Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Machado Joseph disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4912 KiB  
Article
Therapeutic Effects of Hemerocallis citrina Baroni Extract on Animal Models of Neurodegenerative Diseases Through Serotonin and HLH-30/TFEB-Dependent Mechanisms
by Jorge H. Fernandes, Marta Daniela Costa, Daniela Vilasboas-Campos, Bruna Ferreira-Lomba, Joana Pereira-Sousa, Qiong Wang, Andreia Teixeira-Castro, Xinmin Liu, Fengzhong Wang, Alberto C. P. Dias and Patrícia Maciel
Int. J. Mol. Sci. 2025, 26(9), 4145; https://doi.org/10.3390/ijms26094145 - 27 Apr 2025
Viewed by 621
Abstract
Hemerocallis citrina is an herbaceous perennial plant used in Asian cuisine and Traditional Chinese Medicine. Here, we tested the therapeutic potential of extracts (HCE30%, HCE50%, and HCN) in vivo, using models of two human genetic neurodegenerative diseases—Machado–Joseph Disease/Spinocerebellar Ataxia type 3 (MJD/SCA3) and [...] Read more.
Hemerocallis citrina is an herbaceous perennial plant used in Asian cuisine and Traditional Chinese Medicine. Here, we tested the therapeutic potential of extracts (HCE30%, HCE50%, and HCN) in vivo, using models of two human genetic neurodegenerative diseases—Machado–Joseph Disease/Spinocerebellar Ataxia type 3 (MJD/SCA3) and Frontotemporal Dementia with Parkinsonism associated to chromosome 17 (FTDP-17). Chronic treatment with HCE30% extract ameliorated the motor deficits typically observed in these models. Interestingly, we found that the effect on the motor phenotype of the MJD/SCA3 model was dependent on serotonergic signaling and on the action of the HLH-30/TFEB transcription factor, known to regulate the cellular response to amino acid starvation, the autophagy and mitophagy pathways, lysosome localization and biogenesis, exocytosis, and mitochondrial biogenesis. Altogether, our findings reinforce the idea that phytochemicals act through the modulation of serotonergic neurotransmission and introduce a novel layer to the HLH-30/TFEB regulatory network. Thus, it also strengthens the use of these pathways as therapeutic targets for protein-related neurodegenerative disorders and confirms the utility of medicinal plants as a source of innovation in the quest for new therapeutic agents. Full article
(This article belongs to the Special Issue Caenorhabditis elegans: A Model Organism for Human Health and Disease)
Show Figures

Figure 1

26 pages, 2514 KiB  
Article
Predicting Which Mitophagy Proteins Are Dysregulated in Spinocerebellar Ataxia Type 3 (SCA3) Using the Auto-p2docking Pipeline
by Jorge Vieira, Mariana Barros, Hugo López-Fernández, Daniel Glez-Peña, Alba Nogueira-Rodríguez and Cristina P. Vieira
Int. J. Mol. Sci. 2025, 26(3), 1325; https://doi.org/10.3390/ijms26031325 - 4 Feb 2025
Viewed by 1053
Abstract
Dysfunctional mitochondria are present in many neurodegenerative diseases, such as spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD). SCA3/MJD, the most frequent neurodegenerative ataxia worldwide, is caused by the abnormal expansion of the polyglutamine tract (polyQ) at ataxin-3. This protein [...] Read more.
Dysfunctional mitochondria are present in many neurodegenerative diseases, such as spinocerebellar ataxia type 3 (SCA3), also known as Machado–Joseph disease (MJD). SCA3/MJD, the most frequent neurodegenerative ataxia worldwide, is caused by the abnormal expansion of the polyglutamine tract (polyQ) at ataxin-3. This protein is known to deubiquitinate key proteins such as Parkin, which is required for mitophagy. Ataxin-3 also interacts with Beclin1 (essential for initiating autophagosome formation adjacent to mitochondria), as well as with the mitochondrial cristae protein TBK1. To identify other proteins of the mitophagy pathway (according to the KEGG database) that can interact with ataxin-3, here we developed a pipeline for in silico analyses of protein–protein interactions (PPIs), called auto-p2docking. Containerized in Docker, auto-p2docking ensures reproducibility and reduces the number of errors through its simplified configuration. Its architecture consists of 22 modules, here used to develop 12 protocols but that can be specified according to user needs. In this work, we identify 45 mitophagy proteins as putative ataxin-3 interactors (53% are novel), using ataxin-3 interacting regions for validation. Furthermore, we predict that ataxin-3 interactors from both Parkin-independent and -dependent mechanisms are affected by the polyQ expansion. Full article
Show Figures

Figure 1

12 pages, 1241 KiB  
Review
Specific Biomarkers in Spinocerebellar Ataxia Type 3: A Systematic Review of Their Potential Uses in Disease Staging and Treatment Assessment
by Alexandra E. Soto-Piña, Caroline C. Pulido-Alvarado, Jaroslaw Dulski, Zbigniew K. Wszolek and Jonathan J. Magaña
Int. J. Mol. Sci. 2024, 25(15), 8074; https://doi.org/10.3390/ijms25158074 - 24 Jul 2024
Cited by 2 | Viewed by 2749
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 [...] Read more.
Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one. Full article
Show Figures

Figure 1

13 pages, 1732 KiB  
Article
Preimplantation Genetic Testing of Spinocerebellar Ataxia Type 3/Machado–Joseph Disease—Robust Tools for Direct and Indirect Detection of the ATXN3 (CAG)n Repeat Expansion
by Mulias Lian, Vivienne J. Tan, Riho Taguchi, Mingjue Zhao, Gui-Ping Phang, Arnold S. Tan, Shuling Liu, Caroline G. Lee and Samuel S. Chong
Int. J. Mol. Sci. 2024, 25(15), 8073; https://doi.org/10.3390/ijms25158073 - 24 Jul 2024
Cited by 1 | Viewed by 1587
Abstract
Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple [...] Read more.
Spinocerebellar ataxia type 3/Machado–Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD. Full article
Show Figures

Figure 1

12 pages, 2447 KiB  
Article
Production of Spinocerebellar Ataxia Type 3 Model Mice by Intravenous Injection of AAV-PHP.B Vectors
by Ayumu Konno, Yoichiro Shinohara and Hirokazu Hirai
Int. J. Mol. Sci. 2024, 25(13), 7205; https://doi.org/10.3390/ijms25137205 - 29 Jun 2024
Cited by 2 | Viewed by 5327
Abstract
We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood–brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding [...] Read more.
We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood–brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken β-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates. Full article
(This article belongs to the Special Issue Gene Transfer in Brain Disorders)
Show Figures

Figure 1

14 pages, 1977 KiB  
Review
Spinocerebellar Ataxia Type 3 Pathophysiology—Implications for Translational Research and Clinical Studies
by Fabian Stahl, Bernd O. Evert, Xinyu Han, Peter Breuer and Ullrich Wüllner
Int. J. Mol. Sci. 2024, 25(7), 3984; https://doi.org/10.3390/ijms25073984 - 3 Apr 2024
Cited by 3 | Viewed by 3939
Abstract
The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. Machado–Joseph Disease (MJD) or spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant form, caused by the expansion of CAG repeats within the ataxin-3 (ATXN3) gene. This mutation results in the [...] Read more.
The spinocerebellar ataxias (SCA) comprise a group of inherited neurodegenerative diseases. Machado–Joseph Disease (MJD) or spinocerebellar ataxia 3 (SCA3) is the most common autosomal dominant form, caused by the expansion of CAG repeats within the ataxin-3 (ATXN3) gene. This mutation results in the expression of an abnormal protein containing long polyglutamine (polyQ) stretches that confers a toxic gain of function and leads to misfolding and aggregation of ATXN3 in neurons. As a result of the neurodegenerative process, SCA3 patients are severely disabled and die prematurely. Several screening approaches, e.g., druggable genome-wide and drug library screenings have been performed, focussing on the reduction in stably overexpressed ATXN3(polyQ) protein and improvement in the resultant toxicity. Transgenic overexpression models of toxic ATXN3, however, missed potential modulators of endogenous ATXN3 regulation. In another approach to identify modifiers of endogenous ATXN3 expression using a CRISPR/Cas9-modified SK-N-SH wild-type cell line with a GFP-T2A-luciferase (LUC) cassette under the control of the endogenous ATXN3 promotor, four statins were identified as potential activators of expression. We here provide an overview of the high throughput screening approaches yet performed to find compounds or genomic modifiers of ATXN3(polyQ) toxicity in different SCA3 model organisms and cell lines to ameliorate and halt SCA3 progression in patients. Furthermore, the putative role of cholesterol in neurodegenerative diseases (NDDs) in general and SCA3 in particular is discussed. Full article
(This article belongs to the Special Issue CNS Drug Action in Neurodegenerative Diseases 3.0)
Show Figures

Figure 1

16 pages, 856 KiB  
Review
Towards Understanding Neurodegenerative Diseases: Insights from Caenorhabditis elegans
by Yingjie Wu, Yining Chen, Xiaochun Yu, Minxing Zhang and Zhaoyu Li
Int. J. Mol. Sci. 2024, 25(1), 443; https://doi.org/10.3390/ijms25010443 - 28 Dec 2023
Cited by 8 | Viewed by 4002
Abstract
The elevated occurrence of debilitating neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD) and Machado–Joseph disease (MJD), demands urgent disease-modifying therapeutics. Owing to the evolutionarily conserved molecular signalling pathways with mammalian species and facile [...] Read more.
The elevated occurrence of debilitating neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), Alzheimer’s disease (AD), Parkinson’s disease (PD) and Machado–Joseph disease (MJD), demands urgent disease-modifying therapeutics. Owing to the evolutionarily conserved molecular signalling pathways with mammalian species and facile genetic manipulation, the nematode Caenorhabditis elegans (C. elegans) emerges as a powerful and manipulative model system for mechanistic insights into neurodegenerative diseases. Herein, we review several representative C. elegans models established for five common neurodegenerative diseases, which closely simulate disease phenotypes specifically in the gain-of-function aspect. We exemplify applications of high-throughput genetic and drug screenings to illustrate the potential of C. elegans to probe novel therapeutic targets. This review highlights the utility of C. elegans as a comprehensive and versatile platform for the dissection of neurodegenerative diseases at the molecular level. Full article
(This article belongs to the Special Issue C. elegans as a Disease Model: Molecular Perspectives)
Show Figures

