Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Mtb gyrase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6425 KiB  
Review
Review of Recent Advances in Thiazolidin-4-One Derivatives as Promising Antitubercular Agents (2021–Present)
by Wiktoria Drzał and Nazar Trotsko
Molecules 2025, 30(10), 2201; https://doi.org/10.3390/molecules30102201 - 17 May 2025
Viewed by 1199
Abstract
Tuberculosis (TB) remains one of the leading causes of mortality worldwide, exacerbated by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains. In the pursuit of novel therapeutic strategies, thiazolidin-4-one derivatives have gained significant attention due to their structural diversity [...] Read more.
Tuberculosis (TB) remains one of the leading causes of mortality worldwide, exacerbated by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains. In the pursuit of novel therapeutic strategies, thiazolidin-4-one derivatives have gained significant attention due to their structural diversity and broad-spectrum biological activities. This review provides a comprehensive summary of recent advances (2021–present) in the synthesis, structure–activity relationship (SAR), and mechanisms of action of thiazolidin-4-one derivatives as promising antitubercular agents. A detailed discussion of synthetic pathways is presented, including classical and multi-component reactions leading to various subclasses such as thiazolidine-2,4-diones, rhodanines, and pseudothiohydantoins. The SAR analysis highlights key functional groups that enhance antimycobacterial activity, such as halogen substitutions and heterocyclic linkers, while molecular docking and in vitro studies elucidate interactions with key Mtb targets including InhA, MmpL3, and DNA gyrase. Several compounds demonstrate potent inhibitory effects with MIC values lower than or comparable to first-line TB drugs, alongside favorable cytotoxicity profiles. These findings underscore the potential of thiazolidin-4-one scaffolds as a valuable platform for the development of next-generation antitubercular therapeutics. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 4346 KiB  
Article
Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis
by Xiaofei Qiu, Qianqian Zhang, Zhaoguo Li, Juan Zhang and Huanxiang Liu
Int. J. Mol. Sci. 2024, 25(7), 3764; https://doi.org/10.3390/ijms25073764 - 28 Mar 2024
Cited by 3 | Viewed by 1914
Abstract
With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as [...] Read more.
With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors’ binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors’ attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors. Full article
Show Figures

Graphical abstract

18 pages, 2906 KiB  
Article
Mycobacterium tuberculosis Inhibitors Based on Arylated Quinoline Carboxylic Acid Backbones with Anti-Mtb Gyrase Activity
by Mark Tristan J. Quimque, Adrian D. Go, Justin Allen K. Lim, Warren S. Vidar and Allan Patrick G. Macabeo
Int. J. Mol. Sci. 2023, 24(14), 11632; https://doi.org/10.3390/ijms241411632 - 19 Jul 2023
Cited by 7 | Viewed by 2829
Abstract
New antitubercular agents with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new arylated quinoline carboxylic acids (QCAs) having activity against replicating and non-replicating Mycobacterium [...] Read more.
New antitubercular agents with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new arylated quinoline carboxylic acids (QCAs) having activity against replicating and non-replicating Mycobacterium tuberculosis (Mtb), the causative agent of TB. Thus, the synthesis, characterization, and in vitro screening (MABA and LORA) of 48 QCAs modified with alkyl, aryl, alkoxy, halogens, and nitro groups in the quinoline ring led to the discovery of two QCA derivatives, 7i and 7m, adorned with C-2 2-(naphthalen-2-yl)/C-6 1-butyl and C-2 22-(phenanthren-3-yl)/C-6 isopropyl, respectively, as the best Mtb inhibitors. DNA gyrase inhibition was shown to be exhibited by both, with QCA 7m illustrating better activity up to a 1 μM test concentration. Finally, a docking model for both compounds with Mtb DNA gyrase was developed, and it showed a good correlation with in vitro results. Full article
(This article belongs to the Special Issue Small Molecule Drug Design and Research 2.0)
Show Figures

Graphical abstract

16 pages, 778 KiB  
Article
Schiff Bases of Indoline-2,3-dione: Potential Novel Inhibitors of Mycobacterium Tuberculosis (Mtb) DNA Gyrase
by Tarek Aboul-Fadl, Hatem A. Abdel-Aziz, Mohammed K. Abdel-Hamid, Tilal Elsaman, Jane Thanassi and Michael J. Pucci
Molecules 2011, 16(9), 7864-7879; https://doi.org/10.3390/molecules16097864 - 13 Sep 2011
Cited by 52 | Viewed by 8479
Abstract
In the present study a series of Schiff bases of indoline-2,3-dione were synthesized and investigated for their Mtb gyrase inhibitory activity. Promising inhibitory activity was demonstrated with some of these derivatives, which exhibited IC50 values ranging from 50–157 mM. The orientation and [...] Read more.
In the present study a series of Schiff bases of indoline-2,3-dione were synthesized and investigated for their Mtb gyrase inhibitory activity. Promising inhibitory activity was demonstrated with some of these derivatives, which exhibited IC50 values ranging from 50–157 mM. The orientation and the ligand-receptor interactions of such molecules within the Mtb DNA gyrase A subunit active site were investigated applying a multi-step docking protocol using Molecular Operating Environment (MOE) and Autodock4 docking software. The results revealed the importance of the isatin moiety and the connecting side chain for strong interactions with the enzyme active site. Among the tested compounds the terminal aromatic ring benzofuran showed the best activity. Promising new leads for developing a novel class of Mtb gyrase inhibitors were obtained from Schiff bases of indoline-2,3-dione. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop