining). The levels of mRNA expression of receptors associated with inflammation and gut metabolism were assessed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The study revealed that PCP can comprehensively improve the clinical symptoms of AAD mice, including fecal traits, mental state, hair quality, etc., similar to the effect of probiotics. Based on histology observation, PCP significantly improved the substantial structure of the intestine of AAD mice by increasing the expression levels of colonic tight junction protein zonula-occludens 1 (ZO-1) and its mRNA. Moreover, PCP not only increased the abundance of gut microbiota, but also increased the diversity of gut microbiota in AAD mice, including alpha diversity and beta diversity. Further analysis found that PCP can modulate seven characteristic species of intestinal flora in AAD mice, including Parabacteroides_distasonis, Akkermansia_muciniphila, Clostridium_saccharolyticum, Ruminoc-occus_gnavus, Lactobacillus_salivarius, Salmonella_enterica and Mucispirillum_schaedleri. Finally, enrichment analysis predicted that PCP may affect intestinal mucosal barrier function, host immune response and metabolic function by regulating the microbiota. RT-PCR experiments showed that PCP can participate in immunomodulatory and modulation on metabolic by regulating the mRNA expression of forkhead-box protein 3 (FOXP3) and G protein-coupled receptor 41 (GPR41). These results indicated that Poria cocos polysaccharide may ameliorate antibiotic-associated diarrhea in mice by regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. In addition, polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities and modulation of the metabolism. Full article
(This article belongs to the Special Issue Microbiome and Metabolome in the Gastrointestinal Tract)
Show Figures

Figure 1

12 pages, 4252 KiB  
Article
Detection of Colistin Sulfate on Piglet Gastrointestinal Tract Microbiome Alterations
by Shulin Fu, Yuzhen Yuan, Xinyue Tian, Linglu Zhou, Ling Guo, Dan Zhang, Jing He, Chun Peng, Yinsheng Qiu, Chun Ye, Yu Liu and Bingbing Zong
Vet. Sci. 2022, 9(12), 666; https://doi.org/10.3390/vetsci9120666 - 29 Nov 2022
Cited by 3 | Viewed by 2580
Abstract
The gut microbiome exerts important functions on host health maintenance, whereas excessive antibiotic use may cause gut flora dysfunction resulting in serious disease and dysbiosis. Colistin is a broad-spectrum antibiotic with serious resistance phenomena. However, it is unclear whether colistin alters the gastrointestinal [...] Read more.
The gut microbiome exerts important functions on host health maintenance, whereas excessive antibiotic use may cause gut flora dysfunction resulting in serious disease and dysbiosis. Colistin is a broad-spectrum antibiotic with serious resistance phenomena. However, it is unclear whether colistin alters the gastrointestinal tract microbiome in piglets. In this study, 16s rDNA-based metagenome analyses were used to assess the effects of colistin on the modification of the piglet microbiome in the stomach, duodenum, jejunum, cecum, and feces. Both α- and β-diversity indices showed that colistin modified microbiome composition in these gastrointestinal areas. In addition, colistin influenced microbiome composition at the phylum and genus levels. At the species level, colistin upregulated Mycoplasma hyorhinis, Chlamydia trachomatis, Lactobacillus agilis, Weissella paramesenteroides, and Lactobacillus salivarius abundance, but downregulated Actinobacillus indolicus, Campylobacter fetus, Glaesserella parasuis, Moraxella pluranimalium, Veillonella caviae, Neisseria dentiae, and Prevotella disiens abundance in stomachs. Colistin-fed piglets showed an increased abundance of Lactobacillus mucosae, Megasphaera elsdenii DSM 20460, Fibrobacter intestinalis, and Unidentified rumen bacterium 12-7, but Megamonas funiformis, Uncultured Enterobacteriaceae bacterium, Actinobacillus porcinus, Uncultured Bacteroidales bacterium, and Uncultured Clostridiaceae bacterium abundance was decreased in the cecum. In feces, colistin promoted Mucispirillum schaedleri, Treponema berlinense, Veillonella magna, Veillonella caviae, and Actinobacillus porcinus abundance when compared with controls. Taken together, colistin modified the microbiome composition of gastrointestinal areas in piglets. This study provides new clinical rationalization strategies for colistin on the maintenance of animal gut balance and human public health. Full article
Show Figures

Figure 1

17 pages, 5757 KiB  
Article
n-6 High Fat Diet Induces Gut Microbiome Dysbiosis and Colonic Inflammation
by Ornella I. Selmin, Andreas J. Papoutsis, Sabine Hazan, Christopher Smith, Nick Greenfield, Micah G. Donovan, Spencer N. Wren, Thomas C. Doetschman, Justin M. Snider, Ashley J. Snider, Sherry H.-H. Chow and Donato F. Romagnolo
Int. J. Mol. Sci. 2021, 22(13), 6919; https://doi.org/10.3390/ijms22136919 - 28 Jun 2021
Cited by 40 | Viewed by 7160
Abstract
Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at [...] Read more.
Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10–16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation. Full article
(This article belongs to the Special Issue Nutrient-Gene Interactions)
Show Figures

Figure 1

15 pages, 3358 KiB  
Article
Microbial Co-Occurrence Patterns and Keystone Species in the Gut Microbial Community of Mice in Response to Stress and Chondroitin Sulfate Disaccharide
by Fang Liu, Zhaojie Li, Xiong Wang, Changhu Xue, Qingjuan Tang and Robert W. Li
Int. J. Mol. Sci. 2019, 20(9), 2130; https://doi.org/10.3390/ijms20092130 - 30 Apr 2019
Cited by 18 | Viewed by 5200
Abstract
Detecting microbial interactions is essential to the understanding of the structure and function of the gut microbiome. In this study, microbial co-occurrence patterns were inferred using a random matrix theory based approach in the gut microbiome of mice in response to chondroitin sulfate [...] Read more.
Detecting microbial interactions is essential to the understanding of the structure and function of the gut microbiome. In this study, microbial co-occurrence patterns were inferred using a random matrix theory based approach in the gut microbiome of mice in response to chondroitin sulfate disaccharide (CSD) under healthy and stressed conditions. The exercise stress disrupted the network composition and microbial co-occurrence patterns. Thirty-four Operational Taxonomic Units (OTU) were identified as module hubs and connectors, likely acting as generalists in the microbial community. Mucispirillum schaedleri acted as a connector in the stressed network in response to CSD supplement and may play a key role in bridging intimate interactions between the host and its microbiome. Several modules correlated with physiological parameters were detected. For example, Modules M02 (under stress) and S05 (stress + CSD) were strongly correlated with blood urea nitrogen levels (r = 0.90 and −0.75, respectively). A positive correlation between node connectivity of the OTUs assigned to Proteobacteria with superoxide dismutase activities under stress (r = 0.57, p < 0.05) provided further evidence that Proteobacteria can be developed as a potential pathological marker. Our findings provided novel insights into gut microbial interactions and may facilitate future endeavor in microbial community engineering. Full article
Show Figures

Graphical abstract

14 pages, 2646 KiB  
Article
Inhibition of Tumor Growth by Dietary Indole-3-Carbinol in a Prostate Cancer Xenograft Model May Be Associated with Disrupted Gut Microbial Interactions
by Yanbei Wu, Robert W. Li, Haiqiu Huang, Arnetta Fletcher, Lu Yu, Quynhchi Pham, Liangli Yu, Qiang He and Thomas T. Y. Wang
Nutrients 2019, 11(2), 467; https://doi.org/10.3390/nu11020467 - 22 Feb 2019
Cited by 39 | Viewed by 7309
Abstract
Accumulated evidence suggests that the cruciferous vegetables-derived compound indole-3-carbinol (I3C) may protect against prostate cancer, but the precise mechanisms underlying its action remain unclear. This study aimed to verify the hypothesis that the beneficial effect of dietary I3C may be due to its [...] Read more.
Accumulated evidence suggests that the cruciferous vegetables-derived compound indole-3-carbinol (I3C) may protect against prostate cancer, but the precise mechanisms underlying its action remain unclear. This study aimed to verify the hypothesis that the beneficial effect of dietary I3C may be due to its modulatory effect on the gut microbiome of mice. Athymic nude mice (5–7 weeks old, male, Balb c/c nu/nu) with established tumor xenografts were fed a basal diet (AIN-93) with or without 1 µmoles I3C/g for 9 weeks. The effects of dietary I3C on gut microbial composition and microbial species interactions were then examined by 16s rRNA gene-based sequencing and co-occurrence network analysis. I3C supplementation significantly inhibited tumor growth (p < 0.0001) and altered the structure of gut microbiome. The abundance of the phylum Deferribacteres, more specifically, Mucispirillum schaedleri, was significantly increased by dietary I3C. Additionally, I3C consumption also changed gut microbial co-occurrence patterns. One of the network modules in the control group, consisting of seven bacteria in family S-27, was positively correlated with tumor size (p < 0.009). Moreover, dietary I3C disrupted microbial interactions and altered this association between specific microbial network and tumor development. Our results unraveled complex relationships among I3C ingestion, gut microbiota, and prostate tumor development and may provide a novel insight into the mechanism for the chemopreventive effect of dietary I3C on prostate cancer. Full article
Show Figures

Figure 1

Back to TopTop