Figure 1

35 pages, 11910 KiB  
Article
PolyQ-Expansion Causes Mitochondria Fragmentation Independent of Huntingtin and Is Distinct from Traumatic Brain Injury (TBI)/Mechanical Stress-Mediated Fragmentation Which Results from Cell Death
by Kelsey Swinter, Dania Salah, Rasika Rathnayake and Shermali Gunawardena
Cells 2023, 12(19), 2406; https://doi.org/10.3390/cells12192406 - 5 Oct 2023
Cited by 2 | Viewed by 2541
Abstract
Mitochondrial dysfunction has been reported in many Huntington’s disease (HD) models; however, it is unclear how these defects occur. Here, we test the hypothesis that excess pathogenic huntingtin (HTT) impairs mitochondrial homeostasis, using Drosophila genetics and pharmacological inhibitors in HD and polyQ-expansion disease [...] Read more.
Mitochondrial dysfunction has been reported in many Huntington’s disease (HD) models; however, it is unclear how these defects occur. Here, we test the hypothesis that excess pathogenic huntingtin (HTT) impairs mitochondrial homeostasis, using Drosophila genetics and pharmacological inhibitors in HD and polyQ-expansion disease models and in a mechanical stress-induced traumatic brain injury (TBI) model. Expression of pathogenic HTT caused fragmented mitochondria compared to normal HTT, but HTT did not co-localize with mitochondria under normal or pathogenic conditions. Expression of pathogenic polyQ (127Q) alone or in the context of Machado Joseph Disease (MJD) caused fragmented mitochondria. While mitochondrial fragmentation was not dependent on the cellular location of polyQ accumulations, the expression of a chaperone protein, excess of mitofusin (MFN), or depletion of dynamin-related protein 1 (DRP1) rescued fragmentation. Intriguingly, a higher concentration of nitric oxide (NO) was observed in polyQ-expressing larval brains and inhibiting NO production rescued polyQ-mediated fragmented mitochondria, postulating that DRP1 nitrosylation could contribute to excess fission. Furthermore, while excess PI3K, which suppresses polyQ-induced cell death, did not rescue polyQ-mediated fragmentation, it did rescue fragmentation caused by mechanical stress/TBI. Together, our observations suggest that pathogenic polyQ alone is sufficient to cause DRP1-dependent mitochondrial fragmentation upstream of cell death, uncovering distinct physiological mechanisms for mitochondrial dysfunction in polyQ disease and mechanical stress. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Figure 1

18 pages, 2091 KiB  
Article
Mitochondrial Dysfunction and Decreased Cytochrome c in Cell and Animal Models of Machado–Joseph Disease
by Filipa Almeida, Ildete L. Ferreira, Luana Naia, Daniela Marinho, Ana Catarina Vilaça-Ferreira, Marta D. Costa, Sara Duarte-Silva, Patrícia Maciel and A. Cristina Rego
Cells 2023, 12(19), 2397; https://doi.org/10.3390/cells12192397 - 3 Oct 2023
Cited by 2 | Viewed by 2206
Abstract
Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado–Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in [...] Read more.
Mitochondrial dysfunction has been described in many neurodegenerative disorders; however, there is less information regarding mitochondrial deficits in Machado–Joseph disease (MJD), a polyglutamine (polyQ) disorder caused by CAG repeat expansion in the ATXN3 gene. In the present study, we characterized the changes in mitochondrial function and biogenesis markers in two MJD models, CMVMJD135 (MJD135) transgenic mice at a fully established phenotype stage and tetracycline-regulated PC6-3 Q108 cell line expressing mutant ataxin-3 (mATXN3). We detected mATXN3 in the mitochondrial fractions of PC6-3 Q108 cells, suggesting the interaction of expanded ATXN3 with the organelle. Interestingly, in both the cerebella of the MJD135 mouse model and in PC6-3 Q108 cells, we found decreased mitochondrial respiration, ATP production and mitochondrial membrane potential, strongly suggesting mitochondrial dysfunction in MJD. Also, in PC6-3 Q108 cells, an additional enhanced glycolytic flux was observed. Supporting the functional deficits observed in MJD mitochondria, MJD135 mouse cerebellum and PC6-3 Q108 cells showed reduced cytochrome c mRNA and protein levels. Overall, our findings show compromised mitochondrial function associated with decreased cytochrome c levels in both cell and animal models of MJD. Full article
Show Figures

Figure 1

22 pages, 3698 KiB  
Article
Genetic Ablation of Inositol 1,4,5-Trisphosphate Receptor Type 2 (IP3R2) Fails to Modify Disease Progression in a Mouse Model of Spinocerebellar Ataxia Type 3
by Daniela Cunha-Garcia, Daniela Monteiro-Fernandes, Joana Sofia Correia, Andreia Neves-Carvalho, Ana Catarina Vilaça-Ferreira, Sónia Guerra-Gomes, João Filipe Viana, João Filipe Oliveira, Andreia Teixeira-Castro, Patrícia Maciel and Sara Duarte-Silva
Int. J. Mol. Sci. 2023, 24(13), 10606; https://doi.org/10.3390/ijms241310606 - 25 Jun 2023
Cited by 1 | Viewed by 1700
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, [...] Read more.
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

