Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Mn-doped BiFeO3 films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3049 KiB  
Article
Bandgap of Epitaxial Single-Crystal BiFe1−xMnxO3 Films Grown Directly on SrTiO3/Si(001)
by Samuel R. Cantrell, John T. Miracle, Ryan J. Cottier, Skyler Lindsey and Nikoleta Theodoropoulou
Materials 2025, 18(9), 2022; https://doi.org/10.3390/ma18092022 - 29 Apr 2025
Viewed by 526
Abstract
We report the growth and optical characterization of single-crystal BiFe1−xMnxO3 thin films directly on SrTiO3/Si(001) substrates using molecular beam epitaxy. X-ray diffraction confirmed epitaxial growth, film crystallinity, and sharp interface quality. Scanning electron microscopy and energy [...] Read more.
We report the growth and optical characterization of single-crystal BiFe1−xMnxO3 thin films directly on SrTiO3/Si(001) substrates using molecular beam epitaxy. X-ray diffraction confirmed epitaxial growth, film crystallinity, and sharp interface quality. Scanning electron microscopy and energy dispersive X-ray spectroscopy verified uniform film morphology and successful Mn incorporation. Spectroscopic ellipsometry revealed a systematic bandgap reduction with increasing Mn concentration, from 2.7 eV in BiFeO3 to 2.58 eV in BiFe0.74Mn0.26O3, consistent with previous reports on Mn-doped BiFeO3. These findings highlight the potential of BiFe1xMnxO3 films for bandgap engineering, advancing their integration into silicon-compatible multifunctional optoelectronic and photovoltaic applications. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

11 pages, 3152 KiB  
Article
Photovoltaic Effect of La and Mn Co-Doped BiFeO3 Heterostructure with Charge Transport Layers
by Jiwei Lv and Huanpo Ning
Materials 2024, 17(9), 2072; https://doi.org/10.3390/ma17092072 - 28 Apr 2024
Cited by 2 | Viewed by 1748
Abstract
Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMn [...] Read more.
Bismuth ferrite BiFeO3 (BFO)-based ferroelectrics have great potential as inorganic perovskite-like oxides for future solar cells applications due to their unique physical properties. In this work, La and Mn co-doped BFO thin films with compositions Bi0.9La0.1(Fe1−xMnx)O3 (x = 0, 0.05, 0.1, 0.15) (denoted as BLF, BLFM5, BLFM10, BLFM15, respectively) were prepared via a sol–gel technique on indium tin oxide (ITO) glass. All the films are monophasic, showing good crystallinity. The optical bandgap Eg was found to decrease monotonously with an increase in the Mn doping amount. Compared with other compositions, the BLFM5 sample exhibits a better crystallinity and less oxygen vacancies as indicated by XRD and XPS measurements, thereby achieving a better J–V performance. Based on BLFM5 as the light absorbing layer, the ITO/ZnO/BLFM5/Pt and ITO/ZnO/BLFM5/NiO/Pt heterostructure devices were designed and characterized. It was found that the introduction of the ZnO layer increases both the open circuit voltage (Voc) and the short circuit current density (Jsc) with Voc = 90.2 mV and Jsc = 6.90 μA/cm2 for the Pt/ BLFM5/ZnO/ITO device. However, the insertion of the NiO layer reduces both Voc and Jsc, which is attributed to the weakened built-in electric field at the NiO/BLFM5 interface. Full article
(This article belongs to the Special Issue Electrical and Optical Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

13 pages, 3531 KiB  
Article
Magnetic, Antiferroelectric-like Behavior and Resistance Switching Properties in BiFeO3-CaMnO3 Polycrystalline Thin Films
by Abdelilah Lahmar, Jacem Zidani, Jamal Belhadi, Ilham Hamdi Alaoui, Hussam Musleh, Jehad Asad, Naji Al Dahoudi and Mimoun El Marssi
Materials 2023, 16(23), 7392; https://doi.org/10.3390/ma16237392 - 28 Nov 2023
Viewed by 1503
Abstract
The effect of ferromagnetic CaMnO3 (CMO) addition to structural, magnetic, dielectric, and ferroelectric properties of BiFeO3 is presented. X-ray diffraction and Raman investigation allowed the identification of a single pseudocubic perovskite structure. The magnetic measurement showed that the prepared films exhibit [...] Read more.
The effect of ferromagnetic CaMnO3 (CMO) addition to structural, magnetic, dielectric, and ferroelectric properties of BiFeO3 is presented. X-ray diffraction and Raman investigation allowed the identification of a single pseudocubic perovskite structure. The magnetic measurement showed that the prepared films exhibit a ferromagnetic behavior at a low temperature with both coercive field and remnant magnetization increased with increasing CMO content. However, a deterioration of magnetization was observed at room temperature. Ferroelectric study revealed an antiferroelectric-like behavior with a pinched PE hysteresis loop for 5% CMO doping BFO, resulting in low remnant polarization and double hysteresis loops. Whereas, high remnant polarization and coercive field with a likely square hysteresis loop are obtained for 10% CMO addition. Furthermore, a bipolar resistive switching behavior with a threshold voltage of about 1.8 V is observed for high doped film that can be linked to the ferroelectric polarization switching. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

13 pages, 2356 KiB  
Article
Temperature Dependence of the Hyperfine Magnetic Field at Fe Sites in Ba-Doped BiFeO3 Thin Films Studied by Emission Mössbauer Spectroscopy
by Juliana Heiniger-Schell, Krish Bharuth-Ram, Kimara Naicker, Vusumuzi Masondo, Thien Thanh Dang, Marianela Escobar, Carlos Díaz-Guerra, Georg Marschick, Hilary Masenda, Haraldur P. Gunnlaugsson, Bingcui Qi, Iraultza Unzueta, Sveinn Ólafsson, Rajdeep Adhikari, Gerrard Peters, Deena Naidoo, Peter Schaaf, Dmitry Zyabkin, Karl Johnston, Sven Becker and Gerhard Jakobadd Show full author list remove Hide full author list
Crystals 2023, 13(5), 724; https://doi.org/10.3390/cryst13050724 - 25 Apr 2023
Viewed by 2360
Abstract
Emission 57Fe Mössbauer spectroscopy (eMS), following the implantation of radioactive 57Mn+ ions, has been used to study the temperature dependence of the hyperfine magnetic field at Fe sites in Ba-doped BiFeO3 (BFO) thin films. 57Mn β decays (t [...] Read more.
Emission 57Fe Mössbauer spectroscopy (eMS), following the implantation of radioactive 57Mn+ ions, has been used to study the temperature dependence of the hyperfine magnetic field at Fe sites in Ba-doped BiFeO3 (BFO) thin films. 57Mn β decays (t1/2 = 90 s) to the 14.4 keV Mössbauer state of 57Fe, thus allowing online eMS measurements at a selection of sample temperatures during Mn implantation. The eMS measurements were performed on two thin film BFO samples, 88 nm and 300 nm thick, and doped to 15% with Ba ions. The samples were prepared by pulsed laser deposition on SrTiO3 substrates. X-ray diffraction analyses of the samples showed that the films grew in a tetragonal distorted structure. The Mössbauer spectra of the two films, measured at absorber temperatures in the range 301 K–700 K, comprised a central pair of paramagnetic doublets and a magnetic sextet feature in the wings. The magnetic component was resolved into (i) a component attributed to hyperfine interactions at Fe3+ ions located in octahedral sites (Bhf); and (ii) to Fe3+ ions in implantation induced lattice defects, which were characterized by a distribution of the magnetic field BDistr. The hyperfine magnetic field at the Fe probes in the octahedral site has a room temperature value of Bhf = 44.5(9) T. At higher sample temperatures, the Bhf becomes much weaker, with the Fe3+ hyperfine magnetic contribution disappearing above 700 K. Simultaneous analysis of the Ba–BFO eMS spectra shows that the variation of the hyperfine field with temperature follows the Brillouin curve for S = 5/2. Full article
(This article belongs to the Special Issue Radioactive Isotopes Based Materials Characterization)
Show Figures

