Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Materials Used for Experiment
2.3. Experimental Procedures
2.4. Statistical Methods
3. Results
3.1. Grass Morphology
3.2. Grass Nutritional Quality
3.3. Bromatological Composition
3.4. Plant Chemical Composition
3.5. Soil Chemical Attributes
4. Discussion
4.1. Comparisons to Previous Studies
4.2. Gelatin Sludge Potential for Agricultural Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sust. Energ. Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresour. Technol. 2017, 223, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, J.; Lee, D.; Chang, Y.; Lee, Y. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Fijałkowski, K.; Rorat, A.; Grobela, A.; Kacprzak, J. The presence of contaminations in sewage sludge—The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Mawioo, P.M.; Garcia, H.A.; Hooijmans, C.M.; Velkushanova, K.; Simonič, M.; Mijatović, I.; Brdjanovic, D. A pilot-scale microwave technology for sludge sanitization and drying. Sci. Total Environ. 2017, 601–602, 1437–1448. [Google Scholar] [CrossRef] [PubMed]
- Araújo, V.S.; Silva, M.O.; Brito, A.S.; Sousa, I.L.; Nunes, F.C.; Souza, J.F.M.; Oliveira, I.V.; Silva, C.R.; Carvalho, F.I.M.; Silva, J.N.; et al. Lodo de esgoto e suas potencialidades agrícolas. Res. Soc. Dev. 2022, 11, e14711326200. [Google Scholar] [CrossRef]
- Ribeiro, F.L.M. Quantificação e Caracterização Química dos Resíduos da ETA de Itabirito—MG. Master’s Thesis, Universidade de Ouro Preto, Ouro Preto, MG, Brazil, 2007; pp. 1–115. Available online: https://www.repositorio.ufop.br/bitstream/123456789/2862/1/DISSERTA%C3%87%C3%83O_Quantifica%C3%A7%C3%A3oCaracteriza%C3%A7%C3%A3oQu%C3%ADmica.pdf (accessed on 6 February 2024).
- Guimarães, R.C.M.; Cruz, M.C.P.; Ferreira, M.E.; Taniguchi, C.A.K. Chemical properties of soils treated with biological sludge from gelatin industry. Rev. Bras. Ciênc. Solo 2012, 36, 653–660. [Google Scholar] [CrossRef]
- Araújo, A.S. Chemical characteristics of the use of gelatine sludge in soil cultivated as fertilizer. J. Agric. Sci. 2018, 10, 477–483. [Google Scholar] [CrossRef]
- Abreu, A.H.M.D.; Alonso, J.M.; Melo, L.A.D.; Leles, P.S.D.S.; Santos, G.R.D. Caracterização de biossólido e potencial de uso na produção de mudas de Schinus terebinthifolia Raddi. Eng. Sanit. Ambient. 2019, 24, 591–599. [Google Scholar] [CrossRef]
- Rigby, H.; Clarke, B.O.; Pritchard, D.L.; Meehan, B.; Beshah, F.; Smith, S.R.; Porter, N.A. A critical review of nitrogen mineralization in biosolids amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci. Total Environ. 2016, 541, 1310–1338. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, C.V.; Von Sperling, M.; Fernandes, F. Lodo de Esgotos: Tratamento e Disposição Final, 2nd ed.; UFMG: Belo Horizonte, MG, Brazil, 2014; pp. 1–444. Available online: https://docs.ufpr.br/~rtkishi.dhs/TH029/TH029_15_Lodos.pdf (accessed on 18 February 2024).
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Horden, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Meteorologia (INMET). Meterological Data, National Institute of Meterology. Available online: https://portal.inmet.gov.br/ (accessed on 6 February 2024).
- Food and Agriculture Organization of the United Nations. Word Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports 106; IUSS Working Group WRB: Rome, Italy, 2015; pp. 1–192. ISBN 978-92-5-108370-3. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 25 February 2024).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.Á.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, DF, Brazil, 2018; pp. 1–356. Available online: https://www.embrapa.br/en/busca-de-noticias/-/noticia/36491462/sistema-brasileiro-de-classificacao-de-solos-ganha-versao-eletronica-gratuita (accessed on 6 February 2024).
- de Souza, D.M.G.; Lobato, E. Adubação com Nitrogênio. In Cerrado: Correção do Solo e Adubação, 2nd ed.; de Souza, D.M.G., Lobato, E., Eds.; Embrapa Cerrados: Brasília, DF, Brazil, 2004; pp. 129–145. Available online: https://www.embrapa.br/en/busca-de-publicacoes/-/publicacao/555355/cerrado-correcao-do-solo-e-adubacao (accessed on 6 February 2024).
- do Valle, C.B.; Pagliarini, M.S. Biology, cytogenetics, and breeding of Brachiaria. In Genetic Resources, Chromosome Engineering, and Crop Improvement; Singh, R.J., Ed.; CRC Press: Boca Raton, FL, USA, 2009; Volume 5, pp. 103–151. [Google Scholar]
- do Valle, C.B.; Macedo, M.C.M.; Euclides, V.P.B.; Jank, L.; Resende, L.M.S. Gênero Brachiária. In Plantas Forrageiras; Fonseca, D.M., Martuscello, J.A., Eds.; Universidade Federal de Viçosa: Viçosa, MG, Brazil, 2010; pp. 30–77. [Google Scholar]
- do Valle, C.B.; Euclides, V.P.B.; Pereira, J.M.; Valério, J.R.; Pagliarini, M.S.; Macedo, M.C.M.; Leite, G.G.; Lourenço, A.J.; Fernandes, C.D.; Dias-Filho, M.B.; et al. O Capim-Xaraés (Brachiaria Brizantha cv. Xaraés) na Diversificação das Pasta-Gens de Braquiária; Documentos 149; Embrapa Gado de Corte: Campo Grande, MS, Brazil, 2004; pp. 1–36. [Google Scholar]
- Euclides, V.P.B.; Macedo, M.C.M.; do Valle, C.B.; Barbosa, R.A.; Goncalves, W.V. Produção de forragem e características da estruturado dossel de cultivares de Brachiaria brizantha sob pastejo. Pesq. Agropec. Bras. 2008, 43, 1805–1812. [Google Scholar] [CrossRef]
- Silva, R.S.G.; Bandeira, S.F.; Petry, F.C.; Pinto, L.A.A. Extração de gelatina a partir das peles de cabeças de carpa comum. Ciênc. Rural 2011, 41, 904–909. [Google Scholar] [CrossRef]
- de Santana do Carmo, C.A.F.; de Araújo, W.S.A.; de Campos Bernardi, A.C.; Saldanha, M.F.C. Métodos de Análise de Tecidos Vegetais Utilizados na Embrapa Solos; Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Embrapa Solos: Rio de Janeiro, Brazil, 2000; pp. 1–41. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/62212/1/Metodo-de-analise-de-tecido.pdf (accessed on 6 February 2024).
- Statistical Package for Social Sciences from IBM Corp. SPSS 20.0. 2011. Available online: https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-20 (accessed on 6 February 2024).
- Frazão, J.J.; Silva, Á.R.; Silva, V.L.; Oliveira, V.A.; Côrrea, R.S. Fertilizantes nitrogenados de eficiência aumentada e uréia na cultura do milho. Rev. Bras. Eng. Agrícola Ambient. 2014, 18, 1262–1267. [Google Scholar] [CrossRef]
- Silva, A.A.; Lana, A.M.Q.; Lana, R.M.Q.; Costa, A.M. Fertilização com dejetos suínos: Influência nas características bromatológicas da Brachiaria decumbens e alterações no solo. Eng. Agríc. 2015, 35, 254–265. [Google Scholar] [CrossRef]
- Werner, J.C.; Paulino, T.V.; Cantarella, H.; Andrade, N.O.; Quaggio, J.A. Recomendação de Adubação e Calagem Para o Estado de São Paulo, 2nd ed.; Instituto Agronômico: Campinas, SP, Brazil, 1996; pp. 263–273. [Google Scholar]
- Dupas, E.; Buzetti, S.; Rabêlo, F.H.S.; Sarto, A.L.; Cheng, N.C.; Teixeira Filho, M.C.M.; Galindo, F.S.; Dinalli, R.P.; Gazola, R.N. Nitrogen recovery, use efficiency, dry matter yield, and chemical composition of palisade grass fertilized with nitrogen sources in the Cerrado biome. Aust. J. Crop Sci. 2016, 10, 1330–1338. [Google Scholar] [CrossRef]
- Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E.; Ludkiewicz, M.G.Z. Application of different nitrogen doses to increase nitrogen efficiency in Mombasa guinegrass (Panicum maximum cv. mombasa) at dry and rainy seasons. Aust. J. Crop Sci. 2017, 11, 1657–1664. [Google Scholar] [CrossRef]
- Guerinot, M.A.; Yi, Y. Iron: Nutritious, Noxious, and Not Readily Available. Plant Physiol. 1994, 104, 815–820. Available online: https://www.jstor.org/stable/4275695 (accessed on 7 February 2024). [CrossRef]
- Marrenco, R.A.; Lopes, N.F. Fisiologia Vegetal, 3rd ed.; UFV: Viçosa, MG, Brazil, 2009; pp. 1–486. [Google Scholar]
- Leal, R.M.P.; Firme, L.P.; Montes, C.R.; Melfi, A.J.; Piedade, S.M.S. Soil exchangeable cations, sugarcane production and nutrient uptake after wastewater irrigation. Sci. Agric. 2009, 66, 242–249. [Google Scholar] [CrossRef]
- Duarte, A.S.; Rolim, M.M.; Silva, Ê.F.F.; Pedrosa, E.M.R.; Albuquerque, F.S.; Magalhães, A.G. Alterações dos atributos físicos e químicos de um Neossolo após aplicação de doses de manipueira. Rev. Bras. Eng. Agrícola Ambient. 2013, 17, 938–946. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. In Agriculture Handbook 60; U.S. Department of Agriculture: Washington, DC, USA, 1969; pp. 1–160. Available online: https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/publications/handbook-no-60/ (accessed on 25 February 2024).
- Araújo, A.S. Aproveitamento do Lodo DAF da Indústria de Gelatina Como Alternativa de Adubação do Capim Piatã. Tese de Doutorado. Ph.D. Thesis, Universidade Federal do Tocantins, Araguaína, TO, Brazil, 2016. Available online: https://repositorio.uft.edu.br/handle/11612/529 (accessed on 6 February 2024).
- Santos, P.M.; Santos, A.C.; Silva, J.E.C. Resíduo de laticínio em pastagem de capim Mombaça: Atributos químicos da forragem e do solo. Semin. Ciênc. Agrár. 2013, 34, 377–390. [Google Scholar] [CrossRef]
- Bezerra, R.C.A.; Leite, M.L.M.V.; Almeida, M.C.R.; Lucena, L.R.R.; Simões, V.J.L.P.; Bezerra, F.J.S.M. Características Agronômicas de Urochloa Mosambicensis sob Diferentes Níveis de Fósforo e Nitrogênio. Magistra 2019, 30, 268–276. Available online: https://www3.ufrb.edu.br/magistra/index.php/magistra/article/view/738/393 (accessed on 18 May 2023).
- Cabral, C.E.A.; Cabral, L.S.; Silva, B.E.M.; Carvalho, K.S.; Kroth, B.E.; Cabral, C.H.A. Resposta da Brachiaria brizantha cv. Marandu a fertilizantes nitrogenados associados ao fosfato natural reativo. Comun. Sci. 2016, 7, 66–72. [Google Scholar] [CrossRef]
- Silva Neto, S.P.; Silva, J.E.C.; Santos, A.C.; Castro, J.G.D.; Dim, V.P.; Araújo, A.S. Características agronômicas e nutricionais do capim-Marandu em função da aplicação de resíduo líquido de frigorífico. Acta Sci. Anim. Sci. 2010, 32, 9–17. [Google Scholar] [CrossRef]
- Prado, R.M. Manual de Nutrição de Plantas Forrageiras; Funep: São Paulo, SP, Brazil, 2008; pp. 1–500. [Google Scholar]
- Costa, K.A.P.; Rosa, B.; Oliveira, I.P.; Custódio, D.P.; Silva, D.C. Efeito da estacionalidade na produção de matéria seca e composição bromatológica da Brachiaria brizantha cv. Marandu. Ciênc. Anim. Bras. 2005, 6, 187–193. Available online: https://revistas.ufg.br/vet/article/view/365/340 (accessed on 7 February 2024).
- Sniffen, C.J.; O’Connor, D.J.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.S.; Ribeiro, W.R.; Reis, E.F.; Cóser, A.C. Bromatologia de gramíneas tropicais sob diferentes tensões de água no solo em ambiente protegido. Nativa 2018, 6, 415–421. [Google Scholar] [CrossRef]
- Nazário, A.A.; Garcia, G.O.; Reis, E.F.; Mendonça, E.S.; Melline, J.G.B. Acúmulo de nutrientes por forrageiras cultivadas em sistema de escoamento superficial para tratamento de esgoto doméstico. Rev. Ambient. Água 2014, 9, 97–108. [Google Scholar] [CrossRef]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Potafos: Piracicaba, SP, Brazil, 1997; pp. 1–319. [Google Scholar]
- Costa, K.A.P.; Faquin, V.; de Oliveira, I.P.; da Costa Serveriano, E.; de Oliveira, M.A. Doses e Fonts se Nitrogênio na Nutrição Mineral do Capim-Marandu. Ciec. Anim. Bras. 2009, 10, 115–123. Available online: http://repositorio.ufla.br/bitstream/1/42917/1/ARTIGO_Doses%20e%20fontes%20de%20nitrog%C3%AAnio%20na%20nutri%C3%A7%C3%A3o%20mineral%20do%20capim-marandu.pdf (accessed on 25 February 2024).
- Primavesi, A.C.; Primavesi, O.; Corrêa, L.A.; Cantarella, H.; Primavesi, A.C.; Silva, A.G. Nutrientes na fitomassa de capim-marandu em função de fontes e doses de nitrogênio. Ciênc. Agrotecnologia 2006, 30, 562–568. [Google Scholar] [CrossRef]
- Monteiro, F.A.; Colozza, M.T.; Werner, J.C. Enxofre e Micronutrientes em Pastagens. In Simpósio Sobre Manejo da Pastagem; Annals; FEALQ: Piracicaba, Brazil, 2004; pp. 279–301. Available online: https://repositorio.usp.br/item/001416828 (accessed on 25 February 2024).
- Scott, N.M.; Watson, M.E.; Caldwell, K.S. Response of grassland to the application of sulphur at two sites in north-east Scotland. J. Sci. Food Agric. 1983, 34, 357–361. [Google Scholar] [CrossRef]
- Batista, K. Respostas do Capim-Marandu a Combinações de Doses de Nitrogênio e Enxofre. Master’s Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP, Brazil, 2002; pp. 1–91. Available online: https://www.teses.usp.br/teses/disponiveis/11/11140/tde-18022003-155114/publico/karina.pdf (accessed on 7 February 2024).
- Briat, J.; Curie, C.; Gaymard, F. Iron utilization and metabolism in plants. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, RS, Brazil, 2017; pp. 1–848. [Google Scholar]
- Sbrissia, A.F.; Silva, S.C. Compensação tamanho/densidade populacional de perfilhos em pastos de capim-marandu. R. Bras. Zootec. 2008, 37, 35–47. [Google Scholar] [CrossRef]
- Silva, L.V.; Cândido, M.J.D.; Pessoa, J.P.M.; Cavalcante, A.C.R.; Carneiro, M.S.S.; Silva, A.N. Componentes da biomassa e características estruturais em capim-aruana sob diferentes frequências e intensidades de desfolhação. Pesq. Agropec. Bras. 2015, 50, 1192–1200. [Google Scholar] [CrossRef]
- Skonieski, F.R.; Viégas, J.; Martin, T.N.; Nornberg, J.L.; Meinerz, G.R.; Tin, T.J.; Bernhard, P.; Frata, M.T. Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality. R. Bras. Zootec. 2017, 46, 722–730. [Google Scholar] [CrossRef]
- Hungria, M.; Nogueira, M.A.; Araújo, R.S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment friendly component in the reclamation of degraded pastures in the tropics. Agric. Ecosyst. Environ. 2016, 221, 125–131. [Google Scholar] [CrossRef]
- Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Romanzini, E.P.; Ruggieri, A.C.; Reis, R.A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 2019, 9, 7596. [Google Scholar] [CrossRef]
Sample | Profile | pH | P | K | Ca + Mg | Ca | Mg | Al | H | M.O. | Sand | Silt | Clay | SB | CEC | V | Sat Al | Na | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | H2O | CaCl2 | mg dm−3 | cmolc dm−3 | g dm−3 | g kg−1 | cmolc dm−3 | % | mg kg−1 | ||||||||||
A1 | 0–20 | 6.4 | 5.7 | 6.3 | 71.7 | 3.31 | 2.40 | 0.91 | 0 | 1.88 | 21.3 | 723 | 56 | 221 | 3.50 | 5.38 | 65.1 | 0 | 21.0 |
A2 | 20–40 | 5.2 | 4.5 | 1.9 | 37.4 | 0.94 | 0.65 | 0.29 | 0.45 | 2.77 | 10.2 | 690 | 66 | 244 | 1.04 | 4.26 | 24.4 | 30.2 | |
B1 | 40–70 | 5.0 | 4.2 | 1.2 | 23.2 | 0.85 | 0.60 | 0.25 | 0.68 | 2.57 | 9.7 | 523 | 117 | 360 | 0.91 | 4.16 | 21.9 | 42.8 | 22.0 |
B2 | 70–100 | 4.8 | 4.0 | 0.9 | 22.2 | 0.66 | 0.45 | 0.21 | 0.75 | 2.75 | 10.7 | 456 | 134 | 410 | 0.72 | 4.22 | 17.1 | 51.0 | |
C1 | 100–130 | 4.7 | 4.0 | 0.6 | 26.3 | 0.57 | 0.40 | 0.17 | 1.32 | 2.56 | 11.8 | 290 | 156 | 554 | 0.64 | 4.51 | 14.2 | 67.4 | 18.0 |
C2 | 130–170 | 4.7 | 4.1 | 1.2 | 24.2 | 0.47 | 0.30 | 0.17 | 1.05 | 2.98 | 11.2 | 456 | 130 | 414 | 0.53 | 4.55 | 11.7 | 66.5 |
Sample | Profile Saturation (%) | Zn | Cu | Fe | Mn | B | S | N | Fe2O3 | SiO2 | Al2O3 | P2O5 | TiO2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cm | Ca | K | Mg | H | mg dm−3 | g kg−1 | |||||||||||
A1 | 0–20 | 44.61 | 3.46 | 16.91 | 34.85 | 12.4 | 2.0 | 117 | 162.3 | 0.48 | 7.1 | 0.85 | 56.7 | 48.2 | 39.8 | 0.09 | 2.01 |
A2 | 20–40 | 15.26 | 2.28 | 6.81 | 65.14 | 2.5 | 1.1 | 234 | 34.4 | 0.35 | 7.3 | ||||||
B1 | 40–70 | 14.42 | 1.45 | 6.01 | 61.78 | 2.0 | 0.6 | 136 | 17.0 | 0.32 | 7.3 | 0.33 | 69.1 | 59.6 | 62.5 | 0.05 | 3.66 |
B2 | 70–100 | 10.66 | 1.37 | 4.98 | 65.17 | 1.9 | 0.4 | 128 | 9.8 | 0.19 | 7.7 | ||||||
C1 | 100–130 | 8.87 | 1.51 | 3.77 | 56.65 | 1.3 | 0.5 | 105 | 4.7 | 0.21 | 4.9 | 0.29 | 132.1 | 128.6 | 136.8 | 0.06 | 2.49 |
C2 | 130–170 | 6.59 | 1.38 | 3.74 | 65.38 | 1.7 | 0.7 | 156 | 5.4 | 0.18 | 5.2 |
Elements in Mixed Gelatin Sludge (MGS) at the Start and End of the Experiment | Doses of MGS by Treatment (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Element | Unit | Feb/20 | Feb/21 | Mean | CV (%) | 50% | 100% | 150% | 200% |
pH (CaCl2) | 7.1 | 7.1 | 7.1 | 0.1 | - | - | - | - | |
Nitrogen (NO3−/NH4+) | % | 4.0 | 4.2 | 4.1 | 3.1 | 59.1 | 118.1 | 177.2 | 236.2 |
Phosphorus (H2PO4−/H2PO4−2) | % | 1.1 | 1.2 | 1.2 | 2.4 | 16.7 | 33.3 | 50.0 | 66.7 |
Potassium (K+) | % | 0.7 | 0.1 | 0.4 | 97.6 | 6.0 | 12.1 | 18.1 | 24.1 |
Calcium (Ca2+) | % | 4.7 | 6.7 | 5.7 | 24.2 | 82.0 | 163.9 | 245.9 | 327.9 |
Magnesium (Mg2+) | % | 0.1 | 0.1 | 0.1 | 32.6 | 0.9 | 1.9 | 2.8 | 3.7 |
Sulfur (SO4−2) | % | 0.7 | 0.5 | 0.6 | 26.8 | 8.3 | 16.7 | 25.0 | 33.3 |
Sodium (Na+) | % | 0.1 | 1.1 | 0.6 | 122.4 | 8.5 | 17.1 | 25.6 | 34.2 |
Boron (B[OH]3/H3BO3) | mg kg−1 | 43.1 | 30.2 | 36.7 | 25.0 | 0.1 | 0.1 | 0.2 | 0.2 |
Iron (Fe2+) | mg kg−1 | 1283.6 | 1646.7 | 1465.1 | 17.5 | 2.1 | 4.2 | 6.3 | 8.4 |
Manganese (Mn2+) | mg kg−1 | 20.7 | 33.7 | 27.2 | 33.6 | <LQ | 0.1 | 0.1 | 0.2 |
Copper (Cu2+) | mg kg−1 | 15.6 | 20.0 | 17.8 | 17.6 | <LQ | 0.1 | 0.1 | 0.1 |
Zinc (Zn2+) | mg kg−1 | 104.7 | 75.7 | 90.2 | 22.7 | 0.1 | 0.3 | 0.4 | 0.5 |
Nickel (Ni2+) | mg kg−1 | 0.1 | 3.2 | 1.6 | 137.1 | <LQ | <LQ | <LQ | <LQ |
Cadmium (Cd2+) | mg kg−1 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
Mercury (Hg2+) | mg kg−1 | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ | <LQ |
Chromium (Cr2+) | mg kg−1 | 12.6 | 8.7 | 10.6 | 26.0 | <LQ | <LQ | <LQ | 0.1 |
Organic carbon | g kg−1 | 14.8 | 16.8 | 15.8 | 9.0 | <LQ | <LQ | <LQ | <LQ |
Total carbon | g kg−1 | 515.1 | 473.9 | 494.5 | 5.9 | 0.1 | 0.1 | 0.2 | 0.3 |
Cation exchange capacity | cmolc kg−1 | 26.5 | 20.0 | 23.3 | 19.8 | 0.7 | 1.4 | 2.2 | 2.9 |
Total organic material | g kg−1 | 888.0 | 817.0 | 852.5 | 5.9 | 33.4 | 66.8 | 100.2 | 133.6 |
Compostable Organic material | g kg−1 | 25.6 | 28.9 | 27.3 | 8.6 | 1224.9 | 2449.7 | 3674.6 | 4899.4 |
Compost resistant Organic material | g kg−1 | 862.5 | 788.2 | 825.4 | 6.4 | 39.2 | 78.3 | 117.5 | 156.6 |
Soluble mineral residue | g kg−1 | 107.9 | 173.4 | 140.7 | 32.9 | 1185.8 | 2371.7 | 3557.5 | 4743.4 |
Insoluble mineral residue | g kg−1 | 4.0 | 9.6 | 6.8 | 58.2 | 202.1 | 404.2 | 606.3 | 808.3 |
Total mineral residue | g kg−1 | 112.0 | 183.0 | 147.5 | 34.0 | 9.8 | 19.5 | 29.3 | 39.1 |
Total humidity | g kg−1 | 807.1 | 809.8 | 808.5 | 0.2 | 211.9 | 423.9 | 635.8 | 847.7 |
Grease oils | g kg−1 | 89.1 | 78.0 | 83.6 | 9.4 | 1161.6 | 2323.1 | 3484.7 | 4646.3 |
Carbon/nitrogen ratio | - | 44,939.0 | 44,937.0 | 44,938.0 | 11.8 | - | - | - | - |
Treatment * | Dose per Application Cycle (kg ha−1 Per Cycle) | Annual Dose (kg ha−1 Per Year) |
---|---|---|
0% | 0 | 0 |
50% | 2.601 | 15.606 |
100% | 5.202 | 31.212 |
150% | 7.803 | 46.818 |
200% | 10.404 | 62.424 |
Marandu Grass Morphological Characteristics | Dose | ||||||||
---|---|---|---|---|---|---|---|---|---|
Season | 0% | 50% | 100% | 150% | 200% | NPK | Regression Equation Rf | R2 | |
Tillering (tillers m2) | Rainy | 637.86 | 546.91 | 619.34 | 701.23 | 640.74 | 562.14 | ŷ = 629.22 | |
Dry | 672.84 | 683.95 | 761.11 | 791.36 | 809.88 | 708.02 | ŷ = 704.815 + 1.16x ** | 0.49 | |
Height (cm) | Rainy | 37.03 | 38.57 | 43.15 | 44.91 | 44.05 | 37.75 | ŷ = 37.468 + 0.041x ** | 0.46 |
Dry | 28.71 | 32.57 | 35.09 | 35.57 | 37.25 | 27.65 | ŷ = 31.258 + 0.055x ** | 0.49 | |
Leaves (%) | Rainy | 73.60 | 73.03 | 72.04 | 74.57 | 75.05 | 74.73 | ŷ = 73.66 | |
Dry | 76.96 | 75.19 | 73.40 | 74.70 | 76.43 | 77.70 | ŷ = 79.23 | ||
Pseudostem (%) | Rainy | 26.40 | 26.97 | 27.96 | 25.43 | 24.95 | 25.27 | ŷ = 26.34 | |
Dry | 23.04 | 24.81 | 26.60 | 25.30 | 23.57 | 22.30 | ŷ = 27.77 | ||
Leaf blade/pseudostem ratio | Rainy | 2.82 | 2.77 | 2.76 | 3.08 | 3.12 | 3.04 | ŷ = 2.91 | |
Dry | 3.37 | 3.23 | 2.93 | 2.98 | 3.33 | 3.53 | ŷ = 3.94 | ||
Dry matter (t ha−1) | Rainy | 1.41 | 1.90 | 2.63 | 3.23 | 3.52 | 1.92 | ŷ = 1.427 + 0.011x ** | 0.93 |
Dry | 1.36 | 1.79 | 2.37 | 2.44 | 2.51 | 1.55 | ŷ = 0.878 + 0.010x ** | 0.85 | |
Crude protein (kg ha−1) | Rainy | 161.88 | 239.82 | 367.97 | 440.81 | 486.92 | 240.30 | ŷ = 169.268 + 1.702x ** | 0.93 |
Dry | 151.81 | 223.95 | 325.05 | 382.42 | 392.15 | 198.55 | ŷ = 57.902 + 1.574x ** | 0.93 |
Chemical Characteristics | Doses | |||||||
---|---|---|---|---|---|---|---|---|
Soil Layers (cm) | 0% | 50% | 100% | 150% | 200% | NPK | Regression Equation Rf | R2 |
Nitrogen (N in g kg−1) | ||||||||
0–10 | 0.6 | 0.7 | 0.6 | 0.8 | 0.7 | 0.4 | ŷ = 0.68 | |
10–20 | 0.7 | 0.6 | 0.5 | 0.5 | 0.5 | 0.6 | ŷ = 0.6467 − 0.001x * | 0.3 |
20–40 | 0.3 | 0.4 | 0.3 | 0.4 | 0.4 | 0.4 | ŷ = 0.36 | |
40–60 | 0.6 | 0.4 | 0.4 | 0.4 | 0.5 | 0.4 | ŷ = 0.46 | |
Phosphorus (P in mg dm−3) | ||||||||
0–10 | 14.6 | 24.7 | 20.0 | 26.0 | 16.6 | 9.6 | ŷ = 20.38 | |
10–20 | 9.7 | 3.8 | 9.1 | 4.9 | 4.6 | 5.0 | ŷ = 6.42 | |
20–40 | 3.3 | 3.4 | 2.9 | 2.2 | 2.8 | 3.3 | ŷ = 3.3633 − 0.0045x * | 0.3 |
40–60 | 2.7 | 2.7 | 2.2 | 1.7 | 2.2 | 2.4 | ŷ = 2.68 − 0.004x * | 0.3 |
Potassium (K in g kg−1) | ||||||||
0–10 | 66.7 | 54.0 | 55.3 | 39.3 | 43.7 | 43.0 | ŷ = 63.933 − 0.1213x ** | 0.4 |
10–20 | 44.7 | 42.0 | 39.0 | 26.0 | 31.3 | 26.0 | ŷ = 45.133 − 0.0853x * | 0.3 |
20–40 | 35.7 | 32.3 | 32.0 | 22.7 | 27.0 | 26.0 | ŷ = 35.333 − 0.054x * | 0.3 |
40–60 | 28.7 | 22.0 | 29.0 | 27.3 | 27.3 | 23.3 | ŷ = 26.86 | |
Calcium (Ca2+ in cmolc dm−3) | ||||||||
0–10 | 2.6 | 2.1 | 3.0 | 3.4 | 2.9 | 3.0 | ŷ = 2.4133 + 0.004x * | 0,3 |
10–20 | 2.2 | 1.2 | 2.3 | 2.1 | 1.9 | 1.8 | ŷ = 1.94 | |
20–40 | 1.6 | 1.3 | 1.6 | 1.6 | 1.2 | 1.7 | ŷ = 1.46 | |
40–60 | 1.4 | 1.2 | 1.1 | 1.4 | 1.0 | 1.5 | ŷ = 1.22 | |
Magnesium (Mg2+ in cmolc dm−3) | ||||||||
0–10 | 1.0 | 0.9 | 0.9 | 0.8 | 0.8 | 1.1 | ŷ = 0.88 | |
10–20 | 0.7 | 0.6 | 0.6 | 0.5 | 0.6 | 0.5 | ŷ = 0.60 | |
20–40 | 0.5 | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 | ŷ = 0.44 | |
40–60 | 0.6 | 0.4 | 0.5 | 0.5 | 0.5 | 0.4 | ŷ = 0.50 | |
Sulfur (S in mg dm−3) | ||||||||
0–10 | 5.7 | 5.8 | 6.4 | 8.1 | 7.3 | 5.1 a | ŷ = 5.596 + 0.0106x * | 0.2 |
10–20 | 5.3 | 5.8 | 6.2 | 5.7 | 6.4 | 5.7 a | ŷ = 5.88 | |
20–40 | 5.2 | 6.0 | 5.2 | 5.5 | 5.3 | 5.0 a | ŷ = 5.44 | |
40–60 | 5.0 | 5.6 | 4.5 | 5.3 | 5.1 | 4.9 a | ŷ = 5.10 |
Chemical Characteristics | Doses | |||||||
---|---|---|---|---|---|---|---|---|
Soil Layers (cm) | 0% | 50% | 100% | 150% | 200% | NPK | Regression Equation Rf | R2 |
pH | ||||||||
0–10 | 6.3 | 6.2 | 6.2 | 6.2 | 6.2 | 6.2 | ŷ = 6.22 | |
10–20 | 5.9 | 5.6 | 6.0 | 6.0 | 5.8 | 5.8 | ŷ = 5.86 | |
20–40 | 5.8 | 5.5 | 5.6 | 5.8 | 5.7 | 5.8 | ŷ = 5.68 | |
40–60 | 5.8 | 5.6 | 5.6 | 5.9 | 5.8 | 5.8 | ŷ = 5.74 | |
Organic matter (OM in dag kg−1) | ||||||||
0–10 | 1.7 | 1.9 | 1.8 | 1.8 | 1.8 | 2.0 | ŷ = 1.80 | |
10–20 | 1.5 | 1.6 | 1.5 | 1.3 | 1.6 | 1.3 | ŷ = 1.50 | |
20–40 | 1.1 | 0.9 | 1.1 | 1.0 | 0.8 | 1.1 | ŷ = 0.98 | |
40–60 | 0.9 | 0.7 | 0.8 | 0.7 | 0.7 | 0.8 | ŷ = 0.76 | |
Hydrogen+ Aluminum (H+Al cmolc dm−3) | ||||||||
0–10 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 2.1 | ŷ = 1.9 | |
10–20 | 2.4 | 2.5 | 2.6 | 2.4 | 2.7 | 2.4 | ŷ = 2.52 | |
20–40 | 2.3 | 2.4 | 2.6 | 2.2 | 2.6 | 2.1 | ŷ = 2.42 | |
40–60 | 2.2 | 2.2 | 2.3 | 1.9 | 2.1 | 1.9 | ŷ = 2.14 | |
Sum of Bases (SB in cmolc dm−3) | ||||||||
0–10 | 3.7 | 3.2 | 4.1 | 4.4 | 3.9 | 4.2 | ŷ = 3.86 | |
10–20 | 3.0 | 1.9 | 3.1 | 2.7 | 2.6 | 2.4 | ŷ = 2.66 | |
20–40 | 2.2 | 1.7 | 2.1 | 2.1 | 1.7 | 2.2 | ŷ = 1.96 | |
40–60 | 2.0 | 1.6 | 1.6 | 2.0 | 1.5 | 2.3 | ŷ = 1.74 | |
Total Cation Exchange Capacity (CEC in cmolc dm−3) | ||||||||
0–10 | 5.6 | 5.1 | 6.0 | 6.2 | 5.7 | 6.2 | ŷ = 5.72 | |
10–20 | 5.4 | 4.4 | 5.7 | 5.1 | 5.2 | 4.8 | ŷ = 5.16 | |
20–40 | 4.5 | 4.1 | 4.7 | 4.3 | 4.3 | 4.3 | ŷ = 4.38 | |
40–60 | 4.2 | 3.8 | 3.9 | 3.9 | 3.7 | 4.0 | ŷ = 4.0707 − 0.0019x * | 0.3 |
Bases Saturation (V in %) | ||||||||
0–10 | 66.9 | 63.8 | 68.6 | 70.2 | 67.5 | 66.7 | ŷ = 67.4 | |
10–20 | 54.7 | 43.7 | 54.9 | 53.2 | 48.7 | 49.6 | ŷ = 51.04 | |
20–40 | 49.9 | 41.5 | 45.1 | 48.4 | 39.5 | 49.5 | ŷ = 44.88 | |
40–60 | 48.3 | 42.8 | 41.3 | 50.5 | 41.6 | 56.9 | ŷ = 44.90 |
Chemical Characteristics | Doses | |||||||
---|---|---|---|---|---|---|---|---|
Soil Layers (cm) | 0% | 50% | 100% | 150% | 200% | NPK | Regression Equation Rf | R2 |
Sodium (Na+ in mg dm−3) | ||||||||
0–10 | 4.7 | 9.0 | 13.7 | 17.7 | 18.0 | 6.3 | ŷ = 5.5333 + 1.35x ** | 0.9 |
10–20 | 3.0 | 5.0 | 10.0 | 8.0 | 12.3 | 3.7 | ŷ = 3.3333 + 0.0433x ** | 0.7 |
20–40 | 1.7 | 2.0 | 2.5 | 4.0 | 3.5 | 1.3 | ŷ = 1.6 + 0.0113x ** | 0.6 |
40–60 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | ŷ = 1.0 | |
Boron (B in mg dm−3) | ||||||||
0–10 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | ŷ = 0.20 | |
10–20 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | ŷ = 0.20 | |
