Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = Marandu grass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 526 KB  
Article
Effects of Row Spacing and Tropical Grass Intercropping on Biomass Sorghum Yield and Silage Quality
by Giuliano Reis Pereira Muglia, Marco Antonio Previdelli Orrico Junior, Isabele Paola de Oliveira Amaral, Marciana Retore, Gessí Ceccon, Ana Carolina Amorim Orrico, Pedro Henrique Felipe da Silva and Yara América da Silva
Crops 2025, 5(6), 86; https://doi.org/10.3390/crops5060086 - 25 Nov 2025
Viewed by 370
Abstract
This study aimed to determine the optimal combination of forage grass and row spacing to maximize the balance between sorghum silage yield and quality in a simultaneous sowing system for integrated crop-livestock production. The experiment evaluated three cropping systems: biomass sorghum (Sorghum [...] Read more.
This study aimed to determine the optimal combination of forage grass and row spacing to maximize the balance between sorghum silage yield and quality in a simultaneous sowing system for integrated crop-livestock production. The experiment evaluated three cropping systems: biomass sorghum (Sorghum bicolor (L.) Moench) in monoculture, and intercropped with Urochloa brizantha cv. Marandu and Megathyrsus maximus cv. BRS Zuri. These systems were tested under two row spacings: 45 cm and 90 cm. The field trial was conducted in Vicentina, Mato Grosso do Sul State, Brazil, using a randomized complete block design in a 3 × 2 factorial arrangement with four replications. Dry matter production, fermentative parameters, and chemical composition were measured. The 45 cm spacing provided higher productivity (23.1 t/ha of TDMY), while the intercropping with Zuri grass showed lower levels of NDF (73.46%) and ADF (49.61%), indicating better nutritional quality. The silages exhibited ideal pH (4.0–4.1) and low levels of butyric acid (<0.33%), with higher total digestible nutrients (TDN) (54.33%) at the 90 cm spacing. The Sorghum + Zuri (ZS) intercropping at the narrower spacing (45 cm) is viable for quality silage production, showing a better balance between overall chemical quality and biomass production. Full article
Show Figures

Figure 1

14 pages, 2144 KB  
Article
Productivity and Fermentative and Nutritional Quality of Silages from Biomass Sorghum Intercropped with Tropical Grasses
by Giuliano Reis Pereira Muglia, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Gessí Ceccon, Yara América da Silva, Ana Carolina Amorim Orrico, Isabele Paola de Oliveira Amaral and Verônica Gleice de Oliveira
AgriEngineering 2025, 7(10), 345; https://doi.org/10.3390/agriengineering7100345 - 11 Oct 2025
Cited by 2 | Viewed by 906
Abstract
Crop–livestock integration is widely adopted as a strategy for recovering degraded pastures. In this system, intercropping crops such as sorghum with tropical grasses enables the harvest of sorghum for silage while simultaneously establishing a new pasture. However, interspecific competition for resources can limit [...] Read more.
Crop–livestock integration is widely adopted as a strategy for recovering degraded pastures. In this system, intercropping crops such as sorghum with tropical grasses enables the harvest of sorghum for silage while simultaneously establishing a new pasture. However, interspecific competition for resources can limit sorghum development and yield, potentially compromise the fermentation process and reduce the nutritional quality of the silage. Therefore, this study aimed to evaluate the agronomic performance, fermentative characteristics, and chemical–bromatological composition of silages produced from different biomass sorghum-grass intercropping systems. The experiment was conducted in a randomized block design with a 3 × 2 factorial arrangement: three cropping systems [sorghum monoculture, sorghum intercropped with Marandu grass (S + M), and sorghum intercropped with Zuri grass (S + Z)] and two sorghum row spacings (45 and 90 cm). The S + Z intercropping system with 90 cm row spacing showed the highest total dry matter yield (16.42 t/ha). It also presented better fermentative parameters, such as pH (4.02) and lactic acid (5.31%DM) and superior nutritional quality, with lower fiber content and higher concentrations of NFC (24.79%DM), TDN (59.75%DM), and digestibility. It is concluded that intercropping biomass sorghum with Zuri grass at 90 cm spacing is the most promising strategy for producing high-quality silage. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

