Moslae Herba: Botany, Traditional Uses, Phytochemistry, and Pharmacology
Abstract
:1. Introduction
2. Botany
3. Traditional Uses
4. Phytochemistry
4.1. Volatile Oils
4.2. Flavonoids
4.3. Terpenoids
4.4. Phenolic Acids
4.5. Phenylpropanoids
4.6. Others
5. Pharmacological Activities
5.1. Antibacterial and Antiviral
5.2. Anti-Inflammatory
5.3. Antioxidant
5.4. Analgesic, Sedative and Antipyretic
5.5. Regulate Gastrointestinal Motility
5.6. Immunomodulatory
5.7. Insecticidal
5.8. Others
6. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TCM | traditional Chinese medicine |
matK | megakaryocyte-associated tyrosine kinase |
ITS2 | internal transcribed spacer 2 database |
DPPH | 1,1-diphenyl-2-picrylhydrazyl radical |
ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
FRAP | ferric reducing antioxidant power |
CMP | crude polysaccharide CMP |
MP | polysaccharide MP |
MP-1 | polysaccharide MP-1 |
MP-A40 | polysaccharide MP-A40 |
IL | interleukin |
TNF-α | tumor necrosis factor-α |
SOD | superoxide dismutase |
GSH | glutathione |
IgE | immunoglobulin E |
ROS | reactive oxygen species |
ConA | concanavalin A |
NDV | Newcastle disease virus |
CEF | chicken embryo fibroblast cells |
T-AOC | total antioxidant capacity |
CAT | catalase |
GSH-PX | glutathione peroxidase |
MDA | malondialdehyde |
LPS | lipopolysaccharide |
TLR | toll-like receptor |
MyD88 | myeloiddifferentiationfactor88 |
TRAF3 | TNF receptor-associated factor 3 |
NF-κB | nuclear factor kappa-B |
IFN-γ | interferon-γ |
PGE2 | prostaglandin E2 |
NO | nitric oxide |
JNK | c-Jun N-terminal kinase |
mRNA | messenger RNA |
cAMP | adenosine cyclophosphate |
MPO | myeloperoxidase |
DSS | dextran sulfate sodium salt |
CTX | cyclophosphamide |
TV | trichomonas vaginalis |
Nrf2/HO-1 | nuclear factor erythroid2-related factor 2/heme oxygenase-1 |
LC50 | half lethal concentrations |
References
- Ye, M.Q.; Wu, M.H.; Ma, Z.G.; Cao, H.; Zhang, Y. HPLC fingerprint and multi-components quantitative analysis of Moslae Herba. Chin. J. Pharm. Anal. 2023, 43, 236–244. [Google Scholar]
- Yao, Y.; Xu, J.; Huang, G.X.; Zhang, T.J.; Liu, C.X. Research progress of Moslae Herba and predictive analysis on its Q-marker. Chin. Tradit. Herb. Drugs 2020, 51, 2661–2670. [Google Scholar]
- Shan, F.; Zhang, W.X.; Zhang, S.H.; Liu, H.; Zhan, Z.L. Herbal textual research on Moslae Herba in famous classical formulas. Chin. J. Exp. Tradit. Med. Formulae 2023, 29, 1–12. [Google Scholar]
- China Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China, 1st ed.; China Pharmaceutical Science and Technology Press: Beijing, China, 2005. [Google Scholar]
- Mao, Y.; Li, Z.G.; Cao, J.L. Analysis of volatile oil composition of Mosla chinensis. J. Zhejiang A&F Univ. 2008, 25, 262–265. [Google Scholar]
- Yu, H.; Hu, J.; Bai, F.P.; Qin, K.M. Analysis of volatiles from bark of Moslae Herba by gas chromatography-mass spectroscopy. Guid. J. Tradit. Chin. Med. Pharm. 2017, 23, 82–84. [Google Scholar]
- Xu, J.Y.; Liu, R.; Huang, X.J.; Liao, M.C.; Li, J. Chemical constituents of Mosla chinensis. J. Chin. Med. Mater. 2022, 45, 1110–1113. [Google Scholar]
- Hu, H.W.; Xie, X.M.; Zhang, P.Z.; Shun, R.G. Study on the flavonoids from Mosla chinensis ‘Jiangxiangru’. J. Chin. Med. Mater. 2010, 33, 218–219. [Google Scholar]
- Du, J.C.; Yang, L.Y.; Shao, L.; Yu, F.; Li, R.T.; Zhong, J.D. Study on phenolic acid compounds from acrial parts of Mosla chinensis and its anti-influenza activity. J. Chin. Med. Mater. 2021, 44, 2584–2589. [Google Scholar]
- Peng, L.; Xiong, Y.; Wang, M.; Han, M.; Cai, W.; Li, Z. Chemical composition of essential oil in Mosla chinensis Maxim cv. ‘Jiangxiangru’ and its inhibitory effect on Staphylococcus aureus biofilm formation. Open Life Sci. 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Deng, Z.Y.; Hong, T.; Guo, S.Y.; Chen, Y.R.; Luo, L.M.; Ma, Q.T.; Xu, L.; Liu, Z.Y. Chemical composition analysis of volatile oils and fatty acids from Mosla chinensis seeds and antioxidant activity. Jiangxi Sci. 2022, 40, 683–689. [Google Scholar]
- Sun, D.Y.; Gao, H.; Wang, X.T.; Yan, L.; Pang, B. Antipyretic and anti-inflammatory effects of Mosla chinensis based on integration processing technology of origin. Chin. Tradit. Herb. Drugs 2018, 49, 4737–4742. [Google Scholar]
- Ge, B. Studies on Extraction and Pharmacodynamics of Volatile Oil in Mosla chinensis Maxim. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2005. [Google Scholar]
- Gao, Y. Studies on biological activity of volatile oil of Mosla chinensis Maxim on cotton aphid. Agric. Sci. Technol. Inf. 2013, 49–50. (In Chinese) [Google Scholar]
- Liu, H.N.; Jiang, X.X.; Naeem, A.; Chen, F.C.; Wang, L.; Liu, Y.X.; Li, Z.; Ming, L.S. Fabrication and characterization of β-cyclodextrin/Mosla chinensis essential oil inclusion complexes: Experimental design and molecular modeling. Molecules 2022, 28, 37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.D.; Zhang, C.; Ma, R.L.; Zhang, Y.; Wang, X.J.; Qin, B. Identification of Moslae Herba and its adulterants based on matk, ITS2 and its secondary structure. Chin. J. Mod. Appl. Pharm. 2022, 39, 2222–2228. [Google Scholar]
- Lu, Y.; Liu, Y.; Liu, X.Y.; Feng, Z.K. Development status of genuine characteristic medicinal materials in Jiangxi province. J. Jiangxi Univ. Chin. Med. 2022, 34, 120–124. [Google Scholar]
- Zhang, S.W.; Liu, X.W.; Hu, S.F.; Cao, L.; Peng, L.L. The characteristics of growing and developing and the cultivation technology of Mosla chinensis Maxim. Acta Agric. Univ. Jiangxiensis 2004, 26, 468–470. [Google Scholar]
- Huang, L.Q.; Guo, L.P.; Zhan, Z.L. Standard Compilation of Genuine Medicinal Materials; Beijing Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Zhang, M.J.; Wang, W.L.; Wang, P. Comparative study on clinical application of Xiangru (Molae Herba) in ancient and modern times. Shandong J. Tradit. Chin. Med. 2020, 39, 617–620+631. [Google Scholar]
- Yuan, H.; Sun, Y.X. Treating 200 cases of cold of the Shushi type with Xinjia Xiangru Yin. Clin. J. Chin. Med. 2018, 10, 122–123. [Google Scholar]
- Zhang, S. Treating 86 cases of acute pharyngeal conjunctival fever in children with Xinjia Xiangru Yin. Inn. Mong. J. Tradit. Chin. Med. 2016, 35, 7–8. [Google Scholar]
- Yao, J.C.; Ying, Y.F.; Zheng, H.W.; Hu, G.H.; Lin, Y.P. Study of Chaihu-Xiangru decoction on acute upper respiratory infection in summer. Mod. J. Integr. Tradit. Chin. West. Med. 2005, 441–442. [Google Scholar]
- Yang, L.Y. Studies on the Chemical Constituents and Anti-Influenza Activity of Elsholtzia bodinieri and Mosla chinensis. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2021. [Google Scholar]
- Sun, L.P.; Zheng, S.Z.; Fu, Z.S.; Shen, X.W. Flavonoids from Mosla chinensis Maxim. J. Northwest Norm. Univ. Nat. Sci. 1995, 31, 44–46. [Google Scholar]
- Zheng, S.Z.; Sun, L.P.; Shen, X.W. Chemical constituents of Mosla chinensis Maxim. J. Integr. Plant Biol. 1996, 38, 156–160. [Google Scholar]
- Yang, C.X.; Kang, S.H.; Jing, L.T.; Zheng, S.Z. Flavonoids from Mosla chinensis Maxim. J. Northwest Minor. Univ. Nat. Sci. 2003, 24, 31–33. (In Chinese) [Google Scholar]
- Du, J.C. Studies on the Chemical Constituents and Anti-Influenza Activities of Elsholtzia densa and Mosla chinensis. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Zou, Y.; Pan, J.P.; Zhou, M. Analysis of ethyl acetate constituents and inhibit α-glucosidase activity of Mosla chinensis ‘Jiangxiangru’. China Food Saf. Mag. 2021, 65–68. (In Chinese) [Google Scholar]
- Liu, H.; Zhang, D.; Luo, Y.M. Studies on Chemical constituents of Mosla chinensis ‘Jiangxiangru’. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 56–59. [Google Scholar]
- Feng, S.Y. Studies on the Chemical Constituents and Anti-Influenza Activities of Mosla chinensis and Prunella vulgaris. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Shen, J.J.; Zhang, D.M.; Liu, H.; Luo, Y.M. Polar constituents of Mosla chinensis. China J. Chin. Mater. Med. 2011, 36, 1779–1781. [Google Scholar]
- Liu, H.; Shen, J.J.; Zhang, D.M.; Luo, Y.M. Studies on polar constituents of Mosla chinensis ‘Jiangxiangru’. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 84–86. [Google Scholar]
- Shu, R.G.; Hu, H.W.; Zhang, P.Z.; Ge, F. Triterpenes and flavonoids from Mosla chinensis. Chem. Nat. Compd. 2012, 48, 706–707. [Google Scholar] [CrossRef]
- Lin, W.Q.; Liu, J.Q.; Lan, R.F. Studies on the chemical constituents of essential oil and its antibacterial effect of Mosla chinensis Maxim Growing in Fujian Province. J. Fujian Teach. Univ. Nat. Sci. Ed. 1999, 15, 88–91. [Google Scholar]
- Lin, C.L.; Cai, J.Z.; Lin, G.Y. Chemical constituents study of volatile oils from the Mosla chinensis Maxim in Zhejiang province. Chin. Arch. Tradit. Chin. Med. 2012, 30, 197–198. [Google Scholar]
- Zheng, S.Z.; Zheng, M.Y.; Dai, R.; Yang, C.X.; Shen, T. Studies on the chemical component of essential oil of Mosla chinensis maxin by means of supercritical fluid extraction. J. Northwest Norm. Univ. Nat. Sci. 2001, 49–52. [Google Scholar]
- Chen, Y.M. Based on Chromatography-Mass Spectrometry Technology Research Chemical Constituents of Mosla chinensis Maxim cv. ‘Jiangxiangru’. Ph.D. Thesis, Nanchang University, Nanchang, China, 2016. [Google Scholar]
- Zhang, X.X.; Wu, Q.F.; Yan, Y.L.; Zhang, F.L. Inhibitory effects and related molecular mechanisms of total flavonoids in Mosla chinensis Maxim against H1N1 influenza virus. Inflamm. Res. 2018, 67, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.X.; Tong, L.; Geng, Y.M.; Yang, Q.; Hou, J.F. A review on pharmacological activities and preparations of luteolin. Clin. J. Chin. Med. 2022, 14, 141–145. [Google Scholar]
- Jiang, Y.L.; Li, W.Y.; Feng, S.; Liu Jin, H.; Zhai, G.Y. Research progress on structural modification and biological activity of luteolin. Chin. Tradit. Herb. Drugs 2023, 54, 6889–6902. [Google Scholar]
- Feng, Y.L.; Li Ke Liu, J.H.; Zhai, G.Y. Study on synthesis and biological activities of quercetin-3-O-amide derivatives. Chin. Tradit. Herb. Drugs 2020, 51, 4133–4141. [Google Scholar]
- Marinelli, L.; Fornasari, E.; Eusepi, P.; Ciulla, M.; Genovese, S.; Epifano, F.; Fiorito, S.; Turkez, H.; Örtücü, S.; Mingoia, M.; et al. Carvacrol prodrugs as novel antimicrobial agents. Eur. J. Med. Chem. 2019, 178, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic acid (SA)-a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Tang, R.; Yang, N.; Chen, Y. Review on pharmacological effects of gastrodin. Arch. Pharm. Res. 2023, 46, 744–770. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Ouyang, D.S.; Liu, Q. Isoeucommin A attenuates kidney injury in diabetic nephropathy through the Nrf2/HO-1 pathway. FEBS Open Bio 2021, 11, 2350–2363. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.H.; Pang, L.; Gao, C.Y.; Meng, F.L.; Jin, W. Lyoniresinol attenuates cerebral ischemic stroke injury in MCAO rat based on oxidative stress suppression via regulation of Akt/GSK-3β/Nrf2 signaling. Biomed. Pharmacother. 2023, 167, 115543. [Google Scholar] [CrossRef]
- Cao, X.Y.; Liu, X.F.; Yin, Y.X.; Wang, B.; Huang, W.H. The solubility characteristics and antidepressant activity of β-sitosterol and its derivatives. Ningxia Med. J. 2021, 43, 436–438. [Google Scholar]
- Li, J.E. Structure Analysis and Functional Properties of Polysaccharides from Mosla chinensis Maxim cv. ‘Jiangxiangru’ and Two Arabic Gums. Ph.D. Thesis, Nanchang University, Nanchang, China, 2014. [Google Scholar]
- Li, J.E.; Nie, S.P.; Xie, M.Y.; Li, C. Isolation and partial characterization of a neutral polysaccharide from Mosla chinensis Maxim cv. ‘Jiangxiangru’ and its antioxidant and immunomodulatory activities. J. Funct. Foods 2014, 6, 410–418. [Google Scholar] [CrossRef]
- Yi, Y.; Liu, H.; Chen, Z.W.; Luo, Y.M.; Wan, C.Y. Determination of mineral elements in different part of Mosla chinensis with ICP-MS. Chin. J. Exp. Tradit. Med. Formulae 2012, 18, 106–108. [Google Scholar]
- Feng, Y.; Liu, J. Effects of volatile oil from Mosla chinensis Maxim on bacteriostasis and immune response. Biotic Resour. 2009, 31, 30–32. [Google Scholar]
- Ge, B.; Lu, X.Y.; Jiang, H.M.; Fang, J.; Mo, J.; Xie, F.J. Antiviral effect of volatile oil from Mosla chinensis Maxim on NDV in vitro. J. Tradit. Chin. Vet. Med. 2005, 3–5. [Google Scholar]
- Yan, Y.F.; Chen, X.; Yang, X.Q.; Dong, C.; Wu, S.Y.; Chen, J.B.; Wang, C.Y. Inhibition of Mosla chinensis volatile oil (Mcvo) on influenza virus A3. J. Microbiol. 2002, 22, 32–33+56. [Google Scholar]
- Kim, H.H.; Yoo, J.S.; Shin, T.Y.; Kim, S.H. Aqueous extract of Mosla chinensis inhibits mast cell-mediated allergic inflammation. Am. J. Chin. Med. 2012, 40, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, K.; Liu, Z.; Sun, Y.; Zhou, L.; Xu, M.; Dai, X.; Xiong, Y.; Zhang, H. Bioactive constituents of Mosla chinensis cv. ‘Jiangxiangru’ ameliorate inflammation through MAPK signaling pathways and modify intestinal microbiota in DSS-induced colitis mice. Phytomedicine 2021, 93, 153804. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C. Effect and Molecular Mechanism of Essential Oil of Mosla chinensis Maxim on Improving Diarrhea in Mice. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2021. [Google Scholar]
- Gong, M.X. Comparison of pharmacological action of volatile oil between green Mosla chinensis Maxim and Mosla chinensis ‘Jiangxiangru’. Beijing J. Tradit. Chin. Med. 2000, 46–49. (In Chinese) [Google Scholar]
- Wu, T.K.; Zhou, Y.L.; Zhou, S.Q.; Wang, X.D. Comparative study on the pharmacological effects of volatile oils of Mosla chinensis Maxim, Mosla chinensis ‘Jiangxiangru’, Origanum vulgare Linn and Elsholtzia splendens Nakai. J. Chin. Med. Mater. 1992, 15, 36–38. (In Chinese) [Google Scholar] [CrossRef]
- Sun, D.Y.; Gao, H. Effect of Moslae Herba volatile oil on rat models with the spleen and the stomach stranded by dampness. Chin. Tradit. Pat. Med. 2017, 39, 2441–2448. [Google Scholar]
- Jiang, H.M. Studies on the Volatile Oil, Bioactivities and Germplasm Innovation Technique of Mosla chinensis Maxim in Hunan. Ph.D. Thesis, Hunan Agricultural University, Changsha, China, 2007. [Google Scholar]
- Li, J.E.; Nie, S.P.; Xie, M.Y.; Huang, D.F.; Wang, Y.T.; Li, C. Chemical composition and antioxidant activities in immumosuppressed mice of polysaccharides isolated from Mosla chinensis Maxim cv. ‘Jiangxiangru’. Int. Immunopharmacol. 2013, 17, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Cui y Qin, Y.H.; Ren, Y.X.; Liu, X.; Tao, L.; Dai, X.D. Effect of Mosla chinensis Maxim on Trichomonas vaginalis in vitro. J. Dalian Med. Univ. 2009, 31, 282–285. [Google Scholar]
- Chen, F.F.; Peng, Y.H.; Zeng, D.Q.; Zhang, Y.; Qin, Q.H.; Huang, Y. Composition and bioactivity of the essential oils from Mosla chinensis against Aedes albopictus. Chin. J. Vector Biol. Control 2010, 21, 211–214. [Google Scholar]
- Wang, M.; Li, Z.M.; Peng, L. α-Glucosidase inhibition of Mosla chinensis Maxim cv. ‘Jiangxiangru’ extracts. J. Jiangxi Sci. Technol. Norm. Univ. 2015, 40–45. [Google Scholar]
- Li, Z.M.; Sun, Y.M.; Wang, M.; Peng, L.; Ren, P. Study on bacteriostatic activity of Mosla chinensis ‘Jiangxiangru’ extracts. Sci. Technol. Food Ind. 2014, 35, 115–116+120. [Google Scholar]
- Qi, W.W.; Shen, Y.T.; Chen, C.Y.; Chen, J.Y.; Wan, C.P. Antifungal mechanisms of the active ingredients carvacrol of Mosla chinensis ‘Jiangxiangru’ against Penicillium digitatum. Mod. Food Sci. Technol. 2018, 34, 65–69+64. [Google Scholar]
- Cao, L.; Si, J.Y.; Liu, Y.; Sun, H.; Jin, W.; Li, Z.; Zhao, X.H.; Pan, R.L. Essential oil composition, antimicrobial and antioxidant properties of Mosla chinensis Maxim. Food Chem. 2009, 115, 801–805. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Q.F.; Zhu, W.R.; Liu, X. Anti-oxidation effects of total flavonoids from Mosla chinensis Maxim. Chin. Arch. Tradit. Chin. Med. 2014, 32, 2317–2319. [Google Scholar]
- Sun, T.T. Extraction Purification and Antioxidant Activity of Polysaccharides from Mosla chinensis Maxim cv. ‘Jiangxiangru’. Ph.D. Thesis, Anhui Polytechnic University, Wuhu, China, 2016. [Google Scholar]
- Li, J.E.; Cui, S.W.; Nie, S.P.; Xie, M.Y. Structure and biological activities of a pectic polysaccharide from Mosla chinensis Maxim cv. ‘Jiangxiangru’. Carbohydr. Polym. 2014, 105, 276–284. [Google Scholar] [CrossRef]
- Zhang, Y.X. Study on the Processing Mechanism Moslae Herba Produced by Ginger Juice. Ph.D. Thesis, Jiangxi University of Traditional Chinese Medicine, Nanchang, China, 2019. [Google Scholar]
- Ma, Q.T.; Xu, L.; Zhu, Y.C.; Xu, M.T.; Zhang, W.K.; Liu, Z.Y. Effects of polysaccharide content and anti-inflammatory, hemostatic, and antioxidant activities before and after preparation of Mosla chinensis-Jiangxiangru. Chin. J. Comp. Med. 2024. Available online: http://kns.cnki.net/kcms/detail/11.4822.R.20240131.2134.026.html (accessed on 10 February 2024).
- Chen, Z.D.; Lu, X.Y.; Jiang, H.M.; Zhou, H.; F, J.; Peng, T.; Liu, A.P. Study on the effect of Mosla chinensis Maxim volatile oil and several common food preservatives on chilled meat preservation. Meat Res. 2007, 39–42. (In Chinese) [Google Scholar]
- Sun, L.F. Preparation and application in tobacco flavor of Mosla chinensis Maxim extractum. Flavour. Fragrance Cosmet. 1993, 34–37+5. (In Chinese) [Google Scholar]
- Wang, X.D.; Sun, H.B.; Wang, X.Z.; Huo, L.P.; Chen, W.H.; Kong, L.J. Observation of natural air fresheners and their effects. Chin. J. Public Health 1995, 11, 494–496. (In Chinese) [Google Scholar]
Items | M. chinensis Maxim | M. chinensis ‘Jiangxiangru’ |
---|---|---|
Variety | Wild products | Cultivated products |
Geographical distribution (global) | Southern China, Northern Vietnam | |
Geographical distribution (in China) | Anhui, Jiangsu, Guangdong, and other places | Jiangxi |
Planting area (in China) | Unknown | 33.3 hectares |
Color | Basal purple-red, upper gray-green | Basal purplish red, upper yellowish green or pale yellow |
Stem | Upper part is square-cylindrical, branched | Square column, longer |
Flower | Many with no flowers | Covered with dense white pubescence |
Taste | Spicy and cool with a slight burning sensation | Cool and slightly spicy, slightly numb after |
Molecular identification | DNA barcode technology (matK and ITS2 sequences) |
Items | Traditional Uses | ||
---|---|---|---|
Medicine | Dietary Health Care | Ornamental Plants | |
Usage/dosage | 3–10 g | Make porridge and tea | No |
Traditional formula/compatibility | Xiangru San, Xiangru Yin | MH with rice, MH with ginger, MH with mint and light bamboo leaves | No |
Modern formula/compatibility | Qinghao Xiangru San, Xinjia Xiangru Yin, Chaihu Xiangru Yin | Same as above | No |
Efficiency | Sweat and relieve the exterior, remove dampness, and harmonize | Clear heat, remove annoyance, diuresis | Decorate and beautify the environment |
Main treatment | Common cold due to summer heat and dampness | No | No |
Modern products | Shure Ganmao Keli, Xiangju Ganmao Keli, Qushu Pian | Xiangru porridge, Xiangru Bohe tea, Xiangru Erdou Yin | Potted plants |
No. | Compounds | MF | Source | Part of Plant | Ref. |
---|---|---|---|---|---|
flavonoids | |||||
1 | Luteolin | C15H10O6 | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Above ground part, Whole grass | [8,24] |
2 | Chrysoeriol | C16H12O6 | M. chinensis ‘Jiangxiangru’ | Whole grass | [8] |
3 | Negletein | C16H12O5 | M. chinensis ‘Jiangxiangru’ | Whole grass | [8] |
4 | 5-Hydroxy-6,7-dimethoxyflavone | C17H14O5 | M. chinensis Maxim | Whole grass | [25] |
5 | 5,7-Dihydroxy-4′-methoxyflavone | C16H12O5 | M. chinensis Maxim | Whole grass | [26] |
6 | Apigenin | C15H10O5 | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Whole grass | [8,26] |
7 | 5,7-Dimethoxy-4′-hydroxyflavone | C17H14O5 | M. chinensis Maxim | Whole grass | [27] |
8 | Apigenin-7-O-α-L-rhamnosyl(1→4)-6″-O-acetyl-β-D-glucoside | C29H36O17 | M. chinensis Maxim | Whole grass | [27] |
9 | 5,7-Dimethoxy-4′-O-α-L-rhamnose(1→2)-β-D-glucoside | C29H34O14 | M. chinensis Maxim | Whole grass | [27] |
10 | Acacetin-7-O-rutinoside | C28H32O14 | M. chinensis Maxim | Whole grass | [27] |
11 | Apigenin-7-O-β-glucoside | C21H20O10 | M. chinensis Maxim | Above ground part | [24] |
12 | Apigenin-4′-O-β-glucoside | C21H20O10 | M. chinensis Maxim | Above ground part | [24] |
13 | Acacetin-7-O-β-D-xylopyranoside | C21H20O9 | M. chinensis Maxim | Above ground part | [24] |
14 | 4′,5,7-Trihydroxy-3′,5′-dimethoxyflavone-7-O-[β-D-apiofuranosyl (1‴→2″)]β-D-glucopyranoside | C28H32O16 | M. chinensis Maxim | Above ground part | [24] |
15 | Acacetin-7-O-β-D-apiofuranosyl-(1‴→6″)-O-β-D-glucopyranoside | C27H30O14 | M. chinensis Maxim | Above ground part | [24] |
16 | Diosmetin-7-O-β-D-xylopyranoside | C21H20O10 | M. chinensis Maxim | Above ground part | [24] |
17 | Acacetin-7-O-[β-D-apiofuransyl-(1‴→4″)]-β-D-xylopyranoside | C26H28O13 | M. chinensis Maxim | Above ground part | [24] |
18 | Acacetin-7-O-[4‴-O-acetyl-β-D-apiofuransyl-(1‴→3″)]-β-D-xylopyranoside | C28H30O14 | M. chinensis Maxim | Above ground part | [24] |
19 | 3′,4′-Dimethoxyluteolin 7-O-[β-D-apiofuransyl-(1‴→4″)]-β-D-xylopyranoside | C27H31O14 | M. chinensis Maxim | Above ground part | [28] |
20 | 3′,4′-Dimethoxyluteolin 7-O-[β-D-apiofuranosyl-(1‴→2″)]-β-D-glucopyranoside | C28H33O15 | M. chinensis Maxim | Above ground part | [28] |
21 | Apigenin-7-O-β-D-glucuronide methyl ester | C22H20O11 | M. chinensis Maxim | Above ground part | [24] |
22 | Acacetin-7-O-[4‴-O-acetyl-β-D-apiofuransyl-(1‴→2″)]-6″-O-acetyl-β-D-glucoside | C31H34O16 | M. chinensis Maxim | Above ground part | [24] |
23 | Isolinariin B | C30H34O15 | M. chinensis Maxim | Above ground part | [24] |
24 | Acacetin-7-O-[6‴-O-acetyl-β-D-galactopyranosyl-(1→3)]-β-D-xylopyranoside | C29H32O15 | M. chinensis Maxim | Above ground part | [28] |
25 | Acacetin-7-O-glucuronide methylester | C22H20O11 | M. chinensis Maxim | Above ground part | [28] |
26 | Kaempferol | C15H10O6 | M. chinensis ‘Jiangxiangru’ | Above ground part | [29] |
27 | Quercetin | C15H10O7 | M. chinensis ‘Jiangxiangru’ | Whole grass | [8] |
28 | Rhamnocitrin | C16H12O6 | M. chinensis Maxim | Whole grass | [25] |
29 | Kaempferol-3-O-β-D-glucoside | C21H20O11 | M. chinensis Maxim | Whole grass | [26] |
30 | Morin-7-O-β-D-glucopyranoside | C21H20O12 | M. chinensis Maxim | Whole grass | [26] |
31 | Rhamnocitrin-3-O-β-D-apiosyl-(1→5)-β-D-apiosyl-4′-O-β-D-glucoside | C33H40O20 | M. chinensis Maxim | Whole grass | [26] |
32 | 8-p-Hydroxybenzylquercetin | C22H16O8 | M. chinensis Maxim | Above ground part | [28] |
33 | Sakuranetin | C16H14O5 | M. chinensis Maxim | Above ground part | [28] |
34 | 5-Hydroxy-6-methyl-7-O-β-D-pyranxylose-(3→1)-β-D-xylofuran dihydroflavonoid glycosides | C26H30O13 | M. chinensis Maxim | Whole grass | [26] |
35 | Pyrroside A | C26H30O15 | M. chinensis Maxim | Above ground part | [24] |
terpenoids | |||||
36 | 4-Isopropylphenol | C9H12O | M. chinensis Maxim | Above ground part | [28] |
37 | Carvacrol | C10H14O | M. chinensis ‘Jiangxiangru’ | Whole grass | [30] |
38 | 4-Hydroxy-β-2-dimethyl-benzeneethanol | C10H14O2 | M. chinensis Maxim | Above ground part | [7] |
39 | (R)-2-(3-hydroxyl-4-methylphenyl)-propan1-ol | C10H14O2 | M. chinensis Maxim | Above ground part | [28] |
40 | 5-Hydroxymethyl-2-isopropylphenol | C10H14O2 | M. chinensis Maxim | Above ground part | [28] |
41 | (4-Isopropyl-3-methoxyphenyl)-methanol | C11H16O2 | M. chinensis Maxim | Above ground part | [28] |
42 | 1,4-Benzenediol-2-methyl-5-(1-methylethyl)-1-acetate | C12H16O3 | M. chinensis Maxim | Above ground part | [7] |
43 | Thymol-β-glucoside | C16H24O6 | M. chinensis Maxim | Above ground part | [7] |
44 | 6-Hydroxythymol-3-O-β-D-glucopyranoside | C16H24O7 | M. chinensis Maxim | Stems and leaves | [31] |
45 | 6-Hydroxythymol-6-O-β-D-glucopyranoside | C16H24O7 | M. chinensis Maxim | Stems and leaves | [31] |
46 | Thymoquinol-2,5-O-β-diglucopyranoside | C22H24O12 | M. chinensis ‘Jiangxiangru’ | Whole grass | [30] |
47 | Thymoquinol-5-O-β-glucopyranoside | C16H24O7 | M. chinensis ‘Jiangxiangru’ | Whole grass | [30] |
48 | Thymoquinol-2-O-β-glucopyranoside | C16H24O7 | M. chinensis ‘Jiangxiangru’ | Whole grass | [30] |
49 | p-Tolualdehyde | C8H8O | M. chinensis Maxim | Above ground part | [7] |
50 | 8-Hydroxycarvacrol | C10H14O2 | M. chinensis Maxim | Above ground part | [28] |
51 | 4,5-Dihydroxy-5-methyl-2-(1-methylethyl)-2-cyclohexen-1-one | C10H16O3 | M. chinensis Maxim | Above ground part | [7] |
52 | (1R,4R)-3,3,5-trimethyl-2-oxabicyclo-[2.2.2]-oct-5-en-4-ol | C10H16O2 | M. chinensis Maxim | Above ground part | [7] |
53 | Pubinernoid A | C11H16O3 | M. chinensis Maxim | Above ground part | [7] |
54 | Dehydrovomifoliol | C13H18O3 | M. chinensis Maxim | Above ground part | [7] |
55 | Vomifoliol | C13H20O3 | M. chinensis Maxim | Above ground part | [7] |
56 | Icariside B2 | C19H30O8 | M. chinensis Maxim | Stems and leaves | [31] |
57 | 9-Hydroxy-megastigma-4,7-dien-3-one-9-O-β-D-glucopyranoside | C20H32O7 | M. chinensis Maxim | Stems and leaves | [31] |
58 | (3S,5R,6R,7E,9S)-megastigman-7-ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside | C19H34O9 | M. chinensis Maxim | Stems and leaves | [31] |
59 | Staphylionoside D | C19H30O8 | M. chinensis Maxim | Stems and leaves | [31] |
60 | (6S,9R)-roseoside | C19H30O8 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
61 | Corchoionoside C | C19H30O8 | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Stems and leaves Whole grass | [31,33] |
62 | Gibellulic acid | C15H20O3 | M. chinensis Maxim | Above ground part | [28] |
63 | 3,4-Dihydroxy-β-ionone | C13H20O3 | M. chinensis Maxim | Aboveground par | [7] |
64 | Perilloxin | C16H18O4 | M. chinensis Maxim | Above ground part | [7] |
65 | Oleanolic acid | C30H48O3 | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Above ground part, Whole grass | [28,30] |
66 | 2α,3α,24-Trihydroxyolea-12en-28oic acid | C30H48O5 | M. chinensis Maxim | Above ground part | [28] |
67 | 2α,3β,24-Trihydroxyolea-12en-28oic acid | C30H48O5 | M. chinensis Maxim | Above ground part | [28] |
68 | Ursolic acid | C30H48O3 | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Whole grass | [26,34] |
69 | Betulinic acid | C30H48O3 | M. chinensis ‘Jiangxiangru’ | Whole grass | [34] |
phenolic acids | |||||
70 | 4-Hydroxybenzaldehyde | C7H6O2 | M. chinensis Maxim | Above ground part | [7] |
71 | 4-Hydroxy-3,5-dimethoxybenzaldehyde | C9H10O4 | M. chinensis Maxim | Above ground part | [7] |
72 | p-Hydroxybenzoic acid | C7H6O3 | M. chinensis ‘Jiangxiangru’ | Whole grass | [30] |
73 | Paraben-β-D-Glucopyranoside | C13H16O8 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
74 | Syringic acid | C9H10O5 | M. chinensis ‘Jiangxiangru’ | Whole grass | [30] |
75 | 4-Methoxyphenol | C7H8O2 | M. chinensis Maxim | Stems and leaves | [31] |
76 | 4-Hydroxy-2,6-dimethoxyphenyl-β-D-glucopyranoside | C14H20O9 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
77 | 4-Hydroxy-3,5-dimethoxyphenyl-β-D-glucopyranoside | C14H20O9 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
78 | 3,4,5-Trimethoxyphenyl-β-D-glucopyranoside | C15H22O9 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
79 | Isovanillyl alcohol-7-O-β-D-glucopyranoside | C14H20O8 | M. chinensis Maxim | Stems and leaves | [31] |
80 | Vanillyl alcohol-7-O-β-D-glucopyranoside | C14H20O8 | M. chinensis Maxim | Stems and leaves | [31] |
81 | Gastrodin | C13H18O7 | M. chinensis Maxim | Stems and leaves | [31] |
82 | 3-(O-β-D-glucopyranosyl)-α-(O-β-D-glucopyranosyl)-4-hydroxyphenylethanol | C20H30O13 | M. chinensis Maxim | Stems and leaves | [31] |
83 | 4-((R)-hydroxy((R)-2-(3-hydroxy-4-(hydroxymethyl)-phenyl)-propoxy) methyl)-2methylphenol | C18H22O5 | M. chinensis Maxim | Stems and leaves | [31] |
84 | 3-(3,4-dihydroxyphenyl) acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonylethyl ester | C18H22O5 | M. chinensis Maxim | Above ground part | [9] |
85 | Methylrosmarinate | C19H18O8 | M. chinensis Maxim | Stems and leaves | [31] |
86 | 4′-Hydroxy-benzyl benzoate-4-O-β-D-glucopyranoside | C20H22O9 | M. chinensis Maxim | Above ground part | [9] |
87 | 3′-Hydroxy-4′-methoxy-benzyl benzoate-4-O-β-D-glucopyranoside | C21H24O10 | M. chinensis Maxim | Above ground part | [9] |
88 | Amburoside A | C20H22O10 | M. chinensis Maxim | Above ground part | [9] |
89 | 4-[[(4-hydroxybenzoyl) oxy]-methyl]-phenyl-β-D-glucopyranoside | C20H22O9 | M. chinensis Maxim | Stems and leaves | [31] |
90 | 4-[[(2′,5′-dihydroxybenzoyl) oxy]-methyl]-phenyl-O-β-D-glucopyranoside | C20H22O10 | M. chinensis Maxim | Above ground part | [9] |
91 | 3′-Hydroxyphenyl-3,4,5-trimethylgallate | C16H16O6 | M. chinensis Maxim | Above ground part | [28] |
92 | 2,5-Dimethoxyphenethyl-3,4,5-trimethoxybenzoate | C20H24O7 | M. chinensis Maxim | Stems and leaves | [31] |
93 | Mosla chinensis glycoside B1 | C21H28O9 | M. chinensis Maxim | Stems and leaves | [31] |
94 | Cucurbitoside D | C25H30O13 | M. chinensis Maxim | Above ground part | [9] |
95 | Agrimonolide-6-O-β-D-glucopyranside | C24H28O10 | M. chinensis Maxim | Above ground part | [28] |
phenylpropanoids | |||||
96 | 3-Hydroxyestragole-β-D-glucopyranoside | C16H22O7 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
97 | 3-Hydroxy-4-methoxycinnamaladehyde | C10H10O3 | M. chinensis Maxim | Above ground part | [7] |
98 | Methyl caffeate | C10H10O4 | M. chinensis Maxim | Stems and leaves | [31] |
99 | Methyl-3-(3′,4′-dihydroxyphenyl) lactate | C10H12O5 | M. chinensis ‘Jiangxiangru’ | Whole grass | [33] |
100 | (S)-Pencedanol-7-O-β-D-glucopyranoside | C20H26O10 | M. chinensis ‘Jiangxiangru’ | Whole grass | [33] |
101 | (-)-5-Methoxyisolariciresinol | C21H26O7 | M. chinensis ‘Jiangxiangru’ | Above ground part | [29] |
102 | Lyoniresinol | C22H28O8 | M. chinensis ‘Jiangxiangru’ | Above ground part | [29] |
103 | Pinoresinol | C20H22O6 | M. chinensis ‘Jiangxiangru’ | Above ground part | [29] |
104 | Isoeucommin A | C27H34O12 | M. chinensis ‘Jiangxiangru’ | Above ground part | [29] |
105 | Syringaresinol-4′-O-β-D-monoglucoside | C28H36O3 | M. chinensis Maxim | Stems and leaves | [31] |
106 | Episyringaresinol-4-O-β-D-glucopyranoside | C28H36O13 | M. chinensis ‘Jiangxiangru’ | Above ground part | [29] |
107 | (7R,8S)-dihydrodehydrodiconiferyl alcohol 9-O-β-D-glucopyranoside | C26H34O11 | M. chinensis Maxim | Stems and leaves | [31] |
108 | Methyl salvianolate C | C27H22O10 | M. chinensis Maxim | Above ground part | [24] |
109 | Rel-(7R,8S)-3,3′,5-trimethoxy-4′,7-epoxy-8,5′-neolignan-4,9,9′-triol 9-O-β-D-glucopyranoside | C27H36O12 | M. chinensis Maxim | Stems and leaves | [31] |
110 | Monomethyl lithospermate | C28H24O12 | M. chinensis Maxim | Above ground part | [9] |
111 | Dimethyl lithospermate | C29H26O12 | M. chinensis Maxim | Above ground part | [24] |
112 | Sebestenoids C | C36H30O14 | M. chinensis Maxim | Above ground part | [24] |
113 | Hyprhombin B methyl ester | C27H22O10 | M. chinensis Maxim | Above ground part | [9] |
114 | Dimethyl clinopodic acid C | C29H26O12 | M. chinensis Maxim | Above ground part | [24] |
others | |||||
115 | Linoleic acid | C18H32O2 | M. chinensis Maxim | Above ground part | [28] |
116 | Oleic acid | C18H34O2 | M. chinensis Maxim | Above ground part | [28] |
117 | 6-Methyltritriacontane | C34H70 | M. chinensis Maxim | Whole grass | [26] |
118 | Prunasin | C14H17NO6 | M. chinensis ‘Jiangxiangru’ | Whole grass | [33] |
119 | Sambunigrin | C14H17NO6 | M. chinensis ‘Jiangxiangru’ | Whole grass | [33] |
120 | Benzyl-D-glucopyranoside | C13H18O6 | M. chinensis ‘Jiangxiangru’ | Whole grass | [33] |
121 | Adenosine | C10H13N5O4 | M. chinensis ‘Jiangxiangru’ | Whole grass | [32] |
122 | Indole-3-carboxylic acid β-D-glucopyranosyl | C15H17NO7 | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Stems and leaves, Whole grass | [30,31] |
123 | β-Sitosterol | C29H50O | M. chinensis Maxim M. chinensis ‘Jiangxiangru’ | Whole grass | [26,30] |
Pharmacological Activities | Compounds/Extracts | Model/Method | Result/Mechanism | Dosage | Ref. |
---|---|---|---|---|---|
Anti-bacterial | Volatile oils | Ten bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Shigella dysenteriae, F’s dysentery bacillus, Shigella sonnei, Salmonella typhi, Salmonella paratyphi B, Salmonella typhimurium, Escherichia coli, and Proteus vulgaris) | No bacterial growth | 78–312 mg/L | [52] |
Antiviral | Volatile oils | CEF (NDV-induced) | ↓Number of cell lesions | 0.3, 0.7 g/L | [53] |
Volatile oils | Vero cells; mice (A3 virus-induced) | ↓Blood coagulation titer and virus amplification; treat pneumonia in mice | 4.9 mg/L; 100 μg/g/d | [54] | |
Flavonoids | ICR male mice (H1N1 virus-infected) | ↓Lung indices, IL-2, SOD, GSH, TLR3, TLR7, MyD88, TRAF3, and NF-κB p65; ↑IL-6, TNF-α, IFN-γ, and NO | 144, 288, 576 mg/kg | [39] | |
Compound 84 | H1N1 influenza virus | 89.2% inhibition rate | 100 μmol/L | [9] | |
Compound 110 | H1N1 influenza virus | 98.6% inhibition rate | 100 μmol/L | [9] | |
Anti-inflammatory | Water extract | ICR mice with allergic inflammation (mast cell-mediated); SD rats peritoneal mast cells (activated by compound 48/80 or IgE) | ↓Intracellular calcium levels, histamine, TNF-α, IL-6, and IL-8 | 10–1000 mg/kg; 0.01–10 mg/ml | [55] |
Methanol extract | Male c57BL/6 mice (DSS-induced) | ↓NO, PGE2, TNF-α, IL-6, IL-1β, ROS, and MDA; ↑Activities of CAT, SOD, and T-AOC | 27.9, 111.6 mg/kg/day | [56] | |
Volatile oils | ICR mice with intestinal inflammation (LPS-induced) | ↓TNF-α, IL-1β, IL-6, TLR4, NF-κB p65, and JNK; ↑IL-10, IFN-γ, and mRNA | 0.06, 0.2, 0.5 mL/kg | [57] | |
Antioxidant | MP-1 | Male BALB/c mice | Over 80% free radical scavenging rate | 0.5–20 mg/mL | [50] |
Analgesic | Volatile oils | KM male mice | ↑Pain threshold in mice | 0.1–0.3 mg/kg | [58] |
Sedative | Volatile oils | KM mice | ↑Hypnotic effect of pentobarbital sodium | 0.1, 0.3 mL/kg | [59] |
Antipyretic | Volatile oils; water extract | SD rats (LPS-induced) | ↓Anal temperature; ↓PGE2, TNF-α, cAMP, IL-1β, and MPO | 1.0, 6.2 g/kg | [12] |
Regulate gastrointestinal motility | Volatile oils | SD rats | ↑Body weight, gastric emptying rate, intestinal propulsion rate, and serum gastrin content ↓Fecal wet weight, intestinal water content, and serum motilin | 0.1, 0.3, 0.6 g/mL | [60] |
Volatile oils | duodenum | Double regulation | 0.03, 0.06‰ | [61] | |
Immunomodulatory | Volatile oils | KM mice | ↑Carbon clearance index, thymus, and spleen weight | 43, 130, 390 mg/kg | [13] |
MP | KM mice (CTX-induced) | ↓MDA; ↑Thymus and spleen indices | 200, 400 mg/kg | [62] | |
Insecticidal | Water extract | TV | Insect body rupture | 62.5 mg/mL | [63] |
Volatile oils | A. gossypii | More than 85% mortality rate | 5 μL | [14] | |
Volatile oils | A. albopictus (larvae and pupae) | Poisoning larvae, repelling adult mosquitoes | LC50 = 78.8 μg/mL LC50 = 122.6 μg/mL | [64] | |
Inhibit α-glucosidase activity | 75% Ethanol extraction of ethyl acetate extract; volatile oils | α-Glucosidase activity inhibition test | Inhibition rate of 84.2%, nearly 100% | 1.0 mg/mL; 0.5 mg/mL | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.-Y.; Sun, Y.-P.; Wang, Z.-B.; Kuang, H.-X. Moslae Herba: Botany, Traditional Uses, Phytochemistry, and Pharmacology. Molecules 2024, 29, 1716. https://doi.org/10.3390/molecules29081716
Duan Z-Y, Sun Y-P, Wang Z-B, Kuang H-X. Moslae Herba: Botany, Traditional Uses, Phytochemistry, and Pharmacology. Molecules. 2024; 29(8):1716. https://doi.org/10.3390/molecules29081716
Chicago/Turabian StyleDuan, Zhuo-Ying, Yan-Ping Sun, Zhi-Bin Wang, and Hai-Xue Kuang. 2024. "Moslae Herba: Botany, Traditional Uses, Phytochemistry, and Pharmacology" Molecules 29, no. 8: 1716. https://doi.org/10.3390/molecules29081716
APA StyleDuan, Z. -Y., Sun, Y. -P., Wang, Z. -B., & Kuang, H. -X. (2024). Moslae Herba: Botany, Traditional Uses, Phytochemistry, and Pharmacology. Molecules, 29(8), 1716. https://doi.org/10.3390/molecules29081716