16 pages, 3219 KiB  
Article
Tissue-Specific Vulnerability to Apoptosis in Machado-Joseph Disease
by Ana F. Ferreira, Mafalda Raposo, Emily D. Shaw, Naila S. Ashraf, Filipa Medeiros, Maria de Fátima Brilhante, Matthew Perkins, João Vasconcelos, Teresa Kay, Maria do Carmo Costa and Manuela Lima
Cells 2023, 12(10), 1404; https://doi.org/10.3390/cells12101404 - 17 May 2023
Cited by 7 | Viewed by 2294
Abstract
Machado-Joseph disease (MJD) is a dominant neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene encoding the ataxin-3 protein. Several cellular processes, including transcription and apoptosis, are disrupted in MJD. To gain further insights into the extent of dysregulation of [...] Read more.
Machado-Joseph disease (MJD) is a dominant neurodegenerative disease caused by an expanded CAG repeat in the ATXN3 gene encoding the ataxin-3 protein. Several cellular processes, including transcription and apoptosis, are disrupted in MJD. To gain further insights into the extent of dysregulation of mitochondrial apoptosis in MJD and to evaluate if expression alterations of specific apoptosis genes/proteins can be used as transcriptional biomarkers of disease, the expression levels of BCL2, BAX and TP53 and the BCL2/BAX ratio (an indicator of susceptibility to apoptosis) were assessed in blood and post-mortem brain samples from MJD subjects and MJD transgenic mice and controls. While patients show reduced levels of blood BCL2 transcripts, this measurement displays low accuracy to discriminate patients from matched controls. However, increased levels of blood BAX transcripts and decreased BCL2/BAX ratio are associated with earlier onset of disease, indicating a possible association with MJD pathogenesis. Post-mortem MJD brains show increased BCL2/BAX transcript ratio in the dentate cerebellar nucleus (DCN) and increased BCL2/BAX insoluble protein ratio in the DCN and pons, suggesting that in these regions, severely affected by degeneration in MJD, cells show signs of apoptosis resistance. Interestingly, a follow-up study of 18 patients further shows that blood BCL2 and TP53 transcript levels increase over time in MJD patients. Furthermore, while the similar levels of blood BCL2, BAX, and TP53 transcripts observed in preclinical subjects and controls is mimicked by pre-symptomatic MJD mice, the expression profile of these genes in patient brains is partially replicated by symptomatic MJD mice. Globally, our findings indicate that there is tissue-specific vulnerability to apoptosis in MJD subjects and that this tissue-dependent behavior is partially replicated in a MJD mouse model. Full article
Show Figures

Figure 1

14 pages, 502 KiB  
Review
Autophagy in Spinocerebellar Ataxia Type 3: From Pathogenesis to Therapeutics
by Rodrigo Paulino and Clévio Nóbrega
Int. J. Mol. Sci. 2023, 24(8), 7405; https://doi.org/10.3390/ijms24087405 - 17 Apr 2023
Cited by 14 | Viewed by 3707
Abstract
Machado–Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for [...] Read more.
Machado–Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for ataxin-3, which is a deubiquitinating protein that is also involved in transcriptional regulation. In normal conditions, the ataxin-3 protein polyglutamine stretch has between 13 and 49 glutamines. However, in MJD/SCA3 patients, the size of the stretch increases from 55 to 87, contributing to abnormal protein conformation, insolubility, and aggregation. The formation of aggregates, which is a hallmark of MJD/SCA3, compromises different cell pathways, leading to an impairment of cell clearance mechanisms, such as autophagy. MJD/SCA3 patients display several signals and symptoms in which the most prominent is ataxia. Neuropathologically, the regions most affected are the cerebellum and the pons. Currently, there are no disease-modifying therapies, and patients rely only on supportive and symptomatic treatments. Due to these facts, there is a huge research effort to develop therapeutic strategies for this incurable disease. This review aims to bring together current state-of-the-art strategies regarding the autophagy pathway in MJD/SCA3, focusing on evidence for its impairment in the disease context and, importantly, its targeting for the development of pharmacological and gene-based therapies. Full article
(This article belongs to the Special Issue Recent Advances in the Pharmacology of Spinocerebellar Ataxia)
Show Figures

