Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = MgO–CaO–SiO2–Al2O3 system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2302 KiB  
Article
Experimental Investigation and Molecular Dynamics Modeling of the Effects of K2O on the Structure and Viscosity of SiO2-CaO-Al2O3-MgO-K2O Slags at High Temperatures
by Fan Yang, Qingguo Xue, Haibin Zuo, Yu Liu and Jingsong Wang
Metals 2025, 15(6), 590; https://doi.org/10.3390/met15060590 - 25 May 2025
Viewed by 431
Abstract
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, [...] Read more.
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, FTIR spectroscopy, and molecular dynamics simulations. The results revealed a rapid 52% decrease in slag viscosity and an 18.32 kJ/mol reduction in activation energy as K2O content increased from 0% to 3%. K2O releases O2− ions that depolymerize Si-O network structures. Within the 3% to 5% range, structural network formation is promoted by the K2O-SiO2 reaction, resulting in increased slag viscosity and elevated activation energy. Molecular dynamics simulations elucidate the depolymerization of complex Si-O networks, accompanied by a proliferation of smaller [AlO4] tetrahedral fragments. The diminished Si-O-Si bridging oxygen (BO) bonds contrast with the enhanced increase in Si-O-K non-bridging oxygen (NBO) linkages. When K2O exceeds 3%, the diffusion capacity of K atoms becomes constrained as K2O participates in structural network assembly, a phenomenon validated by FTIR spectroscopic analysis. Elevated K2O concentrations enhance slag network polymerization, leading to increased viscosity. Therefore, the precise control of K2O content is critical during smelting operations and by-product manufacturing (e.g., glass or mineral wool) to optimize material performance. These findings provide theoretical support for controlling the alkali metal content during the actual metallurgical process and thus further optimizing blast furnace operation. Full article
Show Figures

Figure 1

14 pages, 5095 KiB  
Article
Performance Study of CaO-CaF2- and CaO-Al2O3-SiO2-Based High-Efficiency Desulfurizers
by Ruihong Cao, Shengtao Qiu, Ting Wu and Haijun Wang
Metals 2025, 15(5), 550; https://doi.org/10.3390/met15050550 - 16 May 2025
Viewed by 376
Abstract
In order to reduce the content of harmful impurity sulfur elements in steel to meet the quality requirements of high value-added steel, efficient desulfurization of RH vacuum degassing is essential. Based on the simplex lattice composition design method, the effects of typical compositions [...] Read more.
In order to reduce the content of harmful impurity sulfur elements in steel to meet the quality requirements of high value-added steel, efficient desulfurization of RH vacuum degassing is essential. Based on the simplex lattice composition design method, the effects of typical compositions on liquidus temperature, sulfur capacity, melting temperature, the effects of typical compositions on liquidus temperature, sulfur capacity, melting temperature, viscosity, and desulfurization rate of CaO-CaF2- and CaO-Al2O3-SiO2-based desulfurizers were studied by thermodynamic calculation, the melting temperature test, and the slag–steel contact experiment. The results show that in CaO-CaF2- and CaO-Al2O3-SiO2-based desulfurizers, the changes in CaF2, MgO, and Al2O3 contents has little effect on the equilibrium S content of molten steel at lower SiO2 contents, whereas, at higher SiO2 contents, the equilibrium S content of the molten steel is greatly increased when the CaF2, MgO, and Al2O3 content is greater than a certain value. Meanwhile, the increase in CaF2 and MgO content reduces the high-temperature viscosity and breaking temperature (corresponding to the turning point on the viscosity–temperature curve) to varying degrees, which results in a better slag fluidity and is favorable to the prevention of crusting. With the increase in Al2O3 and SiO2 content, the breaking temperature of the CaO-CaF2-based desulfurizer is significantly reduced, which is beneficial to preventing crust. However, when the breaking temperature of CaO-Al2O3-SiO2-based desulfurizer increases, part of the slag system has solidified at 1400 °C, which is easy to lead to slag crust when the temperature drops. Comprehensively, for the CaO-CaF2-based desulfurizer, CaO = 60 wt%, CaF2 = 30 wt%, SiO2 = 0–5 wt%, and add a small amount of Al2O3 and MgO, its desulfurization effect is significant. For the CaO-Al2O3-SiO2-based desulfurizer, CaO = 39–57 wt%, Al2O3 = 20–35 wt%, SiO2 = 10–15 wt%, MgO = 4 wt%, CaF2 = 4–8 wt%, its desulfurization effect meets the demand, and it can reduce equipment erosion and environmental pollution. Full article
(This article belongs to the Special Issue Green Super-Clean Steels)
Show Figures

Figure 1

13 pages, 4777 KiB  
Article
Experimental Study on Rock Dissolution and Scale Formation by Strong/Weak Alkali During the Alkali–Surfactant–Polymer Flooding in an Oilfield in China
by Chuanye Zhou, Xiang Ji, Fengyin Chen, Xiao Ge, Hanbo Zhu, Cong Fu, Anhuai Lu, Changqiu Wang, Yan Li and Hongrui Ding
Minerals 2025, 15(5), 451; https://doi.org/10.3390/min15050451 - 27 Apr 2025
Viewed by 386
Abstract
This study utilizes the temperature–pressure reactor to simulate the real conditions of the reservoir to study rock dissolution and scale formation caused by strong and weak alkali during the ASP flooding in an oilfield in China. Mercury injection experiments showed that the porosity [...] Read more.
This study utilizes the temperature–pressure reactor to simulate the real conditions of the reservoir to study rock dissolution and scale formation caused by strong and weak alkali during the ASP flooding in an oilfield in China. Mercury injection experiments showed that the porosity and permeability of rock increased by 10.3% and 15.3% under the action of strong alkali, while they increased by 7.2% and 10.1% under the action of weak alkali, indicating that both strong and weak alkali can cause rock dissolution. The structural morphology of the rock demonstrated that the clay content between the grains decreased significantly. The semi-quantitative analysis of XRD indicated that the content of kaolinite decreased from the initial 7% to 0%. The recrystallized carbonate was found, and the carbonate content increased from the initial 0% to 12%. According to the SEM, EDS, and Raman analyses of the scale, the scale formation was complex in the strong alkaline system, including silicate scale, carbonate scale, and hydroxide scale. In contrast, only carbonate scale was found in the weak alkaline system. The ICP-AES test for the liquid system revealed that the rock dissolution releases substantial Ca2+, Mg2+, Fe2+, SiO32− and AlO2 ions, among which Si concentration can reach around 560 ppm. The chemical mechanism of rock dissolution and scale formation by strong and weak alkali includes the exchange of mineral cations by Na+ and the destruction of Si-O and Al-O bonds by OH. These released ions migrate with the composite fluid, then recrystallize under the saturation state to form the scale. The dissolution of rock by strong alkali is more intense, while the dissolution of weak alkali is relatively mild. Moreover, the scale type in the weak alkaline system is simpler, which would be convenient to develop inhibitors. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

12 pages, 3170 KiB  
Article
Extracting Lithium from Brazilian α-Spodumene via Chlorination Roasting
by Paulo F. A. Braga, Caroline R. dos S. Brigido, Camila P. Pinto, Silvia C. A. França and Gustavo D. Rosales
Mining 2025, 5(1), 19; https://doi.org/10.3390/mining5010019 - 20 Mar 2025
Viewed by 597
Abstract
The lithium market has been expanding due to the high demand for lithium-ion batteries, which are essential for electric and hybrid vehicles as well as portable devices. This has driven the search for new lithium ore deposits and the development of more efficient [...] Read more.
The lithium market has been expanding due to the high demand for lithium-ion batteries, which are essential for electric and hybrid vehicles as well as portable devices. This has driven the search for new lithium ore deposits and the development of more efficient extraction and processing technologies. The main methods used for lithium extraction from hard rock ores include the acid process, the alkaline process, and chlorination roasting. This study investigated a chlorination process applied to α-spodumene extracted in Brazil for lithium chloride (LiCl) production. The ore underwent thermal treatment in the presence of calcium chloride (CaCl2) and magnesium chloride (MgCl2), followed by water leaching at 90 °C. The thermodynamics of the α-Li2O·Al2O3·SiO2 system, combined with calcium and magnesium chlorides, was analyzed using HSC 5.1 software. The main objective of this study was to produce lithium chloride from alpha spodumene and avoid decrepitation of the ore to the beta phase before mixing with the reagents, making the process faster and less expensive compared to traditional extraction methods. Pyrometallurgical tests were conducted in a muffle furnace, varying the molar ratio between chlorides (MgCl2:CaCl2) at 1:0, 0:1, 1:1, 2:1, and 1:2 and the mass ratio of spodumene to chlorides at 1:4, 1:6, and 1:8. The best lithium extraction result was approximately 95%, the conditions for obtaining the result were a spodumene:chloride ratio of 1:6 and a molar ratio between chlorides of 2:1. The results provide a better understanding of the chlorination roasting process and demonstrate the potential of the chlorination technique as a viable alternative to conventional lithium extraction methods. Full article
Show Figures

Figure 1

20 pages, 7806 KiB  
Article
New Molecular Theory and Its Model Applications
by Qixin Wang, Shengchao Duan, Junhan Huang, Xuecheng Peng, Wensheng Yang, Xiaodan Zheng, Yiwa Luo and Hanjie Guo
Processes 2025, 13(3), 828; https://doi.org/10.3390/pr13030828 - 12 Mar 2025
Viewed by 588
Abstract
A new molecular theory of slag suggests that complex oxides in the phase diagram are also present in liquid slag. In contrast to the ion‒molecule coexistence theory, basic oxides (CaO, MgO, MnO, FeO, etc.) in slag are considered to agglomerate in the liquid [...] Read more.
A new molecular theory of slag suggests that complex oxides in the phase diagram are also present in liquid slag. In contrast to the ion‒molecule coexistence theory, basic oxides (CaO, MgO, MnO, FeO, etc.) in slag are considered to agglomerate in the liquid state due to their strong mutual attraction, although they are ionized (M2+ and O2−). The predicted slag structure agrees with the experimental results, and when the model is applied to the CaO-SiO2, CaO-Al2O3, and CaO-SiO2-Al2O3 slag systems, the calculated molar fractions of CaO, SiO2, and Al2O3 (NCaO,NSiO2,NAl2O3) are close to the measured activities (αCaO,aSiO2 and aAl2O3) reported by different researchers. In the CaO-Al2O3 slag system, the results based on the new molecular theory are closer to the experimental values than the results of other theoretical calculations. In the practical application of the new molecular theory, the maximum concentration of each complex molecule is consistent with the position of the melting point of the same solid‒liquid components in the phase diagram, indicating that complex molecules have a strong influence on the melting point of slag. In addition, it is believed that the formation and decomposition of different complex molecules are responsible for changes in component activity in the CaO-SiO2 and CaO-Al2O3 slag systems, and it is further deduced that 3CaO-SiO2 is formed in two steps. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 5315 KiB  
Article
The Effect of Variable Ratios of Na2O/K2O Oxides in Glazes Containing BaO, ZnO, and ZrO2: Structural Analysis, Characteristic Temperatures, and Surface Properties
by Janusz Partyka, Dawid Kozień and Katarzyna Pasiut
Appl. Sci. 2025, 15(2), 648; https://doi.org/10.3390/app15020648 - 10 Jan 2025
Viewed by 970
Abstract
In this paper, the glazes of a multicomponent system (SiO2-Al2O3-CaO-MgO-Na2O-K2O-BaO-ZnO-ZrO2) were examined. This work focuses on five glazes and the difference between them as the molar ratio of the alkali oxides [...] Read more.
In this paper, the glazes of a multicomponent system (SiO2-Al2O3-CaO-MgO-Na2O-K2O-BaO-ZnO-ZrO2) were examined. This work focuses on five glazes and the difference between them as the molar ratio of the alkali oxides Na2O/K2O. Analysis of fired glazes focused on changes in phase composition (qualitative and quantitative) microstructure performed during observations made by scanning electron microscopy (SEM). The changing molar ratios were also studied in the structure analysis based on the result of data obtained by middle infrared (MIR) and Raman spectroscopy. The characteristic temperatures of the analyzed glazes were also designated using high-stage microscopy. Surface properties such as the color and roughness of the fired glazes were measured by means of a spectrometer and confocal microscopy as well. The amount and type of crystalline phases with the molar ratio of alkali oxides in the analyzed glazes were changed. In the glazes, the crystalline phase of a solid solution of plagioclase was obtained. The results obtained indicate that glazes with a predominant potassium oxide are characterized by lower characteristic temperatures and greater surface smoothness. Structure analysis indicates a different role for the five-molar ratio of Na2O/K2O. Full article
(This article belongs to the Special Issue Novel Ceramic Materials: Processes, Properties and Applications)
Show Figures

Figure 1

27 pages, 16290 KiB  
Article
Unveiling the Potential of Civil Briquette Furnace Slag as a Silico–Aluminon Additive in Alkali-Activated Materials
by Suoying Ren, Liang Li, Xianhui Zhao, Haoyu Wang and Renlong Zhao
Materials 2024, 17(24), 6188; https://doi.org/10.3390/ma17246188 - 18 Dec 2024
Cited by 1 | Viewed by 1025
Abstract
Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium [...] Read more.
Civil briquette furnace slag (FS), as a type of industrial solid waste, is not currently being recycled as a resource by the building materials industry. This study focuses on the potential of FS in the formulation of alkali-activated materials (AAMs) compared with calcium carbide slag (CS). This study encompasses three distinct AAM systems: alkali-activated fly ash alone (AAFA), fly ash–slag powder blends (AAFB), and slag powder alone (AABS). Electrical conductivity, fluidity, drying shrinkage, and flexural and compressive strengths were also assessed. Advanced characterization techniques, including SEM-EDS, XRD, FTIR, and TG-DSC, were utilized to examine the morphology, mineralogy, and reaction products. Despite the chemical similarity between FS and CS, FS exhibits limited active chemical components (SiO2, Al2O3, CaO, and MgO) and primarily functions as a physical filler, and thus lacks the chemical binding properties of CS. FS has a positive effect on the long-term compressive strength of the AABS system but not on the AAFA and AAFB systems. The NaOH-activated SP mortar sample with 20% FS reaches a compressive strength of 29.8 MPa at 360 days. The binding strength in AAMs incorporating FS is predominantly attributed to the gel formation within the alkali-activated matrix. This research offers valuable insights into the strategic use and substitution of CS, FS, and other silico–aluminon additives within the context of AAMs development. Full article
Show Figures

