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Abstract: With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), vari-
ous levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently,
the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB)
has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors
targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is
crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant
TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the
representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics
(MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered
molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic
and van der Waals interactions contribute favorably to the inhibitors’ binding to GyrB, with Asn52,
Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors’ attachment to GyrB.
The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The
SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring
the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP
active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719
obtained in our work will provide new insights for the development of promising GyrB inhibitors.

Keywords: tuberculosis; GyrB; novobiocin; SPR719; molecular dynamics (MD) simulations; binding
mechanism; dissociation mechanism

1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis
(Mtb) infection, one of the neglected tropical diseases [1,2]. TB receives many resources in
terms of funding, research focus, and international attention, so it is one the members of
the “big three” (composed of Malaria and HIV) in infectious disease [3]. Globally, TB is
the second leading cause of death from a single infectious agent after COVID-19, causing
nearly twice as many deaths as HIV/AIDS [4]. According to the statistics from the World
Health Organization (WHO), approximately one-fourth of the global population is infected
with Mtb [4]. While tuberculosis is considered treatable, both first-line and second-line anti-
tuberculosis drugs are currently facing significant drug resistance [5–7]. As the incidence of
multiple drug-resistant tuberculosis (MDR-TB) strains continues to rise, there is an urgent
need for new anti-tuberculosis drugs to replace existing ones. One strategy for identifying
potential new antibiotics is to re-examine attractive but relatively underexplored targets.

The DNA gyrase subunit B (GyrB) is a clinically validated target that has not been
extensively developed [8]. DNA gyrase, a highly conserved bacterial topoisomerase,
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consists of the GyrA and GyrB subunits, forming a heterotetramer (A2B2) of disparate
origins. It plays a crucial role in maintaining and regulating the DNA’s topological structure
within the cell, essential for bacterial DNA replication. The GyrA subunit is involved
in DNA cleavage and rejoining, while the GyrB subunit, containing an ATPase active
site, binds and hydrolyzes ATP to generate the energy required for introducing negative
supercoils necessary for DNA replication [9,10]. Fluoroquinolone drugs targeting GyrA
have been extensively studied as anti-tuberculosis agents [11]. However, mutations in
the GyrA domain have reduced the effectiveness of these drugs, leading to increased
resistance [12]. Consequently, attention has shifted to GyrB’s ATPase. GyrB has shown
bactericidal activity against Mtb, and its ATP binding site is highly conserved, reducing the
likelihood of developing spontaneous resistance to ATP competitive inhibitors. Resistance
studies have also shown no cross-resistance between GyrB inhibitors and fluoroquinolone
drugs [13]. Moreover, GyrB forms a homodimer in eukaryotic cells, a structural difference
that allows its inhibitors to act more selectively on pathogens [14]. Given these advantages,
research on GyrB inhibitors has attracted significant interest.

Several scaffolds with inhibitory activity against Mtb GyrB have been reported, such as
pyrrolamides [15–17], benzimidazoles [18,19], thiazolopyrimidinones [20,21], indolylidine
nitrothiazoles [22], aminopyridines [23], aminopyridazines [24], and others. However, to
date, only novobiocin (Figure 1), an antibiotic targeting GyrB, has been approved for human
use, and its efficacy has been confirmed in pre-clinical and clinical trials [25]. Novobiocin
was first approved in 1964, primarily used for the treatment of severe infections caused
by methicillin-resistant Staphylococcus aureus (MRSA). However, due to safety concerns
related to its toxicity, it was required by the FDA to be withdrawn from the market in
2009 [26]. Nevertheless, novobiocin remains the only clinically validated GyrB inhibitor and
has been shown to possess antibacterial activity against Mtb [13]. In addition, the second-
generation benzimidazole compound SPR719, discovered through structure optimization
and metabolism transfer strategies, has demonstrated bactericidal activity against various
drug-sensitive and drug-resistant strains. It has shown excellent efficacy in a mouse chronic
Mtb infection model, with a relatively low spontaneous resistance frequency [18,19,27],
and is currently in Phase II clinical trials [28]. There are currently no drugs available on
the market that target the GyrB ATP binding site. Therefore, gaining a comprehensive
understanding of the molecular interactions between these representative inhibitors and
GyrB holds significant practical importance for the future design and improvement of more
potent GyrB inhibitors.
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Figure 1. Two representative GyrB inhibitors, novobiocin and SPR719.

The crystal structure of Mtb GyrB in complex with adenosine 5′-(β, γ-imino) triphos-
phate (AMPPNP) was reported in 2013 [29]. The emergence of these crystal structures
has provided valuable information for understanding the critical interactions between the
protein’s active pocket and inhibitors. This information can be used not only to study the
binding thermodynamics of GyrB with inhibitors but also serve as a good starting point
to elucidate the detailed molecular mechanisms of inhibitor dissociation from the protein
binding pocket. Based on this information, this study initially explored the binding ther-
modynamics of novobiocin and SPR719 with GyrB through classical molecular dynamics
(MD) simulations. The Molecular Mechanics-Generalized Born Surface Area (MM-GBSA)



Int. J. Mol. Sci. 2024, 25, 3764 3 of 17

method was used to predict the binding free energy between protein and ligands. The
results indicate that these two inhibitors primarily bind to GyrB through electrostatic and
van der Waals interactions. Residue-based energy decomposition identified some key
residues, such as Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141, that have significant
energy contribution to the inhibitors binding. Simultaneously, tau-random acceleration
molecular dynamics (τ-RAMD) simulations were used to explore the dissociation path-
ways of the inhibitors, and steered molecular dynamics (SMD) simulations were used to
further characterize the transition states during the dissociation process for both inhibitors.
Through these simulations and calculations, insights into the binding and dissociation
mechanisms of novobiocin and SPR719 with GyrB have been provided. This information
offers valuable guidance for the rational design of GyrB ATPase inhibitors.

2. Results
2.1. Electrostatic Interactions and van der Waals Interactions Are the Primary Driving Forces for
the Binding of GyrB Inhibitors

First, to assess the system’s stability, the root-mean-square deviation (RMSD) of the
Cα atoms of the protein, the residues within 5 Å of the binding pocket, and the non-
hydrogen atoms of the ligand over the simulation were monitored. As depicted in Figure 2A,
the RMSD fluctuations of the entire protein are relatively large, which may be due to
fluctuations in some flexible loop regions. However, Figure 2B shows that whether in the
apo system or the complex system, the RMSD fluctuation of the binding pocket is small,
within 3 Å, especially the binding of inhibitors makes the residues of the binding pocket
more stable (RMSD stable at around 2 Å). Additionally, it can be seen from Figure 2C
that the RMSD value of novobiocin is larger than that of SPR719, indicating that the
conformation of novobiocin has changed significantly. However, the conformations of both
inhibitors stabilized during the simulation and could be used for subsequent analysis.
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non-hydrogen atoms of the ligand.

Subsequently, the root-mean-square fluctuation (RMSFs) for the last 50 ns of the three
systems were calculated to investigate the flexibility of residues. As shown in Figure 3, it
can be observed that residues in all three systems exhibit similar trends in RMSF values. In
particular, the residues in the protein–ligand complex systems display even more similar
fluctuations. Additionally, not only do residues located far from the binding site, such
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as at the N-terminus domain (NTD) and C-terminus domain (CTD) of the protein, show
higher flexibility, but residues in sequences 77–89 and 96–114 at the GyrB active site also
exhibit significant flexibility. Moreover, the apo system at the binding site exhibits greater
fluctuations compared with the two complex systems, indicating that the inhibitors play a
role in stabilizing the residues at the protein’s binding site.
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The binding free energies were calculated using the MM-GBSA method, which has
been widely used in numerous studies to explore the detailed interactions between two
representative inhibitors and the target from an energetic perspective [30–32]. For each
system, 1000 snapshots were extracted from the last 50 ns trajectories to calculate the aver-
age binding free energy. As shown in Table 1, the binding free energy of novobiocin with
GyrB is −24.34 kcal/mol, and that of SPR719 is −26.81 kcal/mol. For ease of comparison,
we converted the experimentally obtained Ki value [18,33] into binding free energy. As
shown in Table 1, the experimental binding energies (∆Gexp) of novobiocin and SPR719
are −10.82 kcal/mol and −11.04 kcal/mol, respectively. It can be seen that the ranking
of calculated binding free energy of novobiocin and SPR719 is well consistent with the
experimental value. By comparing the contributions of each energy term, it is evident that
the electrostatic interaction term (∆Eele) is crucial for ligand binding, with novobiocin and
SPR719 showing values of −48.72 kcal/mol and −62.04 kcal/mol, respectively. Further-
more, contributions from the van der Waals interaction term (∆Evdw) and the nonpolar
solvation-free energy term (∆Gnonpolar), both exceeding −59.8 kcal/mol for each inhibitor,
underscore the significance of hydrophobic interactions in stabilizing the ligands within the
binding pocket. Therefore, ∆Eele, ∆Evdw, and ∆Gnonpolar are the primary driving forces for
inhibitor binding to the target, facilitating the stability of small molecules in the binding site.
Additionally, the polar solvation energy term (∆Gpolar) for both systems showed positive
values, indicating an unfavorable contribution to the binding of both inhibitors. This is
attributed to the large volume of the ligand-binding pocket, resulting in extensive exposure
to solvent.
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Table 1. Binding free energies calculated by the MM-GBSA method and detailed contributions of
various energy terms (kcal/mol).

Energy 3ZKB-Novobiovin 3ZKB-SPR719

∆Eele −48.72 −62.04
∆Evdw −61.13 −59.87

∆EMM
a −109.85 −121.91

∆GSA −8.28 −6.53
∆GGB 72.26 68.51

∆Gsol
b 63.98 61.98

∆Gpolar
c 23.54 6.47

∆Gnonpolar
d −69.41 −66.4

∆Hbind −52.5 −59.95
−T∆S 28.16 33.14
∆Gbind −24.34 −26.81
Ki (nM) 13 9
∆Gexp

e −10.82 −11.04
a ∆EMM = ∆Eele + ∆Evdw. b ∆Gsol = ∆GGB + ∆GSA. c ∆Gpolar = ∆Eele + ∆GGB. d ∆Gnonpolar = ∆Evdw +
∆GSA. e Calculated by the experimental Ki according to the equation ∆Gexp = RT × ln (Kd) ≈ RT × ln (Ki),
where T = 300 K.

2.2. Residue Energy Decomposition Revealed the Key Residues for Inhibitor Binding to GyrB

To further identify the residues playing a key role in the binding process of repre-
sentative inhibitors with GyrB, the method of residue energy decomposition was used to
decompose the binding free energy onto each residue, as shown in Figure 4. Based on the
contributions of each residue to the interaction energy, we identified nine residues that
contribute to the binding of novobiocin and SPR719: Asn52, Asp79, Arg82, Ile84, Pro85,
Val99, Lys108, Tyr114, and Ser169, with free energy contributions ranging from −0.56 to
−5.89 kcal/mol.
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To further analyze the detailed binding modes of the two inhibitors to GyrB, cluster
analysis was performed based on the equilibrium trajectories of the last 50 ns of each
system. In the cluster analysis, the RMSD of the complexes was used as the metric and the
clustering cutoff was set to 4.0 Å. As shown in Table S1, both systems have three clustering
centers, among which cluster1 accounts for 83.6% and 90% for novobiocin and SPR719,
respectively. Therefore, the structure located at the center of cluster1 was extracted as the
representative structure of each system. The detailed binding modes between the two
inhibitors and GyrB are shown in Figure 5. In the novobiocin system, the benzene ring
on the inhibitor can form a π–cation interaction with Lys108, leading to a higher energy
contribution from the Lys108 residue. Additionally, the strongly polar amino and hydroxyl
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groups on the inhibitor serve as hydrogen bond donors, interacting with residues Asp79,
Gly107, and Phe109 to form hydrogen bonds. The amino group on the imidazole ring of
His89 also acts as a hydrogen bond donor, forming hydrogen bonds with the inhibitor.
These hydrogen bonds significantly stabilize the binding between novobiocin and GyrB.
Furthermore, the tail of the inhibitor can establish strong van der Waals interactions with
hydrophobic residues such as Val49, Ala53, Ile84, Pro85, Val96, Val99, Met100, and Val125.
Among these residues, Asn52, Ile84, Pro85, His89, Val99, Gly107, Lys108, and Phe109 make
substantial energy contributions to the stable binding of novobiocin. In the SPR719 system,
the Asp79 residue contributes the most to the energy. Upon analyzing the binding mode,
this is primarily due to the formation of two hydrogen bonds between the carboxyl oxygen
atom of the Asp79 residue and two amino hydrogen atoms on the urea group of SPR719.
Additionally, the nitrogen atom of the pyrimidine ring of SPR719 not only forms a hydrogen
bond interaction with Arg141 but also engages in π–cation stacking interaction with Arg82.
The benzene ring of SPR719 also forms a π–π interaction with Tyr114. Furthermore, the
benzene ring of SPR719 can establish strong van der Waals interactions with surrounding
hydrophobic residues (Ile84, Pro85, Ala113, Tyr114). The tail of SPR719 extends into a
hydrophobic pocket formed by residues such as Val49, Ala53, Val77, Ala78, Val99, and
Val125. These interactions collectively stabilize the binding between SPR719 and GyrB.
Moreover, residues such as Asn52, Arg82, Ile84, Pro85, Ala113, Tyr114, and Arg141, as
shown in Figure 4, make significant energy contributions to the binding of SPR719.
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Figure 5. Detailed 3D and 2D binding modes of representative conformations of (A) novobiocin and
(B) SPR719 binding to the ATP site of GyrB. In the 3D binding mode images, the protein’s secondary
structure is depicted in cartoon form, key residues involved in ligand binding are shown as purple
sticks, and the inhibitors are represented as yellow sticks. Red dashed lines represent hydrogen bond
interactions, and green dashed lines represent π interactions. In the 2D binding mode images, purple
arrows represent hydrogen bond interactions, red lines indicate π–cation interactions, and green lines
represent π–π interactions.
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Comparing the binding modes of the two inhibitors with GyrB, it is evident that
the binding modes of both inhibitors are highly similar. Firstly, both of them deeply
penetrate into the binding pocket, and the phenyl ring or tail of each inhibitor binds to
a hydrophobic pocket formed by nonpolar amino acid residues, including Val49, Val53,
Ile84, Pro85, Val99, Phe109, Ala113, Tyr114, and Val125, leading to strong van der Waals
interactions. Secondly, both inhibitors form hydrogen bond interactions with Asp79, and
the hydrogen bond occupancy with Asp79 remains stable for both inhibitors. As shown in
Table 2, the hydrogen bond occupancy with Asp79 for novobiocin and SPR719 is 99% and
75%, respectively, further emphasizing the significance of the interaction with the Asp79
residue for inhibitor binding. Finally, the π–cation interactions between the phenyl ring or
nitrogen-containing ring deeply within the pocket and specific amino acid residues in the
binding pocket are also crucial.

Table 2. Hydrogen bond occupancy between GyrB and novobiocin, SPR719.

Complex Donor Acceptor Distance (Å) Angel (◦) Occupancy (%)

3ZKB_novobiocin ligand@O11-H30 ASP_79@OD1 2.5876 168.1364 99.91
ligand@O5-H11 GLY_107@O1479 2.6696 165.8257 99.22
ligand@N1-H17 PHE_109@O1521 2.8626 161.4976 63.76

HIE_89@NE2-HE2 ligand@O5 2.8912 154.5943 25.39
ASN_52@ND2-HD2 ligand@O9 2.8714 160.222 13.12

GLY_107@NH ligand@O6 2.8935 143.3523 11.15
3ZKB_SPR719 ligand@N6-H20 ASP_79@OD1 2.782 158.5813 76.02

ligand@N3-H12 ASP_79@OD1 2.7976 159.6323 74.85
ARG_141@NH1-HH12 ligand@N4 2.8998 148.7218 35.25
ARG_141@NH2-HH22 ligand@O2 2.8837 162.1836 27.17

ligand@N6-H20 ASP_79@OD2 2.7771 158.7187 20.58
ligand@N3-H12 ASP_79@OD2 2.7982 159.7471 20.52

The detailed interactions between proteins and inhibitors, as well as the identifica-
tion of hotspot residues at the protein-inhibitor binding interface, can provide valuable
information for the discovery and design of GyrB inhibitors. Therefore, gaining a compre-
hensive understanding of the interactions between GyrB and inhibitors and determining
the key residues at the binding interface is crucial. According to the results of molec-
ular dynamics simulations, the aromatic rings and hydrophobic centers play a crucial
role in protein-inhibitor binding. Simultaneously, the presence of polar centers in the
inhibitors, particularly their hydrogen bond interactions with the Asp79 residue, is of
paramount importance. This further confirms that van der Waals interactions and electro-
static interactions are the primary driving forces for inhibitor binding. The current research
findings contribute to a deeper understanding of the detailed interactions between GyrB
and representative inhibitors, guiding the future design of GyrB inhibitors. Additionally, in
subsequent virtual screenings targeting GyrB, compounds capable of forming hydrogen
bond interactions with the Asp79 residue will be prioritized as potential lead compounds.

2.3. tau-RAMD Simulations Revealed That the Dissociation Pathways of Novobiocin and SPR719
Were Mainly from the ATP Channel of GyrB

The tau-RAMD (τ-RAMD) simulations provide an effective means to rapidly identify
the dissociation pathways of inhibitors. We utilized this method to investigate the potential
dissociation pathways for novobiocin and SPR719 from the GyrB ATP binding site. As
shown in Figure 6, we identified two possible dissociation pathways. Specifically, path1
represents a dissociation pathway along the ATP channel, while path2 involves dissociation
by moving the loop region connected to helix5 upwards, creating space for the inhibitor to
dissociate. Additionally, we classified and statistically analyzed the dissociation directions
of 100 simulated trajectories for both inhibitors (as detailed in Table S2). The statistical
results indicate that the primary dissociation pathway for these two inhibitors is path1,
involving dissociation from the ATP channel, with path2 being rarely observed.
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2.4. SMD Simulations Identified the Intermediate States in the Dissociation Process and the Key
Amino Acids Involved

In order to investigate the dissociation kinetics of inhibitors, we conducted steered
molecular dynamics (SMD) simulations to study the dissociation process of novobiocin
and SPR719 from the ATP binding pocket of GyrB. First, based on the main dissociation
pathways obtained from τ-RAMD simulations, we defined the reaction coordinates for
the dissociation of the two inhibitors along the ATP channel. Secondly, to ensure the use
of a rigid spring approximation in the SMD simulations, we evaluated different stretch-
ing velocities (0.01, 0.005, 0.008, and 0.0008 Å/ps) and elastic constant (40, 50, 60, and
70 kcal/mol·Å−2). The results showed that a stretching velocity of 0.008 Å/ps and an
elastic constant of 60 kcal/mol·Å−2 met the requirements for maintaining a hard spring
state throughout the entire SMD simulation. Based on the rigid spring pulling, we em-
ployed 10 parallel SMD simulation trajectories in conjunction with the Jarzynski equation
to calculate the change in the potential of mean force (PMF) for both sets of systems
(as shown in Figure 7). The results indicate that the PMF for novobiocin and SPR719 is
96.40 ± 5.22 kcal/mol and 122.35 ± 1.71 kcal/mol, respectively. This trend aligns with
experimental values of Ki for small molecules reported in the literature [18,33] as well as
the calculated binding free energies using the MM-GBSA method (Table 1). It suggests
that SPR719 has to overcome a greater binding free energy barrier during the dissociation
process compared to novobiocin.

To further analyze the specific dissociation pathways of the two inhibitors, we selected
representative SMD trajectories from the 10 dissociation trajectories to examine the forces
experienced by the two inhibitors during dissociation and the intermediate conforma-
tional states in their dissociation process. During the dissociation along the ATP channel,
novobiocin exhibits three distinct intermediate states (as shown in Figure 8). In the first in-
termediate state, novobiocin forms stable hydrogen bonds with Glu56, Gly107, Gly122, and
Asp142. The benzimidazole ring on the inhibitor also engages in π interactions with Arg82,
Arg141, and Tyr114, hindering the dissociation of the inhibitor at this point (Figure 8A). In
the second intermediate state, the hydrophobic tail of novobiocin detaches from the pocket
and forms new hydrogen bonds with Gly83, Lys108, and Arg141. Simultaneously, the
inhibitor experiences hindrance from van der Waals interactions with hydrophobic residues
near the pocket, including Ala53, Ile84, Pro85, and Ala113, during the dissociation process
(Figure 8B). In the third intermediate state, the inhibitor forms new hydrogen bonds with
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Arg82 and Asp112. The π–cation interaction between the electron-rich benzene ring at the
inhibitor’s tail and Arg141 hinders rapid dissociation from the binding site (Figure 8C).
Finally, the force acting on novobiocin drops to near zero and fluctuates, indicating that
novobiocin has completely departed from the GyrB binding site (Figure 8D).
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SPR719 and novobiocin share some similarities in the dissociation process. Moreover,
they both exhibit three distinct intermediate states during dissociation along the ATP
channel (as illustrated in Figure 9). For the SPR719 system, the first intermediate state is
primarily hindered by stable hydrophobic interactions formed at the binding site by Val49,
Ala53, Ile84, Val99, and Ala105. Simultaneously, SPR719 forms hydrogen bond interactions
with Asn52, Asp79, Lys108, and Ser169 during the dissociation process. The benzene ring of
SPR719 also engages in π–π interactions with Tyr144. These protein–inhibitor interactions
collectively impede the dissociation of SPR719 from the binding site (Figure 9A). In the



Int. J. Mol. Sci. 2024, 25, 3764 10 of 17

second intermediate state, similar to novobiocin, the hydrophobic tail of SPR719 detaches.
The hydrogen atom on the terminal amino group can form hydrogen bonds with the side
chains of Glu56 and Tyr114. Additionally, hydrophobic residues such as Pro85, Ala113,
and Tyr114 near the dissociation exit hinder the dissociation of SPR719 by forming van der
Waals interactions with the benzene ring (Figure 9B). In the third intermediate state, the
inhibitor dissociates from the binding pocket, and the oxygen atom on its urea group forms
a hydrogen bond with Arg141 (Figure 9C). Approximately 20 Å later, SPR719 completely
dissociates from the dissociation channel (Figure 9D). While the main dissociation pathway
of SPR719 aligns with novobiocin, SPR719 binds more deeply into the pocket, allowing it
to form more interactions with surrounding residues such as Asn52, Asp79, Ala113, and
Ser169. Consequently, the PMF for SPR719 dissociation is greater than that for novobiocin.
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The key hydrogen bonds formed during the dissociation of inhibitors from the ATP-
binding site of GyrB represent the main interactions between the inhibitors and the target.
Therefore, we investigated the change in the number of hydrogen bonds in both systems
during the dissociation process. As shown in Figure 10, it can be observed that novobiocin
exhibits a gradual pattern of hydrogen bond rupture, with the overall number of hydrogen
bonds decreasing to 1 and 0 after 5 Å. In contrast, SPR719 forms more persistent hydrogen
bond interactions, still maintaining 2 to 3 hydrogen bonds after 5 Å. This means that the
hydrogen bond interactions established by SPR719 along the ATP channel during the
dissociation process are stronger and more numerous, making it more difficult for the
inhibitor to dissociate. Furthermore, monitoring the number of hydrogen bonds indicates
that hydrogen bonds play a crucial role in the inhibitor dissociation process.

Through the analysis of the interactions between the two inhibitors and the receptor
during the dissociation process, we have concluded that SPR719 forms relatively strong
hydrophobic and hydrogen bond interactions with GyrB. Therefore, it needs to overcome
a greater free energy barrier to dissociate from the target protein. Furthermore, the key
amino acid residues that affect the dissociation of both inhibitors are primarily Asn52,
Glu56, Asp79, Arg82, Ile84, Pro85, Gly107, Lys108, and Arg141. These findings align with
the results obtained from the analysis of binding kinetics.
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3. Discussion

In this study, we employed a range of computational methodologies, including molec-
ular dynamics (MD) simulation, Molecular Mechanics-Generalized Born Surface Area
(MM-GBSA) calculations, τ-Random Accelerated Molecular Dynamics (τ-RAMD) simula-
tions, and steered molecular dynamics (SMD) simulations, to comprehensively investigate
the mechanisms of binding and dissociation between Mtb GyrB and its inhibitors novo-
biocin and SPR719. Our results suggest that the primary driving forces responsible for the
binding of inhibitors to the target protein are electrostatic interactions and van der Waals
forces, which is consistent with the findings of Tambe and colleagues [34]. The findings
from residue energy decomposition and binding mode analysis underscore the importance
of Asn52, Asp79, Arg82, Ile84, Pro85, and Arg141 as essential residues for the stable binding
of inhibitors at the GyrB ATP binding site. Specifically, Asp79 is highlighted for its ability
to form hydrogen bonds with inhibitors. This aligns with the results of Kamsri et al.’s [35]
MD simulation study on GyrB inhibitors of thiadiazole derivatives, which also identified
Asn52, Asp79, Arg82, Ile84, and Arg141 as key residues contributing significantly to energy
residue and emphasizing their critical role in inhibitor binding. The study conducted by
Gl et al. [36] identified some novel drug candidates targeting GyrB through drug repurpos-
ing. Through molecular docking and subsequent molecular dynamics (MD) simulation
analysis, it was observed that the inhibitor established a stable interaction with the crucial
residues Asn52, Asp79, and Arg82 of the ATP binding site. Additionally, a further examina-
tion of the research by Arévalo et al. [37] validated that the inhibitor frequently engaged
in hydrogen bonding with Asp79 during the MD simulation. These results support and
augment our comprehension of the primary forces governing the inhibitor–GyrB ATP
binding and the essential residues implicated, thus validating the precision and efficacy
of our methodology. The identification of these key residues can provide an important
theoretical basis for the discovery and design of further GyrB inhibitors.

In the context of drug development, understanding the dissociation kinetics of drugs
and targets is crucial. Despite this, the dissociation pathway and associated information
regarding GyrB inhibitors remain undisclosed. Consequently, this study utilized τ-RAMD
and SMD simulations to elucidate the dissociation pathway of novobiocin and SPR719 from
the Mtb GyrB ATP binding site. Initial findings from the τ-RAMD simulations indicate
that both inhibitors primarily dissociate via the ATP channel. SMD simulations further
elucidated the intricate dynamics of inhibitor dissociation, highlighting the necessity for
inhibitors to surmount hydrophobic interactions with residues such as Asn53, Ile84, Pro85,
Val99, and Ala113 within the GyrB ATP active site, in addition to forming hydrogen
bonds with Glu56, Aap79, Lys108, and Arg141. The transient nature of these interactions
during dissociation offers significant insights into the rational design of drugs based on
structural considerations. Overall, this research not only aids in a deeper understanding
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of the binding and dissociation mechanisms between GyrB and its inhibitors but also lays
a solid theoretical foundation for designing and developing novel GyrB inhibitors with
higher affinity.

