Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Mosla

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1709 KB  
Article
Anti-Inflammatory Effects and Human Skin Safety of the Eastern Traditional Herb Mosla japonica
by Hyun-Ju Han and Chang-Gu Hyun
Life 2025, 15(3), 418; https://doi.org/10.3390/life15030418 - 7 Mar 2025
Cited by 1 | Viewed by 1355
Abstract
Traditional knowledge has long provided natural solutions for disease prevention and treatment, complementing modern medicine. Mosla japonica (Korean mint) has been traditionally valued for its pesticidal, dehumidifying, anti-swelling, and detoxifying properties. This study explores its anti-inflammatory potential using M. japonica extract (MJE) in [...] Read more.
Traditional knowledge has long provided natural solutions for disease prevention and treatment, complementing modern medicine. Mosla japonica (Korean mint) has been traditionally valued for its pesticidal, dehumidifying, anti-swelling, and detoxifying properties. This study explores its anti-inflammatory potential using M. japonica extract (MJE) in LPS-stimulated RAW 264.7 macrophages and evaluates its safety for human skin applications. MJE significantly reduced inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and key cytokines (IL-1β, IL-6, TNF-α) in a dose-dependent manner. It also suppressed the expression of iNOS and COX-2, enzymes crucial for inflammation. Mechanistically, MJE inhibited NF-κB activation by stabilizing IκBα, thereby reducing inflammation-related gene expression. Additionally, it downregulated ERK, JNK, and p38 in the MAPK signaling pathway, further contributing to its anti-inflammatory effects. A primary skin irritation test confirmed MJE’s safety, showing no significant skin reactions at 100 μg/mL. These findings highlight MJE’s strong anti-inflammatory properties and potential for dermatological applications. This study underscores the pharmacological value of M. japonica and its integration into modern scientific research, aligning with global biodiversity frameworks such as the Nagoya Protocol. Future research may further expand its applications in medicine and skincare. Full article
Show Figures

Figure 1

19 pages, 9145 KB  
Article
Antiviral Activity and Underlying Mechanism of Moslae herba Aqueous Extract for Treating SARS-CoV-2
by Yan Feng, Qiong Ge, Jian Gao, Zhuoying Wu, Yunyi Zhang, Haiyan Mao, Beibei Wu and Changping Xu
Molecules 2025, 30(2), 387; https://doi.org/10.3390/molecules30020387 - 17 Jan 2025
Viewed by 1530
Abstract
Despite the widespread use of COVID-19 vaccines, there is still a global need to find effective therapeutics to deal with the variants of SARS-CoV-2. Moslae herba (MH) is a herbal medicine credited with antiviral effects. This study aims to investigate the antiviral effects [...] Read more.
Despite the widespread use of COVID-19 vaccines, there is still a global need to find effective therapeutics to deal with the variants of SARS-CoV-2. Moslae herba (MH) is a herbal medicine credited with antiviral effects. This study aims to investigate the antiviral effects and the underlying mechanism of aqueous extract of Moslae herba (AEMH) for treating SARS-CoV-2. The in vitro anti-SARS-CoV-2 activity of AEMH was evaluated using cell viability and viral load. Component analysis was performed by HPLC-ESI-Q-TOF/MS. The connection between COVID-19 and AEMH was constructed by integrating network pharmacology and transcriptome profiles to seek the core targets. The components with antiviral activities were analyzed by molecular docking and in vitro pharmacological verification. AEMH exerted anti-SARS-CoV-2 effects by inhibiting viral replication and reducing cell death caused by infection (IC50 is 170 μg/mL for omicron strain). A total of 27 components were identified from AEMH. Through matching 119 intersection targets of ‘disease and drug’ with 1082 differentially expressed genes of COVID-19 patients, nine genes were screened. Of the nine, the PNP and TPI1 were identified as core targets as AEMH treatment significantly regulated the mRNA expression level of the two genes on infected cells. Three components, caffeic acid, luteolin, and rosmarinic acid, displayed antiviral activities in verification. Molecular docking also demonstrated they could form stable bonds with the core targets. This study explored the antiviral activity and possible mechanism of AEMH for treating SARS-CoV-2, which could provide basic data and reference for the clinical application of MH. Full article
Show Figures

Figure 1

24 pages, 4556 KB  
Article
Mosla Chinensis Extract Enhances Growth Performance, Antioxidant Capacity, and Intestinal Health in Broilers by Modulating Gut Microbiota
by Wei Wang, Yuyu Wang, Peng Huang, Junjuan Zhou, Guifeng Tan, Jianguo Zeng and Wei Liu
Microorganisms 2024, 12(12), 2647; https://doi.org/10.3390/microorganisms12122647 - 20 Dec 2024
Cited by 1 | Viewed by 1277
Abstract
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The [...] Read more.
This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1–21) and a grower phase (days 22–42). The control group (C) received a basal diet, while the experimental groups were supplemented with low (S1, 500 mg/kg), medium (S2, 1000 mg/kg), and high doses (S3, 2000 mg/kg) of MCE. The results showed that MCE supplementation significantly improved average daily gain in broilers (p < 0.05) and reduced the feed-to-gain ratio in broilers. Additionally, MCE enhanced the anti-inflammatory and antioxidant capacity of broilers. In the duodenum and cecum, MCE significantly upregulated the expression of tight junction proteins Claudin-1, and Occludin, with the high-dose group showing the strongest effect on intestinal barrier protection (p < 0.05). There was no significant difference in ZO-1 in dudenum (p > 0.05). Microbial analysis indicated that MCE supplementation significantly reduced the Chao and Sobs indices in both the small and large intestines (p < 0.05). At the same time, the Coverage index of the small intestine increased, with the high-dose group demonstrating the most pronounced effect. Beta diversity analysis revealed that MCE had a significant modulatory effect on the microbial composition in the large intestine (p < 0.05), with a comparatively smaller impact on the small intestine. Furthermore, MCE supplementation significantly increased the relative abundance of Ruminococcaceae and Alistipes in the large intestine, along with beneficial genera that promote short-chain fatty acid (SCFA) production, thus optimizing the gut microecological environment. Correlation analysis of SCFAs further confirmed a significant association between the enriched microbiota and the production of acetate, propionate, and butyrate (p < 0.05). In conclusion, dietary supplementation with MCE promotes healthy growth and feed intake in broilers and exhibits anti-inflammatory and antioxidant effects. By optimizing gut microbiota composition, enhancing intestinal barrier function, and promoting SCFA production, MCE effectively maintains gut microecological balance, supporting broiler intestinal health. Full article
(This article belongs to the Special Issue Advances in Diet–Host–Gut Microbiome Interactions)
Show Figures

Figure 1

24 pages, 3533 KB  
Review
Moslae Herba: Botany, Traditional Uses, Phytochemistry, and Pharmacology
by Zhuo-Ying Duan, Yan-Ping Sun, Zhi-Bin Wang and Hai-Xue Kuang
Molecules 2024, 29(8), 1716; https://doi.org/10.3390/molecules29081716 - 10 Apr 2024
Cited by 7 | Viewed by 2769
Abstract
Moslae Herba (MH) can be used for both medicine and food and has a long history of medicine. MH has the effects of sweating and relieving the exterior, removing dampness and harmonizing, and is mainly used for colds caused by damp heat in [...] Read more.
Moslae Herba (MH) can be used for both medicine and food and has a long history of medicine. MH has the effects of sweating and relieving the exterior, removing dampness and harmonizing, and is mainly used for colds caused by damp heat in summer. It is called “Xiayue Zhi Mahuang” in China. So far, 123 chemical compounds have been isolated and identified from MH, including flavonoids, terpenoids, phenolic acids, phenylpropanoids, and other chemical compounds. Its chemical components have a wide range of pharmacological activities, including antibacterial, antiviral, anti-inflammatory, antioxidant, analgesic sedation, antipyretic, immune regulation, insecticidal, and other effects. In addition, because of its aromatic odor and health care function, MH also has development and utilization value in food, chemical, and other fields. This paper reviewed the research progress of MH in botany, traditional uses, phytochemistry, and pharmacology and provided a possible direction for further research. Full article
Show Figures

Figure 1

12 pages, 1694 KB  
Article
HPLC–DAD Analysis, SFE-CO2 Extraction, and Antibacterial Activity on Bioactive Compounds from Mosla chinensis Maxim
by Ruixi Gao, Bingchen Han, Yanfeng Zeng, Linchuang Shen, Xinqiao Liu, Qiang Wang, Maochuan Liao and Jun Li
Molecules 2023, 28(23), 7724; https://doi.org/10.3390/molecules28237724 - 23 Nov 2023
Cited by 2 | Viewed by 1900
Abstract
Mosla chinensis Maxim is an annual herb with many potential purposes in agricultural, industrial, and pharmaceutical fields. At present, the extract of the whole plant from M. chinensis has been proven to demonstrate antifungal, antioxidant, and anti-inflammatory activities. Previous studies focused on the [...] Read more.
Mosla chinensis Maxim is an annual herb with many potential purposes in agricultural, industrial, and pharmaceutical fields. At present, the extract of the whole plant from M. chinensis has been proven to demonstrate antifungal, antioxidant, and anti-inflammatory activities. Previous studies focused on the enzyme pretreatment in hydrodistillation from M. chinensis. However, organic solvent or supercritical fluid carbon dioxide extraction (SFE-CO2) methods, which are commonly utilized in industry, have seldom been studied and cannot provide multiple evaluations of yield. In this work, we analysed compounds from M. chinensis by HPLC–DAD, discussed n-hexane extraction, and conducted further investigations on SFE-CO2 through the design of response surface methodology (RSM). The sample obtained from pilot-scale SFE-CO2 was also tested against nine kinds of microorganisms. Single-factor results revealed that the extraction rates from M. chinensis by steam distillation, n-hexane extraction, and SFE-CO2 were 1%, 2.09%, and 3.26%, respectively. RSM results showed a significant improvement in extraction rate through optimising pressure and time, and the interaction of both factors was more important than that of temperature–pressure and temperature–time. A pilot-scale test with an extraction rate of 3.34% indicated that the predicted RSM condition was operable. In addition, samples from the pilot-scale SFE-CO2 showed antibacterial effects against three previously unreported bacteria (Gardnerella vaginalis, methicillin-resistant Staphylococcus aureus, and Propionibacterium acnes). These results fill the gap in previous research and provide more information for the application and development of M. chinensis in the future. Full article
(This article belongs to the Special Issue Chromatography and Extraction Techniques for Chemical Applications)
Show Figures

Graphical abstract

13 pages, 1925 KB  
Article
Copper and Cadmium Accumulation and Phytorextraction Potential of Native and Cultivated Plants Growing around a Copper Smelter
by Changming Dou, Hongbiao Cui, Wei Zhang, Wenli Yu, Xue Sheng and Xuebo Zheng
Agronomy 2023, 13(12), 2874; https://doi.org/10.3390/agronomy13122874 - 22 Nov 2023
Cited by 3 | Viewed by 2365
Abstract
Phytoextraction is a promising technology for remediating heavy metal-contaminated soil. Continuously screening potential plants is important for enhancing the efficiency of remediation. In this study, fourteen local native plant species and four cultivated plant species, along with their paired soils, were collected from [...] Read more.
Phytoextraction is a promising technology for remediating heavy metal-contaminated soil. Continuously screening potential plants is important for enhancing the efficiency of remediation. In this study, fourteen local native plant species and four cultivated plant species, along with their paired soils, were collected from around a copper smelter. The characteristics of soil pollution were evaluated using contaminant factors (CF) and a geoaccumulation index (Igeo). The phytoextraction potential of plants was investigated using the translocation factor (TF) and bioconcentration factor (BCF). The soils around the smelter were very acidic, with a mean pH of 5.01. The CF for copper and cadmium were 8.67–32.3 and 5.45–44.2, and the Igeo values for copper and cadmium were 2.43–4.43 and −0.12–2.29, respectively, indicating that the level of soil contamination was moderate to severe. The copper concentrations in the root (357 mg/kg), shoot (219 mg/kg), and leaf (269 mg/kg) of Elsholtzia splendens Nakai were higher than that in the other species. The cadmium in the shoot (32.2 mg/kg) and leaf (18.5 mg/kg) of Sedum plumbizincicola was the highest, and Phytolacca acinosa Roxb. had the highest cadmium level (20 mg/kg) in the root. Soil total and CaCl2-extractable copper and cadmium were positively correlated with copper and cadmium in the plant roots, respectively. The results of TF and BCF for copper and cadmium suggested that the accumulation and translocation capacities for cadmium were higher than those of copper in the eighteen plant species. Although not all plants met the criteria of being hyperaccumulators, Sedum plumbizincicola, Mosla chinensis Maxim, and Elsholtzia splendens Nakai showed the most potential as candidates for the phytoextraction of copper and cadmium contaminated soils, as indicated by their TF and BCF values. Full article
Show Figures

Figure 1

15 pages, 7347 KB  
Article
Comparative Analysis of Plastomes in Elsholtzieae: Phylogenetic Relationships and Potential Molecular Markers
by Xiong-De Tu, Zhuang Zhao, Cheng-Yuan Zhou, Meng-Yao Zeng, Xu-Yong Gao, Ming-He Li, Zhong-Jian Liu and Shi-Pin Chen
Int. J. Mol. Sci. 2023, 24(20), 15263; https://doi.org/10.3390/ijms242015263 - 17 Oct 2023
Cited by 5 | Viewed by 1952
Abstract
The Elsholtzieae, comprising ca. 7 genera and 70 species, is a small tribe of Lamiaceae (mint family). Members of Elsholtzieae are of high medicinal, aromatic, culinary, and ornamentals value. Despite the rich diversity and value of Elsholtzieae, few molecular markers or plastomes are [...] Read more.
The Elsholtzieae, comprising ca. 7 genera and 70 species, is a small tribe of Lamiaceae (mint family). Members of Elsholtzieae are of high medicinal, aromatic, culinary, and ornamentals value. Despite the rich diversity and value of Elsholtzieae, few molecular markers or plastomes are available for phylogenetics. In the present study, we employed high-throughput sequencing to assemble two Mosla plastomes, M. dianthera and M. scabra, for the first time, and compared with other plastomes of Elsholtzieae. The plastomes of Elsholtzieae exhibited a quadripartite structure, ranging in size from 148,288 bp to 152,602 bp. Excepting the absence of the pseudogene rps19 in Elsholtzia densa, the exhaustive tally revealed the presence of 132 genes (113 unique genes). Among these, 85 protein-coding genes (CDS), 37 tRNA genes, 8 rRNA genes, and 2 pseudogenes (rps19 and ycf1) were annotated. Comparative analyses showed that the plastomes of these species have minor variations at the gene level. Notably, the E. eriostchya plastid genome exhibited increased GC content regions in the LSC and SSC, resulting in an increased overall GC content of the entire plastid genome. The E. densa plastid genome displayed modified boundaries due to inverted repeat (IR) contraction. The sequences of CDS and intergenic regions (IGS) with elevated variability were identified as potential molecular markers for taxonomic inquiries within Elsholtzieae. Phylogenetic analysis indicated that four genera formed monophyletic entities, with Mosla and Perilla forming a sister clade. This clade was, in turn, sister to Collinsonia, collectively forming a sister group to Elsholtzia. Both CDS, and CDS + IGS could construct a phylogenetic tree with stronger support. These findings facilitate species identification and DNA barcoding investigations in Elsholtzieae and provide a foundation for further exploration and resource utilization within this tribe. Full article
Show Figures

Figure 1

17 pages, 9184 KB  
Article
Effect of Drying Kinetics, Volatile Components, Flavor Changes and Final Quality Attributes of Moslae herba during the Hot Air Thin-Layer Drying Process
by Min Xie, Ying Chen, Yong Sun, Yarou Gao, Zhenfeng Wu, Ruiyu Wu, Rui Li, Shixi Hong, Minyan Wang, Yiping Zou, Hua Zhang and Yaokun Xiong
Molecules 2023, 28(9), 3898; https://doi.org/10.3390/molecules28093898 - 5 May 2023
Cited by 3 | Viewed by 2548
Abstract
Moslae herba is considered to be a functional food ingredient or nutraceutical due to its rich bioactive components. The present research was carried out to investigate the effects of different temperatures (40 °C, 50 °C and 60 °C) on the drying characteristics, textural [...] Read more.
Moslae herba is considered to be a functional food ingredient or nutraceutical due to its rich bioactive components. The present research was carried out to investigate the effects of different temperatures (40 °C, 50 °C and 60 °C) on the drying characteristics, textural properties, bioactive compounds, flavor changes and final quality attributes of Moslae herba during the hot air-drying process. The results showed that the Midilli model could effectively simulate the drying process of Moslae herba. The effective moisture diffusivity ranged from 3.14 × 10−5 m2/s to 7.39 × 10−5 m2/s, and the activation energy was estimated to be 37.29 kJ/mol. Additionally, scanning electron microscopy (SEM) images of Moslae herba samples showed the shrinkage of the underlying epidermal layers and glandular trichomes. In total, 23 volatile compounds were detected in Moslae herba. Among them, the content of thymol increased from 28.29% in fresh samples to 56.75%, 55.86% and 55.62% in samples dried at temperatures of 40 °C, 50 °C and 60 °C, respectively, while the other two components, p-cymene and γ-terpinene, decreased with an increase in the temperature. Furthermore, both radar fingerprinting and principal component analysis (PCA) of the electronic nose (E-nose) showed that the flavor substances significantly altered during the drying process. Eventually, drying Moslae herba at 60 °C positively affected the retention of total phenolics, total flavonoids and the antioxidant capacity as compared with drying at 40 °C and 50 °C. The overall results elucidated that drying Moslae herba at the temperature of 60 °C efficiently enhanced the final quality by significantly reducing the drying time and maintaining the bioactive compounds. Full article
Show Figures

Figure 1

21 pages, 4914 KB  
Article
Fabrication and Characterization of β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling
by Hong-Ning Liu, Xiao-Xia Jiang, Abid Naeem, Fu-Cai Chen, Lu Wang, Yan-Xia Liu, Zhe Li and Liang-Shan Ming
Molecules 2023, 28(1), 37; https://doi.org/10.3390/molecules28010037 - 21 Dec 2022
Cited by 22 | Viewed by 3016
Abstract
Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla [...] Read more.
Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with β-cyclodextrin (β-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis ‘Jiangxiangru’ EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with β-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and β-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that β-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with β-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation. Full article
Show Figures

Figure 1

18 pages, 2081 KB  
Article
Chemical Composition and Bioactivity of Essential Oil of Ten Labiatae Species
by Mengting Liu, Feiya Luo, Zhixing Qing, Huichao Yang, Xiubin Liu, Zihui Yang and Jianguo Zeng
Molecules 2020, 25(20), 4862; https://doi.org/10.3390/molecules25204862 - 21 Oct 2020
Cited by 17 | Viewed by 4122
Abstract
Using antibiotics as feed additives have been successively banned worldwide from 1986; therefore, it is an urgent task to finding safe and effective alternatives. As natural products of plant origin, essential oils (EOs) are an outstanding option due to their reported bioactivity. In [...] Read more.
Using antibiotics as feed additives have been successively banned worldwide from 1986; therefore, it is an urgent task to finding safe and effective alternatives. As natural products of plant origin, essential oils (EOs) are an outstanding option due to their reported bioactivity. In this research, ten EOs of Labiatae species were extracted by steam distillation and its chemical constituents were identified by gas chromatography-mass spectrometry (GC-MS). A total of 123 chemical compounds, including alkenes, phenols, aldehydes and ketones, were identified. The results of antioxidant activity carried out through DPPH free radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP), showing that EOs of Ocimum basilicum Linn. (ObEO), Thymus mongolicus Ronn. (TmEO), Origanum vulgare Linn. (OvEO) and Mosla chinensis Maxim. (McEO) have strong antioxidant activities. Their 50%-inhibitory concentration (IC50) value was <1.00, 1.42, 1.47 and 1.92 μg/mL, respectively; and their FRAP value was 1536.67 ± 24.22, 271.84 ± 4.93, 633.71 ± 13.14 and 480.66 ± 29.90, respectively. The results of filter paper diffusion showing that McEO, OvEO and TmEO inhibition zone diameter (IZD) are all over 30 mm. The results of two-fold dilution method showed that McEO, OvEO and TmEO have strong antibacterial activities against Staphylococcus aureus (S. aureus) and their minimal inhibitory concentrations (MIC) value was 1 μL/mL, 2 μL/mL, and 2 μL/mL, respectively. In conclusion, the results in this work demonstrate the possibility for development and application of EOs as potential feed additives. Full article
Show Figures

Figure 1

Back to TopTop