Figure 1

14 pages, 696 KiB  
Systematic Review
Gene Suppression Therapies in Hereditary Cerebellar Ataxias: A Systematic Review of Animal Studies
by Carolina Santos, Sofia Malheiro, Manuel Correia and Joana Damásio
Cells 2023, 12(7), 1037; https://doi.org/10.3390/cells12071037 - 29 Mar 2023
Cited by 2 | Viewed by 3111
Abstract
Introduction: Hereditary cerebellar ataxias (HCAs) are a heterogenous group of neurodegenerative disorders associated with severe disability. Treatment options are limited and overall restricted to symptomatic approaches, leading to poor prognoses. In recent years, there has been extensive research on gene suppression therapies (GSTs) [...] Read more.
Introduction: Hereditary cerebellar ataxias (HCAs) are a heterogenous group of neurodegenerative disorders associated with severe disability. Treatment options are limited and overall restricted to symptomatic approaches, leading to poor prognoses. In recent years, there has been extensive research on gene suppression therapies (GSTs) as a new hope for disease-modifying strategies. In this article, we aim to perform a review of in vivo studies investigating the efficacy and safety profile of GSTs in HCAs. Methods: A structured PubMed® search on GSTs in HCAs from January 1993 up to October 2020 was performed. Inclusion and exclusion criteria were defined, and the selection process was conducted accordingly. The screening process was independently carried out by two authors and was initially based on title and abstract, followed by full-text reading. The risk-of-bias assessment was performed with SYRCLE’s tool. A data extraction sheet was created to collect relevant information from each selected article. Results: The initial search yielded 262 papers, of which 239 were excluded. An additional article was obtained following reference scrutiny, resulting in a total of 24 articles for final analysis. Most studies were not clear on the tools used to assess bias. In SCA1, SCA2, MJD/SCA3 and SCA7, RNA interference (iRNA) and antisense oligonucleotide (ASO) therapies proved to be well tolerated and effective in suppressing mutant proteins, improving neuropathological features and the motor phenotype. In SCA6, the phenotype was improved, but no investigation of adverse effects was performed. In FRDA, only the suppression efficacy of the electroporation of the clustered regularly interspaced short palindromic repeats associated with Cas9 enzyme system (CRISPR-Cas9) system was tested and confirmed. Conclusion: The literature reviewed suggests that GSTs are well tolerated and effective in suppressing the targeted proteins, improving neuropathological features and the motor phenotype in vivo. Nonetheless, there is no guarantee that these results are free of bias. Moreover, further investigation is still needed to clarify the GST effect on HCAs such as FRDA, SCA6 and SCA2. Full article
(This article belongs to the Special Issue Emerging Therapies for Hereditary Ataxia)
Show Figures

Figure 1

16 pages, 2342 KiB  
Article
Autophagy Function and Benefits of Autophagy Induction in Models of Spinocerebellar Ataxia Type 3
by Maxinne Watchon, Luan Luu, Stuart K. Plenderleith, Kristy C. Yuan and Angela S. Laird
Cells 2023, 12(6), 893; https://doi.org/10.3390/cells12060893 - 14 Mar 2023
Cited by 8 | Viewed by 2753
Abstract
Background: Spinocerebellar ataxia 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. The presence of this genetic expansion results in an ataxin-3 protein containing a polyglutamine [...] Read more.
Background: Spinocerebellar ataxia 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. The presence of this genetic expansion results in an ataxin-3 protein containing a polyglutamine repeat region, which renders the ataxin-3 protein aggregation prone. Formation of ataxin-3 protein aggregates is linked with neuronal loss and, therefore, the development of motor deficits. Methods: Here, we investigated whether the autophagy protein quality control pathway, which is important in the process of protein aggregate removal, is impaired in a cell culture and zebrafish model of SCA3. Results: We found that SH-SY5Y cells expressing human ataxin-3 containing polyglutamine expansion exhibited aberrant levels of autophagy substrates, including increased p62 and decreased LC3II (following bafilomycin treatment), compared to the controls. Similarly, transgenic SCA3 zebrafish showed signs of autophagy impairment at early disease stages (larval), as well as p62 accumulation at advanced age stages (18 months old). We then examined whether treating with compounds known to induce autophagy activity, would aid removal of human ataxin-3 84Q and improve the swimming of the SCA3 zebrafish larvae. We found that treatment with loperamide, trehalose, rapamycin, and MG132 each improved the swimming of the SCA3 zebrafish compared to the vehicle-treated controls. Conclusion: We propose that signs of autophagy impairment occur in the SH-SY5Y model of SCA3 and SCA3 zebrafish at larval and advanced age stages. Treatment of the larval SCA3 zebrafish with various compounds with autophagy induction capacity was able to produce the improved swimming of the zebrafish, suggesting the potential benefit of autophagy-inducing compounds for the treatment of SCA3. Full article
(This article belongs to the Special Issue Autophagy in the Nervous System)
Show Figures

Graphical abstract

16 pages, 2013 KiB  
Review
The Homogeneous Azorean Machado-Joseph Disease Cohort: Characterization and Contributions to Advances in Research
by Manuela Lima, Mafalda Raposo, Ana Ferreira, Ana Rosa Vieira Melo, Sara Pavão, Filipa Medeiros, Luís Teves, Carlos Gonzalez, João Lemos, Paula Pires, Pedro Lopes, David Valverde, José Gonzalez, Teresa Kay and João Vasconcelos
Biomedicines 2023, 11(2), 247; https://doi.org/10.3390/biomedicines11020247 - 18 Jan 2023
Cited by 8 | Viewed by 3355
Abstract
Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia worldwide. MJD is characterized by late-onset progressive cerebellar ataxia associated with variable clinical findings, including pyramidal signs and a dystonic-rigid extrapyramidal syndrome. In the Portuguese archipelago of the Azores, [...] Read more.
Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant ataxia worldwide. MJD is characterized by late-onset progressive cerebellar ataxia associated with variable clinical findings, including pyramidal signs and a dystonic-rigid extrapyramidal syndrome. In the Portuguese archipelago of the Azores, the worldwide population cluster for this disorder (prevalence of 39 in 100,000 inhabitants), a cohort of MJD mutation carriers belonging to extensively studied pedigrees has been followed since the late 1990s. Studies of the homogeneous Azorean MJD cohort have been contributing crucial information to the natural history of this disease as well as allowing the identification of novel molecular biomarkers. Moreover, as interventional studies for this globally rare and yet untreatable disease are emerging, this cohort should be even more important for the recruitment of trial participants. In this paper, we profile the Azorean cohort of MJD carriers, constituted at baseline by 20 pre-ataxic carriers and 52 patients, which currently integrates the European spinocerebellar ataxia type 3/Machado-Joseph disease Initiative (ESMI), a large European longitudinal MJD cohort. Moreover, we summarize the main studies based on this cohort and highlight the contributions made to advances in MJD research. Knowledge of the profile of the Azorean MJD cohort is not only important in the context of emergent interventional trials but is also pertinent for the implementation of adequate interventional measures, constituting relevant information for Lay Associations and providing data to guide healthcare decision makers. Full article
(This article belongs to the Special Issue State-of-the-Art Neurobiology and Neurologic Disease in Portugal)
Show Figures

Figure 1

Back to TopTop