Fabrication and Characterization of β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Designs
2.1.1. Plackett-Burman Design (PBD) Study
2.1.2. Central Composite Design (CCD) Studies
2.1.3. Experimental Design Validation
2.2. Physicochemical Characterization
2.2.1. SEM Analysis
2.2.2. FT-IR Analysis
2.2.3. TGA Analysis
2.2.4. In Vitro Dissolution Analysis
2.3. Phase Solubility Study
2.4. Molecular Docking Analysis
2.5. Molecular Dynamics Simulation Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of ICs
3.3. Experimental Designs
3.3.1. Step 1: PBD for Screening Key Variables
3.3.2. Step 2: CCD Optimization
3.3.3. Experimental Design Validation
3.4. Physicochemical Characterization
3.4.1. SEM Determination
3.4.2. FT-IR Determination
3.4.3. TGA Determination
3.4.4. In Vitro Dissolution Study
3.5. Phase Solubility Study
3.6. Molecular Docking Study
3.7. Molecular Dynamics Simulation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Liu, A.; Du, Q.; Zhu, W.; Liu, H.; Naeem, A.; Guan, Y.; Chen, L.; Ming, L. Bioactive substances and therapeutic potential of camellia oil: An overview. Food Biosci. 2022, 49, 101855. [Google Scholar] [CrossRef]
- Ming, L.; Huang, H.; Jiang, Y.; Cheng, G.; Zhang, D.; Li, Z. Quickly identifying high-risk variables of ultrasonic extraction oil from multi-dimensional risk variable patterns and a comparative evaluation of different extraction methods on the quality of forsythia suspensa seed oil. Molecules 2019, 24, 3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeroual, A.; Sakar, E.; Eloutassi, N.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A. Phytochemical profiling of essential oils isolated using hydrodistillation and microwave methods and characterization of some nutrients in Origanum compactum benth from central-northern morocco. Biointerface Res. Appl. Chem. 2020, 11, 9358–9371. [Google Scholar] [CrossRef]
- Zeroual, A.; Sakar, E.; Eloutassi, N.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A. Wild chamomile [Cladanthus mixtus (L.) Chevall.] collected from central-northern morocco: Phytochemical profiling, antioxidant, and antimicrobial activities. Biointerface Res. Appl. Chem. 2020, 11, 11440–11457. [Google Scholar] [CrossRef]
- Rao, J.; Chen, B.; McClements, D.J. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annu. Rev. Food Sci. Technol. 2019, 10, 365–387. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Huang, H.; Liu, A.; Liu, H.; Abid, N.; Ming, L. Chitosan/zein films incorporated with essential oil nanoparticles and nanoemulsions: Similarities and differences. Int. J. Biol. Macromol. 2022, 208, 983–994. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Liu, H.; Yao, Z.; Liu, A.; Ming, L. Evaluation of hydrophilic and hydrophobic silica particles on the release kinetics of essential oil Pickering emulsions. ACS Omega 2022, 7, 8651–8664. [Google Scholar] [CrossRef]
- Amalraj, A.; Haponiuk, J.T.; Thomas, S.; Gopi, S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int. J. Biol. Macromol. 2020, 151, 366–375. [Google Scholar] [CrossRef]
- Yin, H.; Wang, C.; Yue, J.; Deng, Y.; Jiao, S.; Zhao, Y.; Zhou, J.; Cao, T. Optimization and characterization of 1,8-cineole/hydroxypropyl-β-cyclodextrin inclusion complex and study of its release kinetics. Food Hydrocoll. 2021, 110, 106159. [Google Scholar] [CrossRef]