Figure 1

17 pages, 2851 KiB  
Article
Artificial Neural Network-Based Non-Linear Modeling and Simulation of CaO-SiO2-Al2O3-MgO Blast Furnace Slag Viscosity
by Patrick dos Anjos, Jorge Luís Coleti, Eduardo Junca, Felipe Fardin Grillo and Marcelo Lucas Pereira Machado
Minerals 2024, 14(11), 1160; https://doi.org/10.3390/min14111160 - 16 Nov 2024
Viewed by 1192
Abstract
Blast furnace slags are formed by CaO-SiO2-Al2O3-MgO systems and have several physical characteristics, one of which is viscosity. Viscosity is an important variable for the operation and blast furnace performance. This work aimed to model viscosity through [...] Read more.
Blast furnace slags are formed by CaO-SiO2-Al2O3-MgO systems and have several physical characteristics, one of which is viscosity. Viscosity is an important variable for the operation and blast furnace performance. This work aimed to model viscosity through linear and non-linear models in order to obtain a model with precision and accuracy. The best model constructed was a non-linear model by artificial neural networks that presented 23 nodes in the first hidden layer and 24 nodes in the second hidden layer with 6 input variables and 1 output variable named ANN 23-24. ANN 23-24 obtained better statistical evaluations in relation to 11 different literature equations for predicting viscosity in CaO-SiO2-Al2O3-MgO systems. ANN 23-24 was also subjected to numerical simulations in order to demonstrate the validation of the non-linear model and presented applications such as viscosity prediction, calculation of the inflection point in the viscosity curve by temperature, the construction of ternary diagrams with viscosity data, and the construction of iso-viscosity curves. Full article
(This article belongs to the Special Issue Characterization and Reuse of Slag)
Show Figures

Figure 1

18 pages, 2931 KiB  
Article
Application ICP-OES to Multielement Analysis on Plastic Waste and Blends with Vacuum Gas Oil: Developing a Sample Preparation Protocol
by Laura Poirier, Hye-Kyung Timken and Francisco Lopez-Linares
Processes 2024, 12(11), 2339; https://doi.org/10.3390/pr12112339 - 24 Oct 2024
Cited by 1 | Viewed by 1675
Abstract
This paper introduces a new methodology for a routine metal analysis of plastic waste (PW) and PW blended with petroleum feedstock such as vacuum gas oil and VGO (PW/VGO). For such purposes, recycled polyethylene and polypropylene plastic were selected to mimic the potential [...] Read more.
This paper introduces a new methodology for a routine metal analysis of plastic waste (PW) and PW blended with petroleum feedstock such as vacuum gas oil and VGO (PW/VGO). For such purposes, recycled polyethylene and polypropylene plastic were selected to mimic the potential feeds to be integrated at the Fluid Catalytic Cracking unit (FCC) to produce valuable products. Elements such as P, Ca, Al, Mg, Na, Zn, B, Fe, Ti, and Si were included in the method development. Different sample preparation methods were evaluated, such as microwave-assisted acid digestion (MWAD) and dry/wet ashing, followed by a fusion of the ash with lithium borate flux. Some PW homogenization pretreatments, such as cryogenic grinding and hot press molding, were also covered. The finding of this work suggests that MWAD with HNO3 and H2O2 is adequate for both types of samples and is the quickest sample preparation; however, the sample needed to be homogenized, and recoveries for Si and Ti may be biased for PW due to the limited solubilities of these elements in the nitric acid media. Carbon removal is required before fusion sample preparation and analysis due to the amount of carbon in PW samples. The sample needed to be homogenized for wet ash fusion but not for the pre-ash (dry) method. A benefit to the damp ash pretreatment is that the ash for the sample was created in the same crucible used for fusion digestion, avoiding material loss during sample management. Fusion from wet ash or carbon removal allowed for better acid solubility for Si and Ti in PW. The results of the PW samples evaluated matched well with those of both sample preparation methodologies. For most elements, precision was <10% regardless of the sample preparation; however, Fe and P had some variation using wet ash fusion, possibly due to contamination in an open digestion system or variation due to being close to the method limit of quantification (LOQ). The methodology reported here is robust enough to be implemented as routine analysis in any laboratory facility. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

