Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = MFI-type zeolite membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3697 KiB  
Article
Investigating the Physical and Operational Characteristics of Manufacturing Processes for MFI-Type Zeolite Membranes for Ethanol/Water Separation via Principal Component Analysis
by Hamdi Chaouk, Emil Obeid, Jalal Halwani, Wiem Abdelbaki, Hanna Dib, Omar Mouhtady, Eddie Gazo Hanna, Célio Fernandes and Khaled Younes
Processes 2024, 12(6), 1145; https://doi.org/10.3390/pr12061145 - 1 Jun 2024
Cited by 1 | Viewed by 1176
Abstract
In this study, Principal Component Analysis (PCA) was applied to discern the underlying trends for 31 distinct MFI (Mobil No. 5)-zeolite membranes of 11 textural, chemical, and operational factors related to manufacturing processes. Initially, a comprehensive PCA approach was employed for the entire [...] Read more.
In this study, Principal Component Analysis (PCA) was applied to discern the underlying trends for 31 distinct MFI (Mobil No. 5)-zeolite membranes of 11 textural, chemical, and operational factors related to manufacturing processes. Initially, a comprehensive PCA approach was employed for the entire dataset, revealing a moderate influence of the first two principal components (PCs), which collectively accounted for around 38% of the variance. Membrane samples exhibited close proximity, which prevented the formation of any clusters. To address this limitation, a subset acquisition strategