Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = MsDef1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11397 KiB  
Article
Valorization of Residual Babassu Mesocarp Biomass to Obtain Aroma Compounds by Solid-State Fermentation
by Tamires N. dos Anjos, Robert Wojcieszak, Selma G. F. Leite and Ivaldo Itabaiana Jr
Microbiol. Res. 2024, 15(3), 1386-1405; https://doi.org/10.3390/microbiolres15030093 - 29 Jul 2024
Cited by 3 | Viewed by 1156
Abstract
In this work, solid-state fermentation (SSF) was applied to babassu mesocarp (BM) for the low-cost bioproduction of natural aroma compounds having Trichoderma harzianum (IOC 4042) and Geotrichum candidum (CCT 1205) as microbial agents. Fermentation was carried out using in natura babassu mesocarp (IN-BM) [...] Read more.
In this work, solid-state fermentation (SSF) was applied to babassu mesocarp (BM) for the low-cost bioproduction of natural aroma compounds having Trichoderma harzianum (IOC 4042) and Geotrichum candidum (CCT 1205) as microbial agents. Fermentation was carried out using in natura babassu mesocarp (IN-BM) and defatted babassu mesocarp through soxhlet extraction (DEF-BM) as support, impregnated with hydration solutions of three and seven salts. The compounds produced were analyzed using solid phase microextraction (SPME) and gas chromatography coupled with a mass spectrometer (GC-MS). Among several aroma compounds detected, 6-pentyl-α-pyrone (6-PP)—GRAS 3696, coconut aroma; 2-phenylethanol (2-PE)—GRAS 2858, rose and honey aroma; and hexanal—GRAS 2557, green apple aroma, were the compounds that that were detected with the greatest intensity. The highest concentrations (ppm (w/w)) of 6-PP and 2-PE were obtained in DEF-BM using NS7SG (308.17 ± 3.18 and 414.53 ± 1.96), respectively, while for hexanal, the highest concentration (ppm (w/w)) was obtained in IN-BM using NS7SG (210.83 ± 2.14). The results indicate that producing aroma compounds by G. candidum and T. harzianum through BM SSF is viable, generating value-added compounds. Full article
Show Figures

Graphical abstract

13 pages, 732 KiB  
Article
Nutritional Profiling of Underutilised Citrullus lanatus mucosospermus Seed Flour
by Olakunbi Olubi, Joseline Felix-Minnaar and Victoria A. Jideani
Appl. Sci. 2024, 14(9), 3709; https://doi.org/10.3390/app14093709 - 26 Apr 2024
Viewed by 2068
Abstract
The seed of Citrullus lanatus mucosospermus, known as egusi, is versatile and explored for its oil and flour functionality. Raw flour can be used as a raw material in a nutritional program due to its oil-rich, remarkably high protein content, and richness in [...] Read more.
The seed of Citrullus lanatus mucosospermus, known as egusi, is versatile and explored for its oil and flour functionality. Raw flour can be used as a raw material in a nutritional program due to its oil-rich, remarkably high protein content, and richness in omega-6 fatty acids. There is a need to explore eco-friendly defatting methods using the supercritical CO2 extraction method (SFECO2) to preserve this seed’s generic richness and to control the flour–oil ratio in processing formulations. The supercritical fluid extraction method uses temperature, pressure, and CO2 flow rate to determine the best yield and extraction parameters. Defatted egusi flour (DEF) was extracted using three runs. Firstly, at 60 °C, 30 g/h, and 450 bar (DEF1); secondly, at 55 °C, 30 g/h, and 600 bar (DEF2); and thirdly, extraction was performed at 75 °C, 30 g/h and 600 bar (DEF3). Trace and major elements were analysed using Agilent 7700 quadruple ICP-MS (Agilent Technologies Network, Palo Alto, CA, USA) and Thermo Cap 6200 ICP-AES (Thermo Scientific, Waltham, MA, USA), respectively. The sugar was separated on a gas chromatograph coupled to a Mass Selective Detector (MSD). The fundamental pasting property measurements were performed using a Rapid Visco Analyser RVA 4500 Perten instrument Sin 214 31208-45 Australia. Data analysis was conducted using IBM SPSS version 29 software (v. 2022). The protein content of defatted egusi flour ranged from 48.4 for DEF2 to 60.4% w/w for DEF1 and differed significantly, with a rich amino acid high in glutamine ranging from 9.8 to 12.9 g/100 g). DEF2 (512.0 cP) showed the highest peak viscosity and was the most viscous among the samples. Defatted flour with lower temperature and lower pressure (60 °C and 450 bar) offered the best nutritional properties, proffering defatted egusi flour from SFECO2, a novel flour for dietary programs. Full article
(This article belongs to the Special Issue Novel Extraction Methods and Applications)
Show Figures

Figure 1

16 pages, 6296 KiB  
Article
Investigation on Mechanism of Tetracycline Removal from Wastewater by Sinusoidal Alternating Electro-Fenton Technique
by Yihui Zhou, Bonian Hu, Xiaojie Zhuang, Jinxian Qiu, Tao Xu, Muping Zeng, Xi He and Gang Yu
Sustainability 2022, 14(4), 2328; https://doi.org/10.3390/su14042328 - 18 Feb 2022
Cited by 6 | Viewed by 2592
Abstract
Sinusoidal alternating electro-Fenton (SAEF) is a new type of advanced electrochemical oxidation technology for the treatment of refractory organic wastewater. In this research, the removal performance and degradation mechanism of tetracycline (TC) were investigated, and the optimal operation parameters were determined. Scanning electron [...] Read more.
Sinusoidal alternating electro-Fenton (SAEF) is a new type of advanced electrochemical oxidation technology for the treatment of refractory organic wastewater. In this research, the removal performance and degradation mechanism of tetracycline (TC) were investigated, and the optimal operation parameters were determined. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrometer (FTIR) were used to characterize the morphology, elemental composition, crystal structure, function groups of sludge produced by SAEF. UV-visible spectroscopy (UV) and liquid chromatograph-mass spectrometer (LC-MS/MS) were employed to determine the concentration of organic matter, middle products of decomposed organics in the SAEF process, respectively. The results showed that the removal rates of TC, chemical oxygen demand (COD), electric energy consumption (EEC) and the amount of produced sludge (Ws) are 94.87%, 82.42%, 1.383 kWh⋅m−3 and 0.1833 kg⋅m−3 by SAEF, respectively, under the optimal conditions (pH = 3.0, conductivity (κ) = 1075 μS⋅cm1, current density (j) = 0.694 mA⋅cm2, initial c (TC) = 100 mg·dm−3, c [30%H2O2] = 1.17 cm3⋅dm−3, frequency (f) = 50 Hz, t = 120 min). Compared with pure direct electro-Fenton (DEF) or sinusoidal alternating current coagulation (SACC), SAEF was a highly effective method with low-cost for the treatment of TC wastewater. It was found that the conjugated structure of TC was destroyed to generate intermediate products, and then most of them was gradually mineralized into inorganic materials in the SAEF process. Full article
Show Figures

Figure 1

15 pages, 7531 KiB  
Article
Highly Sensitive and Stretchable c-MWCNTs/PPy Embedded Multidirectional Strain Sensor Based on Double Elastic Fabric for Human Motion Detection
by Huiying Shen, Huizhen Ke, Jingdong Feng, Chenyu Jiang, Qufu Wei and Qingqing Wang
Nanomaterials 2021, 11(9), 2333; https://doi.org/10.3390/nano11092333 - 8 Sep 2021
Cited by 19 | Viewed by 4076
Abstract
Owing to the multi-dimensional complexity of human motions, traditional uniaxial strain sensors lack the accuracy in monitoring dynamic body motions working in different directions, thus multidirectional strain sensors with excellent electromechanical performance are urgently in need. Towards this goal, in this work, a [...] Read more.
Owing to the multi-dimensional complexity of human motions, traditional uniaxial strain sensors lack the accuracy in monitoring dynamic body motions working in different directions, thus multidirectional strain sensors with excellent electromechanical performance are urgently in need. Towards this goal, in this work, a stretchable biaxial strain sensor based on double elastic fabric (DEF) was developed by incorporating carboxylic multi-walled carbon nanotubes(c-MWCNTs) and polypyrrole (PPy) into fabric through simple, scalable soaking and adsorption-oxidizing methods. The fabricated DEF/c-MWCNTs/PPy strain sensor exhibited outstanding anisotropic strain sensing performance, including relatively high sensitivity with the maximum gauge factor (GF) of 5.2, good stretchability of over 80%, fast response time < 100 ms, favorable electromechanical stability, and durability for over 800 stretching–releasing cycles. Moreover, applications of DEF/c-MWCNTs/PPy strain sensor for wearable devices were also reported, which were used for detecting human subtle motions and dynamic large-scale motions. The unconventional applications of DEF/c-MWCNTs/PPy strain sensor were also demonstrated by monitoring complex multi-degrees-of-freedom synovial joint motions of human body, such as neck and shoulder movements, suggesting that such materials showed a great potential to be applied in wearable electronics and personal healthcare monitoring. Full article
(This article belongs to the Special Issue New Frontiers of Flexible and Wearable Nanosensors)
Show Figures

Figure 1

19 pages, 3221 KiB  
Article
Description of Cumbeba (Tacinga inamoena) Waste Drying at Different Temperatures Using Diffusion Models
by João P. L. Ferreira, Wilton P. Silva, Alexandre J. M. Queiroz, Rossana M. F. Figueirêdo, Josivanda P. Gomes, Bruno A. Melo, Dyego C. Santos, Thalis L. B. Lima, Rodolfo R. C. Branco, Ihsan Hamawand and Antonio G. B. Lima
Foods 2020, 9(12), 1818; https://doi.org/10.3390/foods9121818 - 7 Dec 2020
Cited by 9 | Viewed by 2887
Abstract
One approach to improve sustainable agro-industrial fruit production is to add value to the waste generated in pulp extraction. The processing of cumbeba (Tacinga inamoena) fruits generates a significant amount of waste, which is discarded without further application but can be [...] Read more.
One approach to improve sustainable agro-industrial fruit production is to add value to the waste generated in pulp extraction. The processing of cumbeba (Tacinga inamoena) fruits generates a significant amount of waste, which is discarded without further application but can be a source of bioactive compounds, among other nutrients. Among the simplest and most inexpensive forms of processing, convective drying appears as the first option for the commercial utilization of fruit derivatives, but it is essential to understand the properties of mass transfer for the appropriate choice of drying conditions. In this study, cumbeba waste was dried at four temperatures (50, 60, 70 and 80 °C). Three diffusion models were fitted to the experimental data of the different drying conditions. Two boundary conditions on the sample surface were considered: equilibrium condition and convective condition. The simulations were performed simultaneously with the estimation of effective mass diffusivity coefficients (Def) and convective mass transfer coefficients (h). The validation of the models was verified by the agreement between the theoretical prediction (simulation) and the experimental results. The results showed that, for the best model, the effective mass diffusivities were 2.9285 × 10−9, 4.1695 × 10−9, 8.1395 × 10−9 and 1.2754 × 10−8 m2/s, while the convective mass transfer coefficients were 6.4362 × 10−7, 8.7273 × 10−7, 8.9445 × 10−7 and 1.0912 × 10−6 m/s. The coefficients of determination were greater than 0.995 and the chi-squares were lower than 2.2826 × 10−2 for all simulations of the experiments. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

24 pages, 1796 KiB  
Review
Antifungal Plant Defensins: Mechanisms of Action and Production
by Kim Vriens, Bruno P. A. Cammue and Karin Thevissen
Molecules 2014, 19(8), 12280-12303; https://doi.org/10.3390/molecules190812280 - 14 Aug 2014
Cited by 204 | Viewed by 16854
Abstract
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been [...] Read more.
Plant defensins are small, cysteine-rich peptides that possess biological activity towards a broad range of organisms. Their activity is primarily directed against fungi, but bactericidal and insecticidal actions have also been reported. The mode of action of various antifungal plant defensins has been studied extensively during the last decades and several of their fungal targets have been identified to date. This review summarizes the mechanism of action of well-characterized antifungal plant defensins, including RsAFP2, MsDef1, MtDef4, NaD1 and Psd1, and points out the variety by which antifungal plant defensins affect microbial cell viability. Furthermore, this review summarizes production routes for plant defensins, either via heterologous expression or chemical synthesis. As plant defensins are generally considered non-toxic for plant and mammalian cells, they are regarded as attractive candidates for further development into novel antimicrobial agents. Full article
(This article belongs to the Special Issue Peptide Chemistry)
Show Figures

Figure 1

Back to TopTop