17 pages, 12531 KiB  
Article
Phase Equilibria Study of the MgO–CaO–SiO2 Slag System with Ferronickel Alloy, Solid Carbon, and Al2O3 Additions
by Nandhya K. P. Prikusuma, Muhammad G. Algifari, Rafiandy A. Harahap, Zulfiadi Zulhan and Taufiq Hidayat
Processes 2024, 12(9), 1946; https://doi.org/10.3390/pr12091946 - 11 Sep 2024
Viewed by 1674
Abstract
Knowledge of the phase equilibria in the MgO–CaO–SiO2–Al2O3 slag system is crucial for the nickel laterite smelting process. The phase equilibria of this slag system were experimentally investigated, focusing on the olivine and tridymite/cristobalite primary phase fields, using [...] Read more.
Knowledge of the phase equilibria in the MgO–CaO–SiO2–Al2O3 slag system is crucial for the nickel laterite smelting process. The phase equilibria of this slag system were experimentally investigated, focusing on the olivine and tridymite/cristobalite primary phase fields, using high-temperature equilibration and quenching methods, followed by Scanning Electron Microscopy–Energy Dispersive X-Ray analysis. The phase equilibria of the MgO–CaO–SiO2 slag system at 1400 °C and 1500 °C were first determined in the absence of ferronickel alloy. The phase equilibria between 1400 °C, 1450 °C, and 1500 °C were then determined under a reducing condition, i.e., at equilibrium with ferronickel alloy and solid carbon. Finally, the effect of Al2O3 addition on the liquidus and solidus compositions in the slag system under the reducing condition was investigated at 1400 °C and 1450 °C. Comparisons between the experimentally constructed diagram, previous data, and FactSage-predicted phase diagrams have been provided and discussed. The present study identified the liquid slag both in the absence and presence of ferronickel alloy and solid carbon, as well as in the presence of Al2O3 impurity, within the formation boundaries of olivine and tridymite/cristobalite solids. Identifying the liquid slag area is essential to ensure that the nickel laterite smelting slag can be tapped from the furnace. Full article
(This article belongs to the Special Issue Phase Equilibrium in Chemical Processes: Experiments and Modeling)
Show Figures

Figure 1

13 pages, 4316 KiB  
Article
Influence of Top Slag Containing TiO2 and VOx on Hot Metal Pre-Desulfurization
by Biwen Yang, Bo Song, Liang Chen, Honghong Sun, Derek O. Northwood, Kristian E. Waters and Hao Ma
Metals 2024, 14(8), 910; https://doi.org/10.3390/met14080910 - 11 Aug 2024
Cited by 1 | Viewed by 1257
Abstract
The desulfurization capacity of top slag in the process of pre-desulfurization of hot metal containing vanadium and titanium was researched. The top slag system of CaO-SiO2-MgO-Al2O3-TiO2-VOx that was formed by blast furnace slag and [...] Read more.
The desulfurization capacity of top slag in the process of pre-desulfurization of hot metal containing vanadium and titanium was researched. The top slag system of CaO-SiO2-MgO-Al2O3-TiO2-VOx that was formed by blast furnace slag and a CaO desulfurization agent reduced the sulfur in hot metal from 0.08 wt.% to 0.02 wt.%. It was found that the resulfurization of the slag happened in the later periods of the desulfurization process. The vanadium–titanium oxides were both acidic in the desulfurization slag. TiO2 and VOx reacted with the basic oxides to form CaTiO3 and MgV2O4 at 1623 K, which reduced free CaO and was not conducive to top slag desulfurization. The results of calculation showed that the top slag desulfurization accounted for 15% of the total desulfurization. Using the ionic and molecule coexistence theory of slag structure, it is shown that the desulfurization efficiency could be enhanced by adjusting both the amount of desulfurization agent and the composition of the blast furnace slag before pre-desulfurization. Full article
(This article belongs to the Special Issue Modeling Thermodynamic Systems and Optimizing Metallurgical Processes)
Show Figures

