Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = MOEMS micromirror

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 9716 KiB  
Article
Scanning Micromirror Calibration Method Based on PSO-LSSVM Algorithm Prediction
by Yan Liu, Xiang Cheng, Tingting Zhang, Yu Xu, Weijia Cai and Fengtian Han
Micromachines 2024, 15(12), 1413; https://doi.org/10.3390/mi15121413 - 25 Nov 2024
Viewed by 2919
Abstract
Scanning micromirrors represent a crucial component in micro-opto-electro-mechanical systems (MOEMS), with a broad range of applications across diverse fields. However, in practical applications, several factors inherent to the fabrication process and the surrounding usage environment exert a considerable influence on the accuracy of [...] Read more.
Scanning micromirrors represent a crucial component in micro-opto-electro-mechanical systems (MOEMS), with a broad range of applications across diverse fields. However, in practical applications, several factors inherent to the fabrication process and the surrounding usage environment exert a considerable influence on the accuracy of measurements obtained with the micromirror. Therefore, it is essential to calibrate the scanning micromirror and its measurement system. This paper presents a novel scanning micromirror calibration method based on the prediction of a particle swarm optimization-least squares support vector machine (PSO-LSSVM). The objective is to establish a correspondence between the actual deflection angle of the micromirror and the output of the measurement system employing a regression algorithm, thereby enabling the prediction of the tilt angle of the micromirror. The decision factor (R2) for this model at the x-axis reaches a value of 0.9947. Full article
Show Figures

Figure 1

13 pages, 5891 KiB  
Article
Optimization of MOEMS Projection Module Performance with Enhanced Piezoresistive Sensitivity
by Huijun Yu, Peng Zhou, Kewei Wang, Yanfei Huang and Wenjiang Shen
Micromachines 2020, 11(7), 651; https://doi.org/10.3390/mi11070651 - 30 Jun 2020
Cited by 8 | Viewed by 3122
Abstract
In scanning laser projection systems, the laser modulation time is important for the projection resolution. The modulation time needs to be matched with the motion of the micromirror. For this paper, the piezoresistive sensor was integrated on the torsion beam of the micromirror [...] Read more.
In scanning laser projection systems, the laser modulation time is important for the projection resolution. The modulation time needs to be matched with the motion of the micromirror. For this paper, the piezoresistive sensor was integrated on the torsion beam of the micromirror to monitor the physical position of the micromirror. The feedback signal was used to generate the zero-crossing time, which was used to estimate the physical position of the resonating mirror over time. The estimated position was affected by the zero-crossing time and the error directly influenced the definition of the projected image. By reducing the impurity concentration from 3 × 1018/cm3 to 1 × 1018/cm3 and increasing shear stress on piezoresistive sensor, the sensitivity of the piezoresistive sensor increased from 4.4 mV/V° to 6.4 mV/V° and the error of the image pixel reduced from 1.5 pixels to 0.5 pixels. We demonstrated that the image quality of an Optical-Microeletromechanical Systems (MOEMS) laser projection could be improved by enhancing the sensitivity of the piezoresistive sensor. Full article
(This article belongs to the Special Issue Optical MEMS, Volume II)
Show Figures

Figure 1

12 pages, 19368 KiB  
Article
Integrated Optoelectronic Position Sensor for Scanning Micromirrors
by Xiang Cheng, Xinglin Sun, Yan Liu, Lijun Zhu, Xiaoyang Zhang, Liang Zhou and Huikai Xie
Sensors 2018, 18(4), 982; https://doi.org/10.3390/s18040982 - 26 Mar 2018
Cited by 16 | Viewed by 5699
Abstract
Scanning micromirrors have been used in a wide range of areas, but many of them do not have position sensing built in, which significantly limits their application space. This paper reports an integrated optoelectronic position sensor (iOE-PS) that can measure the linear displacement [...] Read more.
Scanning micromirrors have been used in a wide range of areas, but many of them do not have position sensing built in, which significantly limits their application space. This paper reports an integrated optoelectronic position sensor (iOE-PS) that can measure the linear displacement and tilting angle of electrothermal MEMS (Micro-electromechanical Systems) scanning mirrors. The iOE-PS integrates a laser diode and its driving circuits, a quadrant photo-detector (QPD) and its readout circuits, and a band-gap reference all on a single chip, and it has been fabricated in a standard 0.5 μm CMOS (Complementary Metal Oxide Semiconductor) process. The footprint of the iOE-PS chip is 5 mm × 5 mm. Each quadrant of the QPD has a photosensitive area of 500 µm × 500 µm and the spacing between adjacent quadrants is 500 μm. The iOE-PS chip is simply packaged underneath of an electrothermally-actuated MEMS mirror. Experimental results show that the iOE-PS has a linear response when the MEMS mirror plate moves vertically between 2.0 mm and 3.0 mm over the iOE-PS chip or scans from −5 to +5°. Such MEMS scanning mirrors integrated with the iOE-PS can greatly reduce the complexity and cost of the MEMS mirrors-enabled modules and systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 6700 KiB  
Article
A Fast Multiobjective Optimization Strategy for Single-Axis Electromagnetic MOEMS Micromirrors
by Francesco Pieri and Alessandro Cilea
Micromachines 2018, 9(1), 2; https://doi.org/10.3390/mi9010002 - 23 Dec 2017
Cited by 6 | Viewed by 4155
Abstract
Micro-opto-electro-mechanical (MOEMS) micromirrors are an enabling technology for mobile image projectors (pico-projectors). Low size and low power are the crucial pico-projector constraints. In this work, we present a fast method for the optimization of a silicon single-axis electromagnetic torsional micromirror. In this device, [...] Read more.
Micro-opto-electro-mechanical (MOEMS) micromirrors are an enabling technology for mobile image projectors (pico-projectors). Low size and low power are the crucial pico-projector constraints. In this work, we present a fast method for the optimization of a silicon single-axis electromagnetic torsional micromirror. In this device, external permanent magnets provide the required magnetic field, and the actuation torque is generated on a rectangular multi-loop coil microfabricated on the mirror plate. Multiple constraints link the required current through the coil, its area occupancy, the operating frequency, mirror suspension length, and magnets size. With only rather general assumptions about the magnetic field distribution and mechanical behavior, we show that a fully analytical description of the mirror electromagnetic and mechanical behavior is possible, so that the optimization targets (the assembly size, comprising the mirror and magnets, and the actuation current) can be expressed as closed functions of the design parameters. Standard multiobjective optimization algorithms can then be used for extremely fast evaluation of the trade-offs among the various optimization targets and exploration of the Pareto frontier. The error caused by model assumptions are estimated by Finite Element Method (FEM) simulations to be below a few percent points from the exact solution. Full article
Show Figures

Figure 1

5 pages, 797 KiB  
Proceeding Paper
A Novel Gyroscopic Actuation Concept for 2D MEMS Micromirrors
by Philip Kaupmann, Stefan Pinter, Jochen Franz, Reinhard Streiter and Thomas Otto
Proceedings 2017, 1(4), 546; https://doi.org/10.3390/proceedings1040546 - 9 Aug 2017
Cited by 2 | Viewed by 2171
Abstract
In this paper we present a novel approach to achieve indirect quasistatic deflection of 2D MEMS scanning micromirrors by solely resonant excitation utilizing gyroscopic effects. Therefore the micromirror is set to oscillate in its mirror plane additionally to its primary resonant oscillation with [...] Read more.
In this paper we present a novel approach to achieve indirect quasistatic deflection of 2D MEMS scanning micromirrors by solely resonant excitation utilizing gyroscopic effects. Therefore the micromirror is set to oscillate in its mirror plane additionally to its primary resonant oscillation with a similar frequency. According to angular momentum conservation this leads to a quasistatic deflection along a third axis orthogonal to the former. To investigate the applicability to MEMS micromirrors we develop a reference MEMS design to be used for fully transient FEM simulation. To achieve consistent simulation results we further develop a closed loop control algorithm. We then perform simulations using this method to prove the viability of the proposed concept Full article
(This article belongs to the Proceedings of Proceedings of Eurosensors 2017, Paris, France, 3–6 September 2017)
Show Figures