9 pages, 781 KB  
Article
Absence of Sulfur Fertilization at Establishment in Urochloa brizantha Cultivars
by Carlos Eduardo Avelino Cabral, Luis Carlos Oliveira Borges, Anna Cláudia Cardoso Paimel, Eildson Souza de Oliveira Silva, Izabela Aline Gomes da Silva, Camila Fernandes Domingues Duarte, Lucas Gimenes Mota, Anne Caroline Dallabrida Avelino and Carla Heloisa Avelino Cabral
Grasses 2025, 4(3), 31; https://doi.org/10.3390/grasses4030031 - 5 Aug 2025
Viewed by 694
Abstract
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a [...] Read more.
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a completely randomized design, with six treatments in a 3 × 2 factorial scheme, and eight replications. Three cultivars of U. brizantha (Marandu, Xaraés and Piatã) were evaluated under two fertilization strategies: with or without sulfur fertilization. Sufur presence increased the number of leaves and forage mass, in which cultivar Xaraés presented the greatest means. Piatã was the cultivar most sensitive to sulfur deficiency at establishment, which reduced forage mass, number of leaves and number of tillers by 42%, 32%, and 45%, respectively. Despite these differences between cultivars, sulfur efficiently increased the forage yield. Sulfur fertilization increased the concentrations of nutrients in the plants without significantly affecting the uptake of nitrogen, phosphorus, potassium, calcium and magnesium. Sulfur omission resulted in increased phosphorus uptake in all grass. In contrast, Marandu grass exhibited the greatest reduction in sulfur uptake. Therefore, the use of sulfur in the fertilization of grasses is recommended, it is important to evaluate the responses of each cultivar to better adjust the fertilization management. Full article
Show Figures

Figure 1

14 pages, 622 KB  
Article
The Production of Marandu Grass (Urochloa brizantha) Extracts as a Natural Modifier of Rumen Fermentation Kinetics Using an In Vitro Technique
by Rafaela Scalise Xavier de Freitas, Janaina Silveira da Silva, Althieres José Furtado, Flavio Perna Junior, Alessandra Lopes de Oliveira and Ives Cláudio da Silva Bueno
Fermentation 2024, 10(9), 447; https://doi.org/10.3390/fermentation10090447 - 28 Aug 2024
Cited by 2 | Viewed by 1774
Abstract
The ethanolic (EE) and hydroalcoholic (HE) extracts of Urochloa brizantha concentrations were developed with the aim of evaluating their effect on rumen fermentation using an in vitro gas production technique. The EE and HE presented 3.62 and 5.38 mg protodioscin/mL, respectively. Ten treatments [...] Read more.
The ethanolic (EE) and hydroalcoholic (HE) extracts of Urochloa brizantha concentrations were developed with the aim of evaluating their effect on rumen fermentation using an in vitro gas production technique. The EE and HE presented 3.62 and 5.38 mg protodioscin/mL, respectively. Ten treatments were evaluated in a completely randomized factorial arrangement (2 × 4 + 2), where the main effects were two extracts (EE and HE) and four levels (50, 100, 150, and 200 mL of extract/kg of DM) plus two controls: one positive (25 ppm of monensin–MON) and one (with no additives–CTL). The extract treatments (EXT, EE, and HE) reduced colonization time by 33.59% compared to the MON. IVDMD (p < 0.001) and IVOMD (p < 0.0001) were negatively affected by EXT addition when compared to CTL. Additionally, EXT reduced the proportion of propionic acid and increased the proportion of butyric acid in relation to CTL and MON treatments. Both EE and HE extracts of U. brizantha were able to alter rumen fermentation kinetic, with HE showing a higher concentration of protodioscin. Further research is needed to optimize extraction methodologies, comprehensively profile secondary compounds, and conduct trials with varying doses to effectively assess the viability of U. brizantha extract as an additive. Full article
(This article belongs to the Special Issue Application of Fermentation Technology in Animal Nutrition)
Show Figures

Figure 1

12 pages, 297 KB  
Article
Can Marandu Grass (Urochloa brizantha) Extract Modulate Methanogenesis and Rumen Microbiota?
by Rafaela Scalise Xavier de Freitas, Janaina Silveira da Silva, Teresa Cristina Alves, Alessandra Lopes de Oliveira and Ives Cláudio da Silva Bueno
Agriculture 2024, 14(8), 1419; https://doi.org/10.3390/agriculture14081419 - 21 Aug 2024
Viewed by 1501
Abstract
Urochloa spp. are the most important grasses for ruminants in Brazil and contain secondary metabolites, mainly saponins. Urochloa brizantha extracts (ethanolic EE and hydroalcoholic HE with 3.62 and 5.38 mg protodioscin mL−1, respectively) were developed to verify their potential as additives [...] Read more.
Urochloa spp. are the most important grasses for ruminants in Brazil and contain secondary metabolites, mainly saponins. Urochloa brizantha extracts (ethanolic EE and hydroalcoholic HE with 3.62 and 5.38 mg protodioscin mL−1, respectively) were developed to verify their potential as additives for ruminant nutrition. The in vitro gas production technique was used to evaluate ten treatments in a completely randomized factorial arrangement (2 × 4 + 2), where the main effects were two extracts (EE and HE); four levels (50, 100, 150, and 200 mL of the extract kg−1 of DM), plus two controls (one positive with 25 ppm of monensin and another with no additives). The extracts EXT (EE and HE) produced a higher proportion of acetate (C2) and lower propionate (C3) than CTL, reflected in a 31% higher C2:C3 ratio. However, there was no significant difference (p > 0.05) between the treatments for methane production parameters. Archaea and Ruminococcus’ relative gene expressions were higher in EE than in HE; however, the protozoa opposite occurred, HE was higher than EE. Fibrobacter succinogenes were 33% lower in EXT than in CTL. The addition of these extracts in a sheep diet increased the production of SCFA and decreased Fibrobacter succinogenes without altering the methane and archaeal population. Full article
(This article belongs to the Section Farm Animal Production)
10 pages, 1289 KB  
Article
Comparison of the Waterlogging Tolerance and Morphological Responses of Five Urochloa spp. Grasses
by Rafael Marzall Amaral, Lesly Astrid Calva Sarango, Cristiano Eduardo Rodrigues Reis, Tulio Otávio Jardim D’almeida Lins, Ericka Beatriz Schultz and Daniel Carballo Guerrero
Stresses 2024, 4(2), 320-329; https://doi.org/10.3390/stresses4020020 - 8 May 2024
Cited by 1 | Viewed by 2525
Abstract
Periods with high precipitation and temporary waterlogging in the humid tropics are challenging to the production and survival of some grasses of the genus Urochloa. This study aimed to evaluate the tolerance of five types of grass belonging to the genus Urochloa [...] Read more.
Periods with high precipitation and temporary waterlogging in the humid tropics are challenging to the production and survival of some grasses of the genus Urochloa. This study aimed to evaluate the tolerance of five types of grass belonging to the genus Urochloa under waterlogging conditions through productive and morphological traits. The grasses [U. arrecta (Tanner), U. arrecta x U. mutica (Brachipará), U. brizantha cv. Marandú, U. hybrid cv. Cayman and U. humidicola cv. Llanero] were planted in pots and kept under field capacity for 33 days; then, half of them were submitted to (i) field capacity (33% humidity retention) and the other half were submitted to (ii) waterlogging conditions (2 cm of water above soil level) for 28 days. In this study, Tanner and Brachipará grasses showed higher dry shoot mass under waterlogging conditions, which were followed by Llanero, Cayman, and Marandú, respectively. Llanero, Tanner, and Brachipará presented higher waterlogging tolerance coefficients, 78.7, 76.5, and 64.5, respectively, being less affected than Cayman and Marandú (41.0 and 23.1, respectively). Brachipará, Tanner, and Cayman presented a higher root volume under waterlogging conditions, while Marandú root volume decreased by 88.77%. The Tanner, Brachipará, and Llanero genotypes were more tolerant to poorly drained or waterlogged soils than Cayman and Marandú genotypes. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

12 pages, 300 KB  
Article
Nutritional Performance of Grazing Beef Cattle Supplemented with High-Protein Distillers’ Dried Grain
by Milene Rodrigues Dias, Kamila Andreatta Kling de Moraes, André Soares de Oliveira, Erick Darlisson Batista, Ana Maria Rodrigues Salomão, Alexandre Zambenedetti, Natasha Bedresdke Petrenko, Jarliane Nascimento Sousa, Juliana Candeias Ortelam, Alex Ickert, Carla Silva Chaves and Eduardo Henrique Bevitori Kling de Moraes
Animals 2024, 14(8), 1209; https://doi.org/10.3390/ani14081209 - 17 Apr 2024
Cited by 2 | Viewed by 2528
Abstract
The objective was to evaluate the effects of including high-protein distillers dried grains (HP-DDG; 430 g/CP) in supplements for beef cattle in an intensive finishing pasture system. Five Nellore bulls with an average body weight (BW) of 413.5 ± 32 kg were distributed [...] Read more.
The objective was to evaluate the effects of including high-protein distillers dried grains (HP-DDG; 430 g/CP) in supplements for beef cattle in an intensive finishing pasture system. Five Nellore bulls with an average body weight (BW) of 413.5 ± 32 kg were distributed in a 5 × 5 Latin square design. The animals were randomly allocated to Marandu palisade grass paddocks (Urochloa brizantha cv. Marandu), with 0.32 ha each. Protein-energy supplements were evaluated and formulated with different replacement levels (0, 250, 500, 750 and 1000 g/kg) of soybean meal (SBM) by HP-DDG. Supplements were offered once a day in the amount of 6.0 kg/animal. Replacing SBM with HP-DDG had no effect (p > 0.10) on the intake of total and pasture DM, OM, CP, NDFap, digestible organic matter (DOM), metabolizable protein and CP:DOM ratio. Total and pasture DM intake averaged 6.07 and 11.54 kg/day, respectively. Replacing SBM with HP-DDG reduces and increases, respectively, the intake of degradable (RDP) and undegradable (RUP) protein in the rumen (p < 0.10) with a consequent linear reduction in ruminal ammonia concentration (RAN), nitrogen excretion in urine and serum N concentration (SUN) (p < 0.10). In supplements offered in the amount of 6.0 kg animal/day, SBM can be completely replaced by HP-DDG. Full article
(This article belongs to the Section Animal Nutrition)
24 pages, 8190 KB  
Article
Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization
by Eduardo André Ferreira, Joadil Gonçalves de Abreu, Wininton Mendes da Silva, Danielle Helena Müller, Dalilhia Nazaré dos Santos, Cassiano Cremon, Oscarlina Lúcia dos Santos Weber, Aaron Kinyu Hoshide, Daniel Carneiro de Abreu, Maybe Lopes Gonçalves and José Advan Pereira Pedrosa Júnior
Grasses 2024, 3(2), 45-68; https://doi.org/10.3390/grasses3020005 - 4 Apr 2024
Viewed by 4209
Abstract
Gelatin industry residues are increasingly used as fertilizer and soil conditioner. However, correct residue dosage is critical for grass development and minimizing environmental impacts. This randomized block design study determined adequate dosage of mixed gelatin sludge (MGS) for Marandu grass production in wet/dry [...] Read more.
Gelatin industry residues are increasingly used as fertilizer and soil conditioner. However, correct residue dosage is critical for grass development and minimizing environmental impacts. This randomized block design study determined adequate dosage of mixed gelatin sludge (MGS) for Marandu grass production in wet/dry seasons in Brazil. Five MGS levels (0–200% of required nitrogen) were compared to mineral fertilizer. Agronomic/productivity characteristics, bromatological composition, macro/micronutrient composition of leaves, and soil chemical attributes were evaluated. Agronomic/productivity characteristics were influenced by MGS dose in both dry/rainy seasons, except for leaf blade pseudostem ratio and percentage of leaves/pseudostem. Bromatological composition was influenced by MGS doses in dry/rainy seasons except for dry/mineral material quantities. Marandu leaf tissue chemical composition was significantly influenced by MGS dose, except for potassium, boron, and iron. Chemical composition of four soil layers between 0 and 50 cm influenced MGS dose, except for pH, organic matter, magnesium, copper, manganese, and zinc. GMS dose for Marandu production should be 200% of nitrogen requirement. MGS application increased productivity/quality of Marandu grass. Macronutrients (nitrogen, phosphorus) and micronutrients (calcium, magnesium, sulfur, copper, and zinc) increased in Marandu grass and in the soil (calcium, sulfur, and sodium). The increased sodium level was not limiting. Full article
Show Figures

Figure 1

16 pages, 311 KB  
Article
Effects of Using Different Concentrate Supplementation Levels in Diets of Lambs Fed Tropical Aruana (Megathyrsus maximus) or Marandu (Brachiaria brizantha) Grass: Performance, Digestibility, and Costs of Production
by Gustavo Daniel Vega-Britez, Marciana Retore, Allison Manoel de Sousa, Adrielly Lais Alves da Silva, Carolina Marques Costa, Carla Giselly de Souza, Marcio Rodrigues de Souza and Fernando Miranda de Vargas Junior
Grasses 2024, 3(1), 19-34; https://doi.org/10.3390/grasses3010003 - 5 Feb 2024
Cited by 1 | Viewed by 1851
Abstract
In Brazil, grazing is the main or only source of food for livestock. The appropriate combination of supplementation with concentrate in a lamb’s diet on pasture is an alternative that can be explored to use natural resources to produce quality meat. The aim [...] Read more.
In Brazil, grazing is the main or only source of food for livestock. The appropriate combination of supplementation with concentrate in a lamb’s diet on pasture is an alternative that can be explored to use natural resources to produce quality meat. The aim of the current study was to evaluate the effects of different supplementation levels (0%, 1.5%, and 3% of BW) on the intake, performance, and production costs of lambs grazing on Aruana (Megathyrsus maximus) and Marandu (Brachiaria brizantha) grasses. Thirty-six non-castrated male Suffolk lambs (22.54 ± 2.72 kg) were used. The lambs were evaluated for nutrient intake and digestibility, such as dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), and consumption in relation to body weight (% BW), in addition to the average daily gain (ADG), body condition score (BCS), and hot carcass weight (HCW), as well as the rising production cost of each system. The dry matter of the green leaf blades was influenced by the pasture type (p < 0.05), producing 1503.6 vs. 2977.4 kg/ha of Aruana and Marandu grasses, respectively. The concentrate supplementation level influenced the type of pasture (p < 0.05). A higher consumption of DM, CP, NDF, and organic matter was registered for the supplemented animals (p < 0.05) and on Aruana grass. The intake in relation to body weight was significantly influenced by the concentrate levels (p < 0.05). The empty body weight and HCW were significantly influenced by the supplementation levels (p < 0.05). The ADG and feed conversion (FC; kg DM/ADG) were influenced by the supplementation levels and type of pasture. The BCSs differed between the concentrate levels (p < 0.05). The supplementation improved dry matter digestibility. The ADG and FC were superior in the supplemented animals, with an advantage for those grazing on Aruana grass. The slaughter ADG was also higher in the supplemented animals. The lambs’ pasture comprising Aruana grass with 1.5% BW of concentrate supplementation showed improved production and economic results. Full article
Show Figures

Graphical abstract

12 pages, 1765 KB  
Article
Nitrogen Fertilization Boosts Maize Grain Yield, Forage Quality, and Estimated Meat Production in Maize–Forage Intercropping
by Bruno R. Gilli, Camila S. Grassmann, Eduardo Mariano and Ciro A. Rosolem
Agriculture 2023, 13(12), 2200; https://doi.org/10.3390/agriculture13122200 - 25 Nov 2023
Cited by 2 | Viewed by 2565
Abstract
Crop–livestock integrated systems such as intercropping and crop rotation have been critical for sustainable agriculture, promoting land use intensification throughout the year. The success of these systems under no-till depends on numerous factors, and the choice of forage grass is paramount. In this [...] Read more.
Crop–livestock integrated systems such as intercropping and crop rotation have been critical for sustainable agriculture, promoting land use intensification throughout the year. The success of these systems under no-till depends on numerous factors, and the choice of forage grass is paramount. In this study, maize grain yield, forage dry matter yield, bromatological quality, and estimated meat production were assessed in a field experiment where maize (Zea mays L.) was intercropped with Guinea grass (Megathyrsus maximus cv. Tanzania) and palisade grass (Urochloa brizantha cv Marandu) under N rates from 0 to 270 kg ha−1. Nitrogen fertilization resulted in the highest forage dry matter yield, on average, 2.9-fold higher than the N-unfertilized treatments. The highest maize grain yield was obtained with 270 kg ha−1 of N, 48% higher than all other treatments. Guinea grass intercropped with maize and fertilized with 270 kg ha−1 of N resulted in an estimated meat production 27% higher than palisade grass at the same N rate. However, at the final cut, Guinea grass fertilized with 270 kg ha−1 of N led to the highest neutral detergent fiber, acid detergent fiber, and cellulose. While palisade grass seems to impose lower competition with maize, Guinea grass increases estimated meat production. Full article
Show Figures

Figure 1

17 pages, 20105 KB  
Communication
New Insights on Alternative Hosts of Xanthomonas vasicola pv. vasculorum, the Causal Agent of Bacterial Leaf Streak of Maize
by Talita Vigo Longhi, Renata Rodrigues Robaina, Deived Uilian de Carvalho, Admilton Gonçalves de Oliveira, Rui Pereira Leite Junior and Maria Isabel Balbi-Peña
Agronomy 2023, 13(4), 1073; https://doi.org/10.3390/agronomy13041073 - 7 Apr 2023
Cited by 5 | Viewed by 3506
Abstract
Bacterial leaf streak (BLS) of maize (Zea mays), caused by the bacterium Xanthomonas vasicola pv. vasculorum (Xvv), was first reported in Brazil in 2018. In this study, we evaluated 52 species of cultivated plants, cover crops, forage, and grasses [...] Read more.
Bacterial leaf streak (BLS) of maize (Zea mays), caused by the bacterium Xanthomonas vasicola pv. vasculorum (Xvv), was first reported in Brazil in 2018. In this study, we evaluated 52 species of cultivated plants, cover crops, forage, and grasses that are used in succession or crop rotation with maize, and weeds with natural occurrence in maize-producing regions, to determine their potentials as alternative hosts for Xvv. We investigated (i) the pathogenicity of Xvv based on symptom development, (ii) epiphytic colonization of the bacterium in asymptomatic plants, and (iii) bacterial colonization in plant tissues using scanning electron microscopy (SEM) in symptomatic and asymptomatic species. Ten species, all belonging to the Poaceae family, presented symptoms after Xvv infection, including Avena sativa (cvs. IPR Afrodite and IPR Esmeralda), A. strigosa (cv. IPR 161), Hordeum vulgare (cv. BRS Cauê), Oryza sativa (cv. IPR 117), Brachiaria brizantha (Brizantha and cv. Marandu), Digitaria horizontalis, D. insularis, Echinochloa colonum, Eleusine indica, and Sorghum arundinaceum. Furthermore, epiphytic colonization by Xvv was observed in 23 asymptomatic species. Scanning micrographs revealed that Xvv cells and their aggregates were distributed throughout the leaf surface. In addition, bacterial colonization in the intercellular tissues of the substomatal chambers of white oat, black oat, and maize was observed across the tissue fractures. Despite showing typical symptoms of Xvv infection, SEM examination revealed evidence of Xvv colonization only on the leaf surface of rice. In asymptomatic species, such as rye, sorghum, and millet, a low number of bacterial cells were found on the leaf surface. However, no evidence of internal tissue colonization was observed in millet fractures, suggesting that Xvv survives only epiphytically in this species. Full article
(This article belongs to the Special Issue Epidemiology of Plant Pathogenic Bacteria)
Show Figures