- Gharby, S.; Oubannin, S.; Ait Bouzid, H.; Bijla, L.; Ibourki, M.; Gagour, J.; Koubachi, J.; Sakar, E.H.; Majourhat, K.; Lee, L.-H.; et al. An overview on the use of extracts from medicinal and aromatic plants to improve nutritional value and oxidative stability of vegetable oils. Foods 2022, 11, 3258. [Google Scholar] [CrossRef]
- Tian, Q.; Zhou, W.; Cai, Q.; Ma, G.; Lian, G. Concepts, processing, and recent developments in encapsulating essential oils. Chin. J. Chem. Eng. 2021, 30, 255–271. [Google Scholar] [CrossRef]
- Assaba, I.M.; Rahali, S.; Belhocine, Y.; Allal, H. Inclusion complexation of chloroquine with α and β-cyclodextrin: Theoretical insights from the new B97-3c composite method. J. Mol. Struct. 2021, 1227, 129696. [Google Scholar] [CrossRef]
- Shankar, V.K.; Police, A.; Pandey, P.; Cuny, Z.G.; Repka, M.A.; Doerksen, R.J.; Murthy, S.N. Optimization of sulfobutyl-ether-β-cyclodextrin levels in oral formulations to enhance progesterone bioavailability. Int. J. Pharm. 2021, 596, 120212. [Google Scholar] [CrossRef] [PubMed]
- Periasamy, R. Cyclodextrin-based molecules as hosts in the formation of supramolecular complexes and their practical applications—A review. J. Carbohydr. Chem. 2021, 40, 135–155. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, Y.; Niu, Y.; Ke, Q.; Kou, X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr. Polym. 2021, 269, 118292. [Google Scholar] [CrossRef] [PubMed]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, K.; Uppal, S.; Mehta, S.K. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrason. Sonochem. 2017, 37, 478–489. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.H.; Qiao, J.; Qu, W.; Wang, M.S.; Gao, X.; Zhang, C.; Brennan, C.S.; Qi, X. Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. Ultrason. Sonochem. 2022, 82, 105897. [Google Scholar] [CrossRef]
- Herrera, A.; Rodriguez, F.J.; Bruna, J.E.; Abarca, R.L.; Galotto, M.J.; Guarda, A.; Mascayano, C.; Sandoval-Yanez, C.; Padula, M.; Felipe, F.R.S. Antifungal and physicochemical properties of inclusion complexes based on beta-cyclodextrin and essential oil derivatives. Food Res. Int. 2019, 121, 127–135. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X.-M. Process optimization of intermediate-wave infrared drying: Screening by Plackett–Burman; comparison of Box-Behnken and central composite design and evaluation: A case study. Ind. Crops Prod. 2021, 162, 113287. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Tang, J.; Yang, Z. Optimization of arsenic extraction in rice samples by Plackett-Burman design and response surface methodology. Food Chem. 2016, 204, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Tahir, H. Synthesis of carbon loaded gamma-Fe2O3 nanocomposite and their applicability for the selective removal of binary mixture of dyes by ultrasonic adsorption based on response surface methodology. Ultrason. Sonochem. 2017, 36, 393–408. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Wu, Z. Insights into the effect of preparation variables on morphology and performance of polyacrylonitrile membranes using Plackett–Burman design experiments. Chem. Eng. J. 2012, 193–194, 50–58. [Google Scholar] [CrossRef]
- Nezhadali, A.; Mojarrab, M. Computational design and multivariate optimization of an electrochemical metoprolol sensor based on molecular imprinting in combination with carbon nanotubes. Anal. Chim. Acta 2016, 924, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, I.; Akhtar, M.; Ahmad, R.; Sadaquat, H.; Noreen, S.; Batool, A.; Khan, S.U. Novel multiparticulate pH triggered delayed release chronotherapeutic drug delivery of celecoxib-β-cyclodextrin inclusion complexes by using Box-Behnken design. Eur. J. Pharm. Sci. 2020, 146, 105254. [Google Scholar] [CrossRef] [PubMed]
- Dayana Priyadharshini, S.; Bakthavatsalam, A.K. Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman design and response surface methodology. Bioresour. Technol. 2016, 207, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Jena, H.M. Statistical optimization of phenol degradation by Bacillus pumilus OS1 using Plackett–Burman design and response surface methodology. Arab. J. Sci. Eng. 2015, 40, 2141–2151. [Google Scholar] [CrossRef]
- Yenduri, G.; Costa, A.P.; Xu, X.; Burgess, D.J. Impact of critical process parameters and critical material attributes on the critical quality attributes of liposomal formulations prepared using continuous processing. Int. J. Pharm. 2022, 619, 121700. [Google Scholar] [CrossRef]
- Fang, M.; Yu, Z.; Zhang, W.; Cao, J.; Liu, W. Friction coefficient calibration of corn stalk particle mixtures using Plackett-Burman design and response surface methodology. Powder Technol. 2022, 396, 731–742. [Google Scholar] [CrossRef]
- Iyyappan, J.; Bharathiraja, B.; Varjani, S.; PraveenKumar, R.; Muthu Kumar, S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. Bioresour. Technol. 2022, 346, 126405. [Google Scholar] [CrossRef]
- Favre, L.C.; Rolandelli, G.; Mshicileli, N.; Vhangani, L.N.; Dos Santos Ferreira, C.; van Wyk, J.; Buera, M.D.P. Antioxidant and anti-glycation potential of green pepper (Piper nigrum): Optimization of β-cyclodextrin-based extraction by response surface methodology. Food Chem. 2020, 316, 126280. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Li, H. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction. Ultrason. Sonochem. 2017, 34, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, R.; Kang, X.; Cui, B.; Yu, B. Effects of ultrasonic treatment on amylose-lipid complex formation and properties of sweet potato starch-based films. Ultrason. Sonochem. 2018, 44, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Prakash Maran, J.; Mekala, V.; Manikandan, S. Modeling and optimization of ultrasound-assisted extraction of polysaccharide from Cucurbita moschata. Carbohydr. Polym. 2013, 92, 2018–2026. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Ho, T.M.; Bhandari, B.R. Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem. 2017, 221, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Razavi, S.M.; Haghtalab, A.; Khanchi, A.R. Optimization of vanadium(V) extraction by 2-ethyl-1-hexanol and the study of extraction reaction mechanism. Miner. Eng. 2021, 170, 106984. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, Q.; Pu, H.; Tang, P.; Liu, Y.; Li, M.; Ren, X.; Li, H. Experimental and computer simulation investigations of ethyl red with modified β-cyclodextrins: Inclusion mechanism and structure characterization. Chem. Phys. Lett. 2020, 754, 137725. [Google Scholar] [CrossRef]
- Shanmuga priya, A.; Balakrishnan, S.b.; Veerakanellore, G.B.; Stalin, T. In-vitro dissolution rate and molecular docking studies of cabergoline drug with β-cyclodextrin. J. Mol. Struct. 2018, 1160, 1–8. [Google Scholar] [CrossRef]
- da Rocha Neto, A.C.; de Oliveira da Rocha, A.B.; Maraschin, M.; Di Piero, R.M.; Almenar, E. Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food Hydrocoll. 2018, 77, 509–523. [Google Scholar] [CrossRef]
- Tahir, M.N.; Cao, Y.; Azzouz, A.; Roy, R. Host-guest chemistry of the sulfasalazine-β-cyclodextrin inclusion complex. Tetrahedron 2021, 85, 132052. [Google Scholar] [CrossRef]
- Garg, A.; Ahmad, J.; Hassan, M.Z. Inclusion complex of thymol and hydroxypropyl-β-cyclodextrin (HP-β-CD) in polymeric hydrogel for topical application: Physicochemical characterization, molecular docking, and stability evaluation. J. Drug Deliv. Sci. Technol. 2021, 64, 102609. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Yao, Z.; Chen, F.; Zhu, L.; Liu, H.; Ming, L. Chitosan functionalized cellulose nanocrystals for stabilizing Pickering emulsion: Fabrication, characterization and stability evaluation. Colloids Surf. A 2022, 632, 127769. [Google Scholar] [CrossRef]
- Gholibegloo, E.; Mortezazadeh, T.; Salehian, F.; Ramazani, A.; Amanlou, M.; Khoobi, M. Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin. Carbohydr. Polym. 2019, 213, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Qin, X.; Liu, X.; Wang, Y.; Zhong, J. Host-guest interactions between oleic acid and β-cyclodextrin: A combined experimental and theoretical study. Food Chem. 2022, 387, 132910. [Google Scholar] [CrossRef] [PubMed]
- Prabu, S.; Sivakumar, K.; Nayaki, S.K.; Rajamohan, R. Host-guest interaction of cytidine in β-cyclodextrin microcavity: Characterization and docking study. J. Mol. Liq. 2016, 219, 967–974. [Google Scholar] [CrossRef]
- Shabkhiz, M.A.; Khalil Pirouzifard, M.; Pirsa, S.; Mahdavinia, G.R. Alginate hydrogel beads containing Thymus daenensis essential oils/glycyrrhizic acid loaded in β-cyclodextrin. Investigation of structural, antioxidant/antimicrobial properties and release assessment. J. Mol. Liq. 2021, 344, 117738. [Google Scholar] [CrossRef]
- Uppal, S.; Kaur, K.; Kumar, R.; Kahlon, N.K.; Singh, R.; Mehta, S.K. Encompassment of benzyl isothiocyanate in cyclodextrin using ultrasonication methodology to enhance its stability for biological applications. Ultrason. Sonochem. 2017, 39, 25–33. [Google Scholar] [CrossRef]
- Deng, C.; Cao, C.; Zhang, Y.; Hu, J.; Gong, Y.; Zheng, M.; Zhou, Y. Formation and stabilization mechanism of β-cyclodextrin inclusion complex with C10 aroma molecules. Food Hydrocoll. 2022, 123, 107013. [Google Scholar] [CrossRef]
- Hu, Z.; Shao, M.; Zhang, B.; Fu, X.; Huang, Q. Enhanced stability and controlled release of menthol using a β-cyclodextrin metal-organic framework. Food Chem. 2022, 374, 131760. [Google Scholar] [CrossRef]
- Sun, Q.; Tang, P.; Zhao, L.; Pu, H.; Zhai, Y.; Li, H. Mechanism and structure studies of cinnamaldehyde/cyclodextrins inclusions by computer simulation and NMR technology. Carbohydr. Polym. 2018, 194, 294–302. [Google Scholar] [CrossRef]
- Pradhan, P.C.; Mandal, A.; Dutta, A.; Sarkar, R.; Kundu, A.; Saha, S. Delineating the behavior of Berberis anthocyanin/β-cyclodextrin inclusion complex in vitro: A molecular dynamics approach. LWT 2022, 157, 113090. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Dos Santos Silva Araujo, L.; Lazzara, G.; Chiappisi, L. Cyclodextrin/surfactant inclusion complexes: An integrated view of their thermodynamic and structural properties. Adv. Colloid. Interface Sci. 2021, 289, 102375. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, Y.; Huang, H.; Wang, K.; Wu, J.; Zhu, L.; Liao, Z.; Ming, L. Study of β-cyclodextrin differential encapsulation of essential oil components by using mixture design and NIR: Encapsulation of α-pinene, myrcene, and 3-carene as an example. J. Chin. Pharm. Sci. 2021, 30, 524–537. [Google Scholar] [CrossRef]
- Xiong, W.; Li, Y.; Ren, C.; Li, J.; Li, B.; Geng, F. Thermodynamic parameters of gelatin-pectin complex coacervation. Food Hydrocoll. 2021, 120, 106958. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Fateminasab, F.; Bordbar, A.K.; Shityakov, S.; Saboury, A.A. Molecular insights into inclusion complex formation between β- and γ-cyclodextrins and rosmarinic acid. J. Mol. Liq. 2020, 314, 113802. [Google Scholar] [CrossRef]
- Rajendiran, N.; Siva, S. Inclusion complex of sulfadimethoxine with cyclodextrins: Preparation and characterization. Carbohydr. Polym. 2014, 101, 828–836. [Google Scholar] [CrossRef]
- Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Jafar, M.; Hassan, M.Z.; Hussain, A.; Ahad, A.; Mahdi, W. Host-guest complex of β-cyclodextrin and pluronic F127 with luteolin: Physicochemical characterization, anti-oxidant activity and molecular modeling studies. J. Drug Deliv. Sci. Technol. 2020, 55, 101356. [Google Scholar] [CrossRef]
- Chakraborty, S.; Karmakar, A.; Goswami, T.; Ghosh, P.; Mandal, A. A combined spectroscopic and molecular dynamic analysis of the inclusion behaviour of L-serine and β-cyclodextrin. J. Mol. Liq. 2021, 321, 114447. [Google Scholar] [CrossRef]
- Al-Qubaisi, M.S.; Rasedee, A.; Flaifel, M.H.; Eid, E.E.M.; Hussein-Al-Ali, S.; Alhassan, F.H.; Salih, A.M.; Hussein, M.Z.; Zainal, Z.; Sani, D.; et al. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties. Eur. J. Pharm. Sci. 2019, 133, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel-Bellaaj, O.; Hmidet, N.; Jellouli, K.; Younes, I.; Maalej, H.; Hachicha, R.; Nasri, M. Shrimp waste fermentation with Pseudomonas aeruginosa A2: Optimization of chitin extraction conditions through Plackett-Burman and response surface methodology approaches. Int. J. Biol. Macromol. 2011, 48, 596–602. [Google Scholar] [CrossRef]
- Ming, L.; Li, Z.; Wu, F.; Du, R.; Feng, Y. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control. PLoS ONE 2017, 12, e0180209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Jiang, X.; Zhu, L.; Chen, F.; Liu, H.; Ming, L. New insights into the thermal degradation behavior of hydroxypropyl-beta-cyclodextrin inclusion complexes containing carvacrol essential oil via thermogravimetric analysis. J. Therm. Anal. Calorim. 2022, 147, 11301–11312. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.; Tang, Y.; Cao, D.; Qi, T.; Qi, Y.; Fan, G. Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int. J. Pharm. 2013, 450, 304–310. [Google Scholar] [CrossRef]
- Zhu, W.F.; Zhu, L.; Li, Z.; Wu, W.T.; Guan, Y.M.; Chen, L.H.; Mao, Z.X.; Ming, L.S. The novel use of PVP K30 as templating agent in production of porous lactose. Pharmaceutics 2021, 13, 814. [Google Scholar] [CrossRef]
- Shukla, S.K.; Chan, A.; Parvathaneni, V.; Kanabar, D.D.; Patel, K.; Ayehunie, S.; Muth, A.; Gupta, V. Enhanced solubility, stability, permeation and anti-cancer efficacy of celastrol-β-cyclodextrin inclusion complex. J. Mol. Liq. 2020, 318, 113936. [Google Scholar] [CrossRef]
- Sursyakova, V.V.; Levdansky, V.A.; Rubaylo, A.I. Thermodynamic parameters for the complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin determined by affinity capillary electrophoresis. J. Mol. Liq. 2019, 283, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Tambe, A.; Pandita, N.; Kharkar, P.; Sahu, N. Encapsulation of boswellic acid with β- and hydroxypropyl-β-cyclodextrin: Synthesis, characterization, in vitro drug release and molecular modelling studies. J. Mol. Struct. 2018, 1154, 504–510. [Google Scholar] [CrossRef]
- Matencio, A.; Caldera, F.; Rubin Pedrazzo, A.; Khazaei Monfared, Y.; Dhakar, N.K.; Trotta, F. A physicochemical, thermodynamical, structural and computational evaluation of kynurenic acid/cyclodextrin complexes. Food Chem. 2021, 356, 129639. [Google Scholar] [CrossRef]
- Menezes, P.d.P.; Serafini, M.R.; de Carvalho, Y.M.B.G.; Soares Santana, D.V.; Lima, B.S.; Quintans-Júnior, L.J.; Marreto, R.N.; de Aquino, T.M.; Sabino, A.R.; Scotti, L.; et al. Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. J. Mol. Struct. 2016, 1125, 323–330. [Google Scholar] [CrossRef]
- Li, Z.; Wen, W.; Chen, X.; Zhu, L.; Cheng, G.; Liao, Z.; Huang, H.; Ming, L. Release characteristics of an essential oil component encapsulated with cyclodextrin shell matrices. Curr. Drug Deliv. 2021, 18, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Makieła, D.; Janus-Zygmunt, I.; Górny, K.; Gburski, Z. The dynamics of β-cyclodextrin molecules on graphene sheet. A molecular dynamics simulation study. J. Mol. Liq. 2019, 288, 110974. [Google Scholar] [CrossRef]
Item | Y1 | Y2 | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Standard Error | T Value | p Value | Coefficient | Standard Error | T Value | p Value | |
Intercept | 28.2173 | 1.1971 | 23.57 | 0.0001 ** | 6.6193 | 0.2481 | 26.68 | 0.0001 ** |
A | 14.1787 | 2.8983 | 4.89 | 0.0018 ** | −1.1420 | 0.3039 | −3.76 | 0.0071 ** |
B | −0.2763 | 2.8983 | −0.10 | 0.9267 | 0.1280 | 0.3039 | 0.42 | 0.6862 |
C | 7.3563 | 2.8983 | 2.54 | 0.0388 * | 0.3987 | 0.3039 | 1.31 | 0.2310 |
D | 3.4867 | 2.6458 | 1.32 | 0.2290 | 0.5642 | 0.2774 | 2.03 | 0.0815 |
E | −2.9830 | 2.8983 | −1.03 | 0.3376 | −0.2553 | 0.3039 | −0.84 | 0.4286 |
F | −6.2933 | 2.6458 | −2.38 | 0.0490 * | −0.8375 | 0.2774 | −3.02 | 0.0194 * |
R2 | 0.8849 0.7698 9.1652 | 0.8113 0.6226 0.9600 | ||||||
adjusted R2 | ||||||||
RMSE |
Item | Y1 | Y2 | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | Standard Error | T Value | p Value | Coefficient | Standard Error | T Value | p Value | |
Intercept | 80.7578 | 1.5845 | 50.97 | 0.0001 ** | 9.0730 | 0.2145 | 42.29 | 0.0001 ** |
A | 23.0624 | 0.9398 | 24.54 | 0.0001 ** | −0.6435 | 0.1272 | −5.06 | 0.0015 ** |
C | −0.1095 | 0.9398 | −0.12 | 0.9106 | −0.0623 | 0.1272 | −0.49 | 0.6394 |
F | −1.5359 | 0.9398 | −1.63 | 0.1462 | −0.1098 | 0.1272 | −0.86 | 0.4167 |
AC | 1.8763 | 1.1176 | 1.68 | 0.1371 | 0.2538 | 0.1513 | 1.68 | 0.1374 |
AF | −2.6663 | 1.1176 | −2.39 | 0.0485 * | −0.2913 | 0.1513 | −1.92 | 0.0956 |
CF | 1.2163 | 1.1176 | 1.09 | 0.3125 | 0.0763 | 0.1513 | 0.50 | 0.6298 |
A2 | −14.0362 | 1.3025 | −10.78 | 0.0001 ** | −1.4668 | 0.1763 | −8.32 | 0.0001 ** |
C2 | −1.2371 | 1.3025 | −0.95 | 0.3738 | −0.0541 | 0.1763 | −0.31 | 0.7679 |
F2 | −1.1526 | 1.3025 | −0.88 | 0.4056 | −0.0782 | 0.1763 | −0.44 | 0.6706 |
R2 | 0.9906 0.9785 3.1609 | 0.9373 0.8567 0.4280 | ||||||
adjusted R2 | ||||||||
RMSE |
Number | Predicted Value | Actual Value | Relative Deviation (%) | |||
---|---|---|---|---|---|---|
Y1 (%) | Y2 (%) | Y1 (%) | Y2 (%) | Y1 (%) | Y2 (%) | |
1 | 85.52 | 9.03 | 85.33 | 8.78 | −0.22 | −2.77 |
2 | 86.87 | 9.03 | 1.58 | 0.01 | ||
3 | 86.29 | 8.95 | 0.91 | −0.91 | ||
Average | 86.17 | 8.92 | 0.01 | −0.01 |
Factor | Symbol | Experimental Value | ||
---|---|---|---|---|
Low Level | Center Level | High Level | ||
β-CD/EO ratio (g:g) | A | 4 (−1) | 8 (0) | 12 (+1) |
Ultrasonic time (min) | B | 15 (−1) | 30 (0) | 45 (+1) |
Ultrasonic power (W) | C | 180 (−1) | 270 (0) | 360 (+1) |
Temperature (°C) | D | 40 (−1) | 50 (0) | 60 (+1) |
Reaction water (mL:g) | E | 8 (−1) | 12 (0) | 16 (+1) |
EO/ethanol ratio (g:g) | F | 0.5 (−1) | 1.25 (0) | 2 (+1) |
Run | A/g:g | B/min | C/W | D/°C | E/mL:g | F/g:g | Y1 (%) | Y2 (%) |
---|---|---|---|---|---|---|---|---|
1 | 8 | 30 | 270 | 50 | 12 | 1.25 | 63.02 | 6.98 |
2 | 12 | 15 | 360 | 60 | 16 | 0.5 | 75.87 | 6.02 |
3 | 12 | 15 | 180 | 40 | 16 | 0.5 | 60.73 | 4.65 |
4 | 8 | 30 | 270 | 50 | 12 | 1.25 | 61.98 | 6.99 |
5 | 4 | 15 | 360 | 40 | 8 | 2 | 25.80 | 5.16 |
6 | 4 | 15 | 180 | 60 | 8 | 0.5 | 47.14 | 9.42 |
7 | 12 | 45 | 360 | 40 | 8 | 0.5 | 96.85 | 7.54 |
8 | 12 | 15 | 180 | 60 | 8 | 2 | 67.43 | 5.19 |
9 | 4 | 45 | 180 | 60 | 16 | 2 | 34.84 | 6.98 |
10 | 4 | 45 | 360 | 60 | 8 | 0.5 | 45.3 | 9.06 |
11 | 4 | 45 | 180 | 40 | 16 | 0.5 | 37.16 | 7.44 |
12 | 12 | 45 | 360 | 60 | 16 | 2 | 75.63 | 5.82 |
13 | 12 | 45 | 180 | 40 | 8 | 2 | 47.26 | 3.65 |
14 | 4 | 15 | 360 | 40 | 16 | 2 | 36.57 | 7.28 |
15 | 8 | 30 | 270 | 50 | 12 | 1.25 | 63.78 | 7.11 |
Level | Experimental Value | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | α | |
A (g:g) | 2.85 (-α) | 4 (−1) | 8 (0) | 12 (+1) | 13.15 (α) |
C (W) | 154 (-α) | 180 (−1) | 270 (0) | 360 (+1) | 386 (α) |
F (g:g) | 0.28 (-α) | 0.50 (−1) | 1.25 (0) | 2.00 (+1) | 2.22 (α) |
Run | A/g:g | C/W | F/g:g | Y1 (%) | Y2 (%) |
---|---|---|---|---|---|
1 | 8 | 270 | 0.28 | 82.41 | 9.31 |
2 | 12 | 360 | 2 | 86.52 | 6.66 |
3 | 4 | 180 | 0.5 | 41.67 | 8.31 |
4 | 4 | 360 | 0.5 | 38.92 | 7.77 |
5 | 8 | 270 | 1.25 | 79.96 | 8.96 |
6 | 12 | 360 | 0.5 | 90.09 | 7.04 |
7 | 8 | 270 | 1.25 | 77.59 | 8.72 |
8 | 8 | 154 | 1.25 | 82.38 | 9.25 |
9 | 12 | 180 | 2 | 76.90 | 5.88 |
10 | 8 | 386 | 1.25 | 78.24 | 8.85 |
11 | 12 | 180 | 0.5 | 90.16 | 6.90 |
12 | 4 | 180 | 2 | 43.90 | 8.79 |
13 | 8 | 270 | 2.22 | 78.49 | 8.71 |
14 | 4 | 360 | 2 | 41.19 | 8.22 |
15 | 13.15 | 270 | 1.25 | 91.32 | 6.45 |
16 | 8 | 270 | 1.25 | 80.42 | 9.08 |
17 | 2.85 | 270 | 1.25 | 26.90 | 6.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-N.; Jiang, X.-X.; Naeem, A.; Chen, F.-C.; Wang, L.; Liu, Y.-X.; Li, Z.; Ming, L.-S. Fabrication and Characterization of β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules 2023, 28, 37. https://doi.org/10.3390/molecules28010037
Liu H-N, Jiang X-X, Naeem A, Chen F-C, Wang L, Liu Y-X, Li Z, Ming L-S. Fabrication and Characterization of β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules. 2023; 28(1):37. https://doi.org/10.3390/molecules28010037
Chicago/Turabian StyleLiu, Hong-Ning, Xiao-Xia Jiang, Abid Naeem, Fu-Cai Chen, Lu Wang, Yan-Xia Liu, Zhe Li, and Liang-Shan Ming. 2023. "Fabrication and Characterization of β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling" Molecules 28, no. 1: 37. https://doi.org/10.3390/molecules28010037
APA StyleLiu, H. -N., Jiang, X. -X., Naeem, A., Chen, F. -C., Wang, L., Liu, Y. -X., Li, Z., & Ming, L. -S. (2023). Fabrication and Characterization of β-Cyclodextrin/Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules, 28(1), 37. https://doi.org/10.3390/molecules28010037