Figure 1

13 pages, 4274 KiB  
Article
In-Plane Optical Beam Collimation Using a Three-Dimensional Curved MEMS Mirror
by Yasser M. Sabry, Diaa Khalil, Bassam Saadany and Tarik Bourouina
Micromachines 2017, 8(5), 134; https://doi.org/10.3390/mi8050134 - 25 Apr 2017
Cited by 12 | Viewed by 7424
Abstract
The collimation of free-space light propagating in-plane with respect to the substrate is an important performance factor in optical microelectromechanical systems (MEMS). This is usually carried out by integrating micro lenses into the system, which increases the cost of fabrication/assembly in addition to [...] Read more.
The collimation of free-space light propagating in-plane with respect to the substrate is an important performance factor in optical microelectromechanical systems (MEMS). This is usually carried out by integrating micro lenses into the system, which increases the cost of fabrication/assembly in addition to limiting the wavelength working range of the system imposed by the dispersion characteristic of the lenses. In this work we demonstrate optical fiber light collimation using a silicon micromachined three-dimensional curved mirror. Sensitivity to micromachining and fiber alignment tolerance is shown to be low enough by restricting the ratio between the mirror focal length and the optical beam Rayleigh range below 5. The three-dimensional curvature of the mirror is designed to be astigmatic and controlled by a process combining deep, reactive ion etching and isotropic etching of silicon. The effect of the micromachining surface roughness on the collimated beam profile is investigated using a Fourier optics approach for different values of root-mean-squared (RMS) roughness and correlation length. The isotropic etching step of the structure is characterized and optimized for the optical-grade surface requirement. The experimental optical results show a beam-waist ratio of about 4.25 and a corresponding 12-dB improvement in diffraction loss, in good agreement with theory. This type of micromirror can be monolithically integrated into lensless microoptoelectromechanical systems (MOEMS), improving their performance in many different applications. Full article
(This article belongs to the Special Issue MEMS Mirrors)
Show Figures

Figure 1

11 pages, 1450 KiB  
Article
Accurate Simulation of Parametrically Excited Micromirrors via Direct Computation of the Electrostatic Stiffness
by Attilio Frangi, Andrea Guerrieri and Nicoló Boni
Sensors 2017, 17(4), 779; https://doi.org/10.3390/s17040779 - 6 Apr 2017
Cited by 12 | Viewed by 4736
Abstract
Electrostatically actuated torsional micromirrors are key elements in Micro-Opto-Electro- Mechanical-Systems. When forced by means of in-plane comb-fingers, the dynamics of the main torsional response is known to be strongly non-linear and governed by parametric resonance. Here, in order to also trace unstable branches [...] Read more.
Electrostatically actuated torsional micromirrors are key elements in Micro-Opto-Electro- Mechanical-Systems. When forced by means of in-plane comb-fingers, the dynamics of the main torsional response is known to be strongly non-linear and governed by parametric resonance. Here, in order to also trace unstable branches of the mirror response, we implement a simplified continuation method with arc-length control and propose an innovative technique based on Finite Elements and the concepts of material derivative in order to compute the electrostatic stiffness; i.e., the derivative of the torque with respect to the torsional angle, as required by the continuation approach. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technologies in Italy 2016)
Show Figures

Figure 1

29 pages, 6632 KiB  
Review
Scanning Micromirror Platform Based on MEMS Technology for Medical Application
by Eakkachai Pengwang, Kanty Rabenorosoa, Micky Rakotondrabe and Nicolas Andreff
Micromachines 2016, 7(2), 24; https://doi.org/10.3390/mi7020024 - 6 Feb 2016
Cited by 82 | Viewed by 14034
Abstract
This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical [...] Read more.
This topical review discusses recent development and trends on scanning micromirrors for biomedical applications. This also includes a biomedical micro robot for precise manipulations in a limited volume. The characteristics of medical scanning micromirror are explained in general with the fundamental of microelectromechanical systems (MEMS) for fabrication processes. Along with the explanations of mechanism and design, the principle of actuation are provided for general readers. In this review, several testing methodology and examples are described based on many types of actuators, such as, electrothermal actuators, electrostatic actuators, electromagnetic actuators, pneumatic actuators, and shape memory alloy. Moreover, this review provides description of the key fabrication processes and common materials in order to be a basic guideline for selecting micro-actuators. With recent developments on scanning micromirrors, performances of biomedical application are enhanced for higher resolution, high accuracy, and high dexterity. With further developments on integrations and control schemes, MEMS-based scanning micromirrors would be able to achieve a better performance for medical applications due to small size, ease in microfabrication, mass production, high scanning speed, low power consumption, mechanical stable, and integration compatibility. Full article
(This article belongs to the Special Issue Micro/Nano Robotics)
Show Figures

Figure 1

13 pages, 373 KiB  
Article
Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector
by Chi Zhang, Zheng You, Hu Huang and Guanhua Li
Sensors 2010, 10(7), 6848-6860; https://doi.org/10.3390/s100706848 - 16 Jul 2010
Cited by 16 | Viewed by 10285
Abstract
A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To [...] Read more.
A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20º × 20º, the measurement resolution is about 10.2 cm in range, 0.15º in the horizontal direction and 0.22º in the vertical direction for orientation. Full article
(This article belongs to the Special Issue Intelligent Sensors - 2010)
Show Figures

Graphical abstract

Back to TopTop