Figure 1

15 pages, 6783 KB  
Article
Ammonia Volatilization and Marandu Grass Production in Response to Enhanced-Efficiency Nitrogen Fertilizers
by Juliana Bonfim Cassimiro, Clayton Luís Baravelli de Oliveira, Ariele da Silva Boni, Natália de Lima Donato, Guilherme Constantino Meirelles, Juliana Françoso da Silva, Igor Virgilio Ribeiro and Reges Heinrichs
Agronomy 2023, 13(3), 837; https://doi.org/10.3390/agronomy13030837 - 13 Mar 2023
Cited by 4 | Viewed by 3216
Abstract
The objective of this study was to evaluate dry matter (DM) production of Urochloa brizantha cv. Marandu and ammonia volatilization in response to rates and sources of enhanced-efficiency N fertilizers. The experiment was took place in a pasture area, two growing seasons. A [...] Read more.
The objective of this study was to evaluate dry matter (DM) production of Urochloa brizantha cv. Marandu and ammonia volatilization in response to rates and sources of enhanced-efficiency N fertilizers. The experiment was took place in a pasture area, two growing seasons. A randomized block design with four replications was used, in a 4 × 2 + 1 factorial arrangement, consisting of four N sources (Urea—UrConv; Ammonium nitrate—AN; Urea + NBPT—UrNBPT; Urea + Duromide—UrDuromide) and two nitrogen rates (100 and 200 kg ha−1 year), plus a treatment without nitrogen fertilization (control). At both N rates, ammonia volatilization from UrConv100/200 was greatest. Ammonia volatilization was less after UrNBPT and UrDuromide application, with values similar to AN. Ammonia losses from UrDuromide tend to be lower than from UrNBPT. The N use efficiency in dry matter production of Marandu was influenced by the N sources and rates. At both N rates, the efficiency of UrDuromide and UrNBPT was greater than that of UrConv. With regard to total DM and leaf percentage in response to N rates, DM production increased after 200 kg N ha−1 rates in response to all sources, in both years. The UrDuromide reduce N losses by volatilization compared to UrNBPT and Urconv, and resulted in greater total DM production and relative leaf production of Marandu, in comparison to UrNBPT, AN and Urconv. Full article
Show Figures

Figure 1

14 pages, 324 KB  
Article
Effect of Palm Kernel Cake Supplementation on Voluntary Feed Intake, In Situ Rumen Degradability and Performance in Buffaloes in the Eastern Amazon
by João Maria do Amaral-Júnior, Eziquiel de Morais, Alyne Cristina Sodré Lima, Lucieta Guerreiro Martorano, Benjamim de Souza Nahúm, Luciano Fernandes Sousa, José de Brito Lourenço-Júnior, Thomaz Cyro Guimarães de Carvalho Rodrigues, Jamile Andréa Rodrigues da Silva, Artur Luiz da Costa Silva and André Guimarães Maciel e Silva
Animals 2023, 13(5), 934; https://doi.org/10.3390/ani13050934 - 4 Mar 2023
Cited by 7 | Viewed by 3276
Abstract
The objective was to evaluate the effects of palm kernel cake (PKC) supplementation on voluntary feed intake, in situ rumen degradability and performance in the wettest (WS—January to June) and less rainy seasons (LR—July to December) in the eastern Amazon. A total of [...] Read more.
The objective was to evaluate the effects of palm kernel cake (PKC) supplementation on voluntary feed intake, in situ rumen degradability and performance in the wettest (WS—January to June) and less rainy seasons (LR—July to December) in the eastern Amazon. A total of 52 crossbred buffaloes that were neither lactating nor gestating were used, with 24 for the LR, aged 34 ± 04 months and an initial average weight of 503 ± 48 kg, and 24 for the WS aged 40 ± 04 months with an average weight of 605 ± 56 kg. The four treatments (levels of PKC in relation to body weight) were distributed in a completely randomized design, with 0% (PKC0), 0.25% (PKC0.2), 0.5% (PKC0.5) and 1% (PKC1) with six repetitions. The animals were housed in Marandu grass paddocks, intermittently, with access to water and mineral mixture ad libitum. Degradability was evaluated by the in situ bag technique in four other crossbred buffaloes with rumen cannulae, in a 4 × 4 Latin square (four periods and four treatments). The inclusion of PKC increased supplement consumption and production of ether extracts and reduced the intake of forage and non-fibrous carbohydrates. The dry matter degradability of Marandu grass was not affected; however, the fermentation kinetics in neutral detergent fiber (NDF) differed between the treatments. The co-product dry matter colonization time was greater in PKC1 and the highest effective degradability rates were from PKC0, but the productive performance of the animals was not influenced. Supplementation of buffaloes with PKC is recommended for up to 1% of body weight. Full article
18 pages, 1544 KB  
Article
Effect of the Interaction between Excreta Type and Nitrogen Fertilizer on Greenhouse Gas and Ammonia Emissions in Pastures
by Fernando Ongaratto, Marcia Helena Machado da Rocha Fernandes, Erick Escobar Dallantonia, Lais de Oliveira Lima, Guilherme Alves do Val, Abmael da Silva Cardoso, Izabela Larosa Rigobello, Laís Mayumi Gomes, Ricardo Andrade Reis, Ana Claudia Ruggieri and Euclides Braga Malheiros
Atmosphere 2023, 14(3), 492; https://doi.org/10.3390/atmos14030492 - 2 Mar 2023
Cited by 2 | Viewed by 2514
Abstract
This study aimed to evaluate the emission factor of N2O, CH4, and the volatilization of NH3 for the combination of feces or urine with increasing doses of ammonium nitrate in tropical palisade grass pastures. The emission of greenhouse gases [...] Read more.
This study aimed to evaluate the emission factor of N2O, CH4, and the volatilization of NH3 for the combination of feces or urine with increasing doses of ammonium nitrate in tropical palisade grass pastures. The emission of greenhouse gases was assessed in eight treatments combining feces and urine with doses (75 and 150 kg of N ha−1) of ammonium nitrate, (32% N). The emission factor of N2O was 0.11, 0.19, and 0.17% for feces, urine, and 75 kg N ha−1 year−1 (as ammonium nitrate) and showed an additive linear effect when feces or urine were combined with increasing doses of N fertilizer. The emission factor of CH4 of feces (0.18 kg CH4 animal−1 year−1) was similar irrespective of combination with ammonium nitrate. The N loss by volatilized NH3 has a decreasing linear effect (p < 0.05) for the combination of feces or urine with ammonium nitrate. We concluded that N2O and CH4 emission factors of feces and urine in tropical climate conditions are lower than those reported by the IPCC. However, their N2O emission factors are sharply enhanced when combined with ammonium nitrate. These results may contribute to improvements in national and regional greenhouse gas inventories of livestock production. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

9 pages, 282 KB  
Article
Is the Integration between Corn and Grass under Different Sowing Modalities a Viable Alternative for Silage?
by Dayenne Mariane Herrera, Wender Mateus Peixoto, Joadil Gonçalves de Abreu, Rafael Henrique Pereira dos Reis, Fabiano Gama de Sousa, Ernando Balbinot, Vanderley Antônio Chorobura Klein and Ricardo Pereira Costa
Animals 2023, 13(3), 425; https://doi.org/10.3390/ani13030425 - 26 Jan 2023
Cited by 9 | Viewed by 2673
Abstract
This study aimed to evaluate the fermentation pattern and dry-matter losses in corn (Zea mays L.) silage intercropped with Urochloa brizantha cv. Marandu and Megathyrsus maximus cv. Mombasa grasses in different sowing modalities through crop–livestock integration. The experimental design was in randomized [...] Read more.
This study aimed to evaluate the fermentation pattern and dry-matter losses in corn (Zea mays L.) silage intercropped with Urochloa brizantha cv. Marandu and Megathyrsus maximus cv. Mombasa grasses in different sowing modalities through crop–livestock integration. The experimental design was in randomized blocks, which were arranged in a 2 × 5 factorial scheme with four repetitions. The first factor consisted of the grass cultivars Marandu and Mombasa. The second factor was the sowing modalities of grasses intercropped with corn: (1) simultaneous row sowing and inter-row corn sowing (no fertilizer); (2) simultaneous row sowing and inter-row corn sowing (with fertilizer); (3) simultaneous sowing with double grass row in the corn inter-row; (4) delayed sowing inter-row at 7 days after corn emergence; and (5) delayed sowing inter-row at 14 days after corn emergence. The forage buffer capacity (BC), silage pH and ammoniacal nitrogen (NH3-N) content, forage (FORDM) and silage dry-matter (SILDM) percentages, gas losses (GL), effluent losses (EL), and dry-matter recovery (DMR) parameters on the ensilage were evaluated. Only forage BC, silage NH3-N, and silage DMR variables differed (p < 0.05) from the control silage (monocropped corn) when the integration was carried out. The grass cultivar factors and sowing modalities for BC and NH3-N variables had an effect. The intercropping of corn and Marandu grass or Mombasa grass, in any grass sowing modality, did not affect the quality of the silage. Full article
Back to TopTop