Figure 1

20 pages, 4351 KiB  
Article
Studying the Structure and Viscosity of MnO-SiO2-CaO-Al2O3-MgO Slag System
by Shokouh Haghdani, Merete Tangstad and Kristian Etienne Einarsrud
Materials 2024, 17(15), 3789; https://doi.org/10.3390/ma17153789 - 1 Aug 2024
Cited by 2 | Viewed by 1985
Abstract
The relationship between slag structure and viscosity is studied, employing Raman spectroscopy for the five-component slag system of MnO-SiO2-CaO-Al2O3-MgO and its subsystems. This study aims to investigate the influence of variations in slag composition on viscosity, which [...] Read more.
The relationship between slag structure and viscosity is studied, employing Raman spectroscopy for the five-component slag system of MnO-SiO2-CaO-Al2O3-MgO and its subsystems. This study aims to investigate the influence of variations in slag composition on viscosity, which is crucial for optimizing industrial processes. Based on industrial slag compositions produced in a silicomanganese submerged arc furnace, 17 slags with a fixed content of MnO of 10 wt% are synthesized with varying contents of SiO2 of 33 to 65 wt%; CaO within the range of 14 to 40 wt%; and fixed contents of Al2O3 and MgO of 17 and 6 wt%, respectively. The slag compositions are divided into four groups, ranging from low basicity (0.38) to high basicity (0.80), with each group containing the four slag systems of MnO-SiO2-CaO, MnO-SiO2-CaO-Al2O3, MnO-SiO2-CaO-MgO, and MnO-SiO2-CaO-Al2O3-MgO, with fixed basicity. Additionally, a five-component composition with the lowest basicity of 0.28 is considered. Raman spectroscopy measurements are performed in the wavenumber range of 200 to 1200 cm1 using a green source laser with a 532 nm wavelength. The high-wavenumber region of the Raman spectra (800 to 1200 cm1) is deconvoluted to quantitatively investigate the effect of each oxide on the slag structure and the degree of polymerization (DOP) of the silicate network. Results indicate that measured NBO/T increases with increasing basicity, demonstrating a reduction in DOP of the silicate structure. This depolymerization effect is more pronounced in slags containing Al2O3 compared to those without it. In a group of slags with similar basicity, the substitution of SiO2 with Al2O3 leads to further depolymerization. In contrast, substituting CaO with MgO has little effect on the silicate structure in slags without Al2O3 but causes depolymerization in slags containing Al2O3. To study the relationship between structure and viscosity, viscosity data obtained from FactSage are used as reference values. The predictions of slag viscosity using the Raman-structure model and the NBO/T viscosity model are then compared to the FactSage results. The adjustable parameters of the Raman-structure model are re-determined using the FactSage data for the studied slag compositions. The NBO/T viscosity model employs both calculated NBO/T values from the slag compositions and measured NBO/T values from the deconvolution results. The findings of this study reveal good agreement between the predictions of the Raman-structure model and the FactSage viscosity data. Full article
Show Figures

Figure 1

16 pages, 1917 KiB  
Article
Thermodynamic Simulation Model of Copper Side-Blown Smelting Process
by Mingzhou Li, Yuchen Feng and Xinzhou Chen
Metals 2024, 14(8), 840; https://doi.org/10.3390/met14080840 - 23 Jul 2024
Cited by 1 | Viewed by 2119
Abstract
In this study, the thermodynamic simulation model and system of the copper side-blown smelting process were established using the chemical equilibrium constant method, based on the process reaction mechanism, multiphase equilibrium principle, and MetCal software platform (MetCal v7.81). Under typical production conditions, the [...] Read more.
In this study, the thermodynamic simulation model and system of the copper side-blown smelting process were established using the chemical equilibrium constant method, based on the process reaction mechanism, multiphase equilibrium principle, and MetCal software platform (MetCal v7.81). Under typical production conditions, the composition of the product and the distribution behavior of impurity elements were simulated. The results indicate that the average relative error between the calculated mass fractions of major elements such as Cu, S, Fe, SiO2, CaO, MgO, and Al2O3 in copper matte and smelting slag, and the actual production values, is 4.25%. Additionally, the average relative error between the calculated distribution ratios of impurity elements such as Pb, Zn, As, Bi, Mo, Au, and Ag in copper matte and smelting slag, and the actual production data, is 6.74%. Therefore, this model and calculation system accurately reflects the actual production situation of the copper side-blown smelting process well and has potential to predict process output accurately while optimizing process parameters, effectively guiding production practice. Full article
Show Figures