4. Materials and Methods
4.1. Molecular Docking

Because the structure of the complex of Mtb GyrB with novobiocin and SPR719 has
not been solved yet, the complex for MD simulation was obtained by molecular docking
based on the complex of Mtb GyrB with AMPPNP (PDB ID: 3ZKB). Molecular docking was
implemented by the Glide program in the Schrödinger 2021 software package. The crystal
structure of the Mtb GyrB complex with AMPPNP was obtained from the RCSB database
https://www.rcsb.org/ (accessed on 21 May 2023). The Protein Preparation Wizard module
of Schrödinger 2021 was used to prepare the protein structure, such as removing the
crystallographic water molecules and adding missing hydrogen atoms. The Receptor
Grid Generation module was employed to define the binding site, which is centered on
the ligand AMPPNP. The LigPrep module was then used to prepare the ligands, which
included generating three-dimensional conformations for the small molecules, determining
protonation states, and generating isomers. Firstly, in order to evaluate the accuracy of
molecular docking methods in predicting binding conformations of ligands, the ligand
AMPPNP was extracted from the crystal structure 3ZKB and re-docked to the binding
pocket using both Standard Precision (SP) and Extra Precision (XP) modes. Upon calculating
the root-mean-square deviation (RMSD) between the re-docked conformations and the
original crystallographic conformation, we found that the RMSD from SP docking was
1.17 Å, whereas the RMSD from XP docking was 1.92 Å. Therefore, the SP docking was
performed for novobiocin and SPR719, which provided the initial structures for MD
simulations of the two systems.

4.2. System Preparation

Before performing molecular dynamics simulations, we initially used Gaussian 09
software to calculate the electrostatic potentials of the two inhibitors. Subsequently,
RESP [38,39] charge fitting was conducted using the Antechamber program within the AM-
BER 20 software suite. The Parmchk module was further utilized to generate parameters
for the inhibitors. The tleap module was employed to create the topological and coordinate
files for the complexes. The general AMBER force fields ff14SB [40] and GAFF [41,42]
were used to describe the protein and inhibitors, respectively. Finally, the complexes were
placed in a cubic water box based on the TIP3P solvent model, with the distance between
the complex and the box boundary set to 10 Å. Na+ ions were added to each system to
neutralize the entire system.

4.3. Classical Molecular Dynamics Simulations

All MD simulations were performed using the Amber 20 program [43]. Initially, the
first 2500 steps employed the steepest descent method, followed by an additional 2500 steps
using the conjugate gradient method for energy minimization. Subsequently, each system
was heated from 0 K to 300 K in the NTV ensemble, with a constraint on the complex using a
force constant of 2 kcal/(mol·Å2) [44]. Following this, four equilibration steps were carried
out in the NPT ensemble [45], applying constraints on the complex that decreased from 2.0
to 1.0 to 0.5 to 0.1. Next, to eliminate atomic collisions and relax the entire system, a 500 ps
unrestrained equilibrium MD simulation was conducted. Finally, each system underwent a
350 ns molecular dynamics simulation. During the simulations, the Particle Mesh Ewald
(PME) algorithm was employed to handle long-range electrostatic interactions [46], and the
SHAKE algorithm [47] was used to constrain the vibrations of covalent bonds involving
all hydrogen atoms. The time step was set to 2 fs. Additionally, all cartoon plots were
generated using PyMOL 2.7.

https://www.rcsb.org/
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4.4. τ-Random Accelerated Molecular Dynamics (τ-RAMD) Simulation

The τ-Random Accelerated Molecular Dynamics (τ-RAMD) is an extension of the
RAMD method, designed to facilitate ligand dissociation from the protein binding pocket
within a limited time scale [48–50]. The main advantage of τ-RAMD is its ability to
automatically search for potential dissociation pathways near the binding pocket without
the need for predefined dissociation directions or extensive parameter fitting [51]. In this
study, τ-RAMD simulations were conducted using the NAMD program [52]. Initially,
10 ns of conventional molecular dynamics simulations were performed to obtain the initial
structures required for τ-RAMD simulations. Five initial structures were extracted from
the simulation trajectories of each system (one frame every 2.5 ns) for subsequent τ-RAMD
simulations. Additionally, the magnitude of the random force was set to 25 kcal/mol.
Each initial structure underwent 20 parallel dissociation simulations, where the magnitude
of the random force remained constant, but the direction of the force changed randomly
to enhance the reliability of the simulations. Finally, each system obtained a total of
100 dissociation trajectories.