Figure 1

11 pages, 6390 KiB  
Article
Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials
by Jiazheng Chen, Guobin Ma, Boxiang Gong, Chaoyong Deng, Min Zhang, Kaixin Guo, Ruirui Cui, Yunkai Wu, Menglan Lv and Xu Wang
Nanomaterials 2023, 13(3), 429; https://doi.org/10.3390/nano13030429 - 20 Jan 2023
Cited by 10 | Viewed by 3122
Abstract
After the discovery of bulk photovoltaic effect more than half a century ago, ferro-electrical and magneto-optical experiments have provided insights into various related topics, revealing above bandgap open voltages and non-central symmetrical current mechanisms. However, the nature of the photon-generated carriers responses and [...] Read more.
After the discovery of bulk photovoltaic effect more than half a century ago, ferro-electrical and magneto-optical experiments have provided insights into various related topics, revealing above bandgap open voltages and non-central symmetrical current mechanisms. However, the nature of the photon-generated carriers responses and their microscopic mechanisms remain unclear. Here, all-inorganic perovskite Bi0.85Gd0.15Fe1xMnxO3 thin films were prepared by a sol-gel process and the effects of Gd and Mn co-doped bismuth ferrites on their microtopography, grain boundries, multiferroic, and optical properties were studied. We discovered a simple “proof of principle” type new method that by one-step measuring the leakage current, one can demonstrate the value of photo generated current being the sum of ballistic current and shift current, which are combined to form the so-called bulk photovoltaic current, and can be related to the prototype intrinsic properties such as magneto-optical coupling and ferroelectric polarization. This result has significant potential influence on design principles for engineering multiferroic optoelectronic devices and future photovoltaic industry development. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Perovskite Solar Cells)
Show Figures

Figure 1

14 pages, 6519 KiB  
Article
Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3
by Qiyuan Wu, Yanling Song, Caihong Jia, Zhaomeng Gao and Weifeng Zhang
Crystals 2022, 12(4), 500; https://doi.org/10.3390/cryst12040500 - 4 Apr 2022
Cited by 2 | Viewed by 2515
Abstract
Bi1−xNdxFe0.99Mn0.01O3 (BNFMO, x = 0.00~0.20) films were epitaxially grown on Nb:SrTiO3 (001) substrates using pulsed laser deposition. It was found that the Nd-doping concentration has a great impact on the surface morphology, crystal [...] Read more.
Bi1−xNdxFe0.99Mn0.01O3 (BNFMO, x = 0.00~0.20) films were epitaxially grown on Nb:SrTiO3 (001) substrates using pulsed laser deposition. It was found that the Nd-doping concentration has a great impact on the surface morphology, crystal structure, and electrical properties. BNFMO thin film with low Nd-doping concentration (≤16%) crystallizes into a rhombohedral structure, while the high Nd-doping (>16%) will lead to the formation of an orthogonal structure. Furthermore, to eliminate the resistive switching (RS) effect, a positive-up–negative-down (PUND) measurement was applied on two devices in series. The remnant polarization experiences an increase with the Nd-doping concentration increasing to 16%, then drops down with the further increased concentration of Nd. Finally, the ferroelectric photovoltaic effect is also regulated by the ferroelectric polarization, and the maximum photocurrent of 1758 μA/cm2 was obtained in Bi0.84Nd0.16Fe0.99Mn0.01O3 thin film. BNFMO films show great potential for ferroelectric and photovoltaic applications. Full article
Show Figures

Figure 1

14 pages, 3826 KiB  
Article
Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films
by Yangyang Wang, Zhaoyang Li, Zhibiao Ma, Lingxu Wang, Xiaodong Guo, Yan Liu, Bingdong Yao, Fengqing Zhang and Luyi Zhu
Nanomaterials 2022, 12(1), 108; https://doi.org/10.3390/nano12010108 - 30 Dec 2021
Cited by 10 | Viewed by 2186
Abstract
Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the [...] Read more.
Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the crystal structure, phase composition, oxygen vacancy content, ferroelectric property, dielectric property, leakage property, leakage mechanism, and aging property of the BSFM films were systematically analyzed. X-ray diffraction (XRD) and Raman spectral analyses revealed that the sample had both R3c and Pnma phases. Through additional XRD fitting of the films, the content of the two phases of the sample was analyzed in detail, and it was found that the Pnma phase in the BSFMx = 0 film had the lowest abundance. X-ray photoelectron spectroscopy (XPS) analysis showed that the BSFMx = 0.04 film had the lowest oxygen vacancy content, which was conducive to a decrease in leakage current density and an improvement in dielectric properties. The diffraction peak of (110) exhibited the maximum intensity when the doping amount was 4 mol%, and the minimum leakage current density and a large remanent polarization intensity were also observed at room temperature (2Pr = 91.859 μC/cm2). By doping Sm at an appropriate amount, the leakage property of the BSFM films was reduced, the dielectric property was improved, and the aging process was delayed. The performance changes in the BSFM films were further explained from different perspectives, such as phase composition and oxygen vacancy content. Full article
Show Figures

Figure 1

11 pages, 2940 KiB  
Article
Polarization and Dielectric Properties of BiFeO3-BaTiO3 Superlattice-Structured Ferroelectric Films
by Yuji Noguchi and Hiroki Matsuo
Nanomaterials 2021, 11(7), 1857; https://doi.org/10.3390/nano11071857 - 19 Jul 2021
Cited by 11 | Viewed by 5357
Abstract
Superlattice-structured epitaxial thin films composed of Mn(5%)-doped BiFeO3 and BaTiO3 with a total thickness of 600 perovskite (ABO3) unit cells were grown on single-crystal SrTiO3 substrates by pulsed laser deposition, and their polarization and dielectric properties were investigated. [...] Read more.
Superlattice-structured epitaxial thin films composed of Mn(5%)-doped BiFeO3 and BaTiO3 with a total thickness of 600 perovskite (ABO3) unit cells were grown on single-crystal SrTiO3 substrates by pulsed laser deposition, and their polarization and dielectric properties were investigated. When the layers of Mn-BiFeO3 and BaTiO3 have over 25 ABO3 unit cells (N), the superlattice can be regarded as a simple series connection of their individual capacitors. The superlattices with an N of 5 or less behave as a unified ferroelectric, where the BaTiO3 and Mn-BiFeO3 layers are structurally and electronically coupled. Density functional theory calculations can explain the behavior of spontaneous polarization for the superlattices in this thin regime. We propose that a superlattice formation comprising two types of perovskite layers with different crystal symmetries opens a path to novel ferroelectrics that cannot be obtained in a solid solution system. Full article
(This article belongs to the Special Issue Pulsed Laser Deposition of Nanostructures, Thin Films and Multilayers)
Show Figures

Figure 1

13 pages, 3513 KiB  
Article
Enhanced Magnetic Properties of BiFeO3 Thin Films by Doping: Analysis of Structure and Morphology
by Yilin Zhang, Yuhan Wang, Ji Qi, Yu Tian, Mingjie Sun, Junkai Zhang, Tingjing Hu, Maobin Wei, Yanqing Liu and Jinghai Yang
Nanomaterials 2018, 8(9), 711; https://doi.org/10.3390/nano8090711 - 10 Sep 2018
Cited by 93 | Viewed by 6334
Abstract
The improvement of ferromagnetic properties is critical for the practical application of multiferroic materials, to be exact, BiFeO3 (BFO). Herein, we have investigated the evolution in the structure and morphology of Ho or/and Mn-doped thin films and the related diversification in ferromagnetic [...] Read more.
The improvement of ferromagnetic properties is critical for the practical application of multiferroic materials, to be exact, BiFeO3 (BFO). Herein, we have investigated the evolution in the structure and morphology of Ho or/and Mn-doped thin films and the related diversification in ferromagnetic behavior. BFO, Bi0.95Ho0.05FeO3 (BHFO), BiFe0.95Mn0.05O3 (BFMO) and Bi0.95Ho0.05Fe0.95Mn0.05O3 (BHFMO) thin films are synthesized via the conventional sol-gel method. Density, size and phase structure are crucial to optimize the ferromagnetic properties. Specifically, under the applied magnetic field of 10 kOe, BHFO and BFMO thin films can produce obvious magnetic properties during magnetization and, additionally, doping with Ho and Mn (BHFMO) can achieve better magnetic properties. This enhancement is attributed to the lattice distortions caused by the ionic sizes difference between the doping agent and the host, the generation of the new exchange interactions and the inhibition of the antiferromagnetic spiral modulated spin structure. This study provides key insights of understanding the tunable ferromagnetic properties of co-doped BFO. Full article
Show Figures

Figure 1

9 pages, 2398 KiB  
Article
Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films
by Hao-Min Xu, Huanchun Wang, Ji Shi, Yuanhua Lin and Cewen Nan
Nanomaterials 2016, 6(11), 215; https://doi.org/10.3390/nano6110215 - 16 Nov 2016
Cited by 37 | Viewed by 7148
Abstract
Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3) thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO [...] Read more.
Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3) thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2). By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation. Full article
(This article belongs to the Special Issue Nanoscale in Photocatalysis)
Show Figures

Figure 1

Back to TopTop