20–40 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | ŷ = 0.194 − 0.0002x * | 0.3 |
40–60 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | ŷ = 0.18 | |
Copper (Cu in mg dm−3) | ||||||||
0–10 | 0.6 | 0.6 | 0.7 | 0.6 | 0.6 | 0.6 | ŷ = 0.62 | |
10–20 | 0.6 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | ŷ = 0.64 | |
20–40 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | ŷ = 0.70 | |
40–60 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | ŷ = 0.64 | |
Iron (Fe in mg dm−3) | ||||||||
0–10 | 80.0 | 90.5 | 53.0 | 41.3 | 59.0 | 53.5 | ŷ = 83.00 − 0.1823x * | 0.3 |
10–20 | 90.0 | 120.0 | 70.3 | 63.0 | 73.3 | 57.5 | ŷ = 83.32 | |
20–40 | 77.0 | 78.7 | 83.7 | 66.0 | 71.3 | 36.5 | ŷ = 75.34 | |
40–60 | 67.7 | 75.3 | 70.3 | 58.7 | 86.7 | 51.3 | ŷ = 71.74 | |
Manganese (Mn in mg dm−3) | ||||||||
0–10 | 61.9 | 61.1 | 67.5 | 65.3 | 63.7 | 62.9 | ŷ = 63.90 | |
10–20 | 48.8 | 38.0 | 54.9 | 48.5 | 48.8 | 37.2 | ŷ = 47.8 | |
20–40 | 34.7 | 26.4 | 39.5 | 32.3 | 23.2 | 26.8 | ŷ = 31.22 | |
40–60 | 24.8 | 19.2 | 22.1 | 24.0 | 25.9 | 15.6 | ŷ = 23.2 | |
Zinc (Zn in mg dm−3) | ||||||||
0–10 | 1.0 | 1.3 | 1.1 | 1.1 | 1.0 | 0.9 | ŷ = 1.10 | |
10–20 | 0.8 | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | ŷ = 0.68 | |
20–40 | 0.4 | 0.3 | 0.4 | 0.4 | 0.3 | 0.3 | ŷ = 0.36 | |
40–60 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.5 | ŷ = 0.28 |
Criteria (Unit) | Types of Soils | |||
---|---|---|---|---|
Normal | Saline | Sodic | Saline–Sodic | |
Electrical conductivity (dS m−1 a 25 °C) 1 | <4 | >4 | <4 | >4 |
Exchangeable sodium percentage (%) | <15 | <15 | >15 | >15 |
Sodium adsorption ratio 2 | <13 | <13 | >13 | >13 |
pH | <8.5 | <8.5 | >8.5 | >8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, E.A.; de Abreu, J.G.; da Silva, W.M.; Müller, D.H.; dos Santos, D.N.; Cremon, C.; dos Santos Weber, O.L.; Hoshide, A.K.; de Abreu, D.C.; Gonçalves, M.L.; et al. Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization. Grasses 2024, 3, 45-68. https://doi.org/10.3390/grasses3020005
Ferreira EA, de Abreu JG, da Silva WM, Müller DH, dos Santos DN, Cremon C, dos Santos Weber OL, Hoshide AK, de Abreu DC, Gonçalves ML, et al. Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization. Grasses. 2024; 3(2):45-68. https://doi.org/10.3390/grasses3020005
Chicago/Turabian StyleFerreira, Eduardo André, Joadil Gonçalves de Abreu, Wininton Mendes da Silva, Danielle Helena Müller, Dalilhia Nazaré dos Santos, Cassiano Cremon, Oscarlina Lúcia dos Santos Weber, Aaron Kinyu Hoshide, Daniel Carneiro de Abreu, Maybe Lopes Gonçalves, and et al. 2024. "Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization" Grasses 3, no. 2: 45-68. https://doi.org/10.3390/grasses3020005
APA StyleFerreira, E. A., de Abreu, J. G., da Silva, W. M., Müller, D. H., dos Santos, D. N., Cremon, C., dos Santos Weber, O. L., Hoshide, A. K., de Abreu, D. C., Gonçalves, M. L., & Júnior, J. A. P. P. (2024). Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization. Grasses, 3(2), 45-68. https://doi.org/10.3390/grasses3020005