4.5. Steered Molecular Dynamics Simulations

Steered molecular dynamics simulations (SMD) [53] are an enhanced sampling tech-
nique widely employed to explore the intermediate states of inhibitor dissociation from
protein binding pockets [50,54–58]. SMD simulations apply external forces to one or more
atoms in the ligand, guiding it to dissociate in a specified direction. This direction is deter-
mined by the primary dissociation pathway obtained from τ-RAMD simulations, setting
the reaction coordinate of the inhibitor to follow the ATP channel dissociation direction.
In this study, the constant velocity pulling SMD simulation method was used. Simulation
parameters were adjusted to ensure a rigid spring during constant velocity stretching. Ini-
tially, the elastic constant k was set to 60 kcal/mol·Å−2, and different stretching velocities
v were tested as follows: 0.01, 0.005, 0.008, and 0.0008 Å/ps (Figure S1). Subsequently,
with the stretching velocity v fixed at 0.008 Å/ps, the elastic constant k was adjusted to
40, 50, 60, and 70 kcal/mol·Å−2 (Figure S2). The results showed that a spring constant
(k) of 60 kcal/mol·Å−2 and a pulling velocity (v) of 0.008 Å/ps met the requirements
for a stiff spring (Figure S3). Additionally, to prevent the translation and rotation of the
protein during simulation, position restraints were applied to certain residues away from
the binding pocket.

In order to examine the free energy barrier linked to the dissociation of the two
inhibitors from the ATPase binding site of GyrB, we reconstructed the potential of mean
force (PMF) profiles from SMD simulations utilizing Jarzynski’s equation:

e−β∆G(x) =
〈

e−βW
〉

(1)

where β is the inverse of the thermodynamic temperature, ∆G(x) denotes the change in
free energy along the reaction coordinate x, and W represents the non-equilibrium work
associated with the reaction coordinate x during SMD simulations. A total of 10 parallel
SMD simulations were performed for each system using the NAMD program to reduce
the potential error in the calculation of PMF values. Furthermore, plots illustrating the
variations in the potential of mean force (PMF) and force along the reaction coordinate
during the dissociation process of the two inhibitors from the ATP channel were created
utilizing Origin.

4.6. MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) Calculations

The Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method strikes
a balance between computational efficiency and accuracy [59,60] and is widely used to
predict the binding affinity between proteins and ligands [61–64]. Additionally, MM-GBSA
facilitates the analysis of energy contributions from each residue through binding free
energy decomposition, identifying key interactions during the binding process [65,66]. In
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MM-GBSA, the calculation of the free energy for ligand–receptor binding is conducted
as follows:

∆Gbind = Gcomplex −
(

Greceptor + Gligand

)
(2)

G = GMM + Gsol − TS (3)

∆GMM = ∆Eint + ∆Eele + ∆Evdw (4)

∆Gsol = ∆GGB + ∆GSA (5)

∆GSA = γ × ∆SASA (6)

where ∆GMM, ∆Gsol, and −T∆S represent changes in the gas–phase interaction energy,
solvation-free energy, and configurational entropy when the protein and ligand bind.
∆GMM includes changes in internal energy (∆Eint), electrostatic energy (∆Eele), and van
der Waals energy (∆Evdw). ∆Eint encompasses bond energy, angle energy, and torsional
energy. ∆Gsol is composed of changes in polar solvation energy (∆GGB) and nonpolar
solvation energy (∆GSA). ∆GGB is computed by solving the GB equation [67], while ∆GSA
is estimated using the solvent-accessible surface area determined with a 1.4 Å water probe.
Additionally, the surface tension constant γ is set to 0.0072 kcal/mol·Å−2, and β is set to
0 kcal/mol.

5. Conclusions

In this study, we conducted classic MD simulations, MM-GBSA calculations, τ-RAMD
simulations, and SMD simulations to explore the binding and dissociation mechanisms
between Mtb GyrB and its representative inhibitors, novobiocin and SPR719. The simula-
tion results indicate that electrostatic interactions and van der Waals interactions are the
main driving forces for the binding of inhibitors to the target. Key amino acid residues in
the active pocket, such as Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141, are crucial for
stabilizing the binding of inhibitors to the ATP site of GyrB. Furthermore, the binding mode
suggests that the aromatic heterocyclic core of the inhibitors is essential for facilitating van
der Waals interactions with hydrophobic residues within the binding pocket and forming π

interactions with Arg82, Lys108, and Arg141. Additionally, the hydrogen bond interaction
with Asp79 plays a critical role.

Furthermore, we investigated the dissociation behavior of GyrB inhibitors through
τ-RAMD simulations and SMD simulations. The τ-RAMD results indicate that both in-
hibitors primarily dissociate from the ATP channel. The results from SMD simulations
suggest that hydrophobic interactions with residues such as Asn53, Ile84, Pro85, Val99, and
Ala113, as well as hydrogen bond interactions with residues like Glu56, Asp79, Lys108, and
Arg141, play significant roles in the dissociation process. In summary, this work contributes
to a deeper understanding of the binding and dissociation mechanisms between GyrB and
its inhibitors, providing valuable insights for the rational design of novel GyrB inhibitors.
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