Figure 1

13 pages, 3987 KiB  
Article
Influence of FexOy and Al2O3 Contents on the Thermal Stability of Iron Ore-Waste Fibers: Key Mechanisms and Control
by Xiaoguang Li, Xiaohui Wang, Xianju Fang, Xianglong Shen, Liding Huang, Jinyi Qin, Wanzhang Fu and Weiguang Li
Materials 2024, 17(14), 3480; https://doi.org/10.3390/ma17143480 - 14 Jul 2024
Viewed by 880
Abstract
Traditional rock wool fibres are susceptible to crystallization and pulverization. To mitigate this, glass fibres were produced from iron ore waste (IOW). When the ratio of Fe2+ and Fe3+ is 1:3 and the Al2O3 content is 10 wt.%, [...] Read more.
Traditional rock wool fibres are susceptible to crystallization and pulverization. To mitigate this, glass fibres were produced from iron ore waste (IOW). When the ratio of Fe2+ and Fe3+ is 1:3 and the Al2O3 content is 10 wt.%, increasing the FexOy content enhances the thermal stability.At an FexOy content of 17–19% and an Al2O3 content of 10–13%, the glass transition temperature (Tg) peaked. Increasing the FexOy content from 10% to 20% enhanced the stability of Si-O and Al-O bonds and increased bridged oxygen, stabilizing the structure. Here, Fe2+ balances structural charges, while Fe3+ replaces some Al atoms in the network. When the Al2O3 content is 10–13% and the FexOy content is 17–19%, the thermal stability of the IOW rock glass reaches its optimal level. At 20% FexOy content, the structure becomes three-dimensional and cyclic, increasing polymerization. Consequently, incorporating FexOy alongside a 10% Al2O3 content improves thermal stability, supporting the development of high-stability rock wool from IOW. This approach also enhances the refractory properties of rock wool fibres within the FexOy-Al2O3-SiO2-MgO-CaO system. Full article
Show Figures

Figure 1

12 pages, 3468 KiB  
Article
Numerical Simulations of the Impact of CaO/Al2O3 on the Structure and Crystallization Behavior of Red Mud
by Lei Xing, Zhi-Hui Li, Pei-Pei Du and Yue Long
Crystals 2024, 14(6), 526; https://doi.org/10.3390/cryst14060526 - 31 May 2024
Viewed by 886
Abstract
The problem of large stockpiles of red mud needs to be solved, and the use of red mud to prepare inorganic fibers is a new way of applying red mud on a large scale. The role of CaO/Al2O3 in the [...] Read more.
The problem of large stockpiles of red mud needs to be solved, and the use of red mud to prepare inorganic fibers is a new way of applying red mud on a large scale. The role of CaO/Al2O3 in the melting point and melt structure of red mud was investigated by molecular dynamics simulations and thermodynamic calculations. Liquid phase line temperatures for different CaO/Al2O3 systems were calculated using the Factsage program. The radial distribution function and the type of oxygen bonding were used to characterize the effect of different CaO/Al2O3 on the structure of the red mud melt. The melting point of MgAl2O4 is lower than that of CaTiO3 due to the fact that the type of oxygen bonding in MgAl2O4 is predominantly bridging oxygen bonds. When the red mud system has a low SiO2 content and CaO/Al2O3 is between 0.3 and 3.9, the melting point temperature increases significantly, which is not conducive to the fibrillation of the red mud melt. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Second Edition)
Show Figures

Figure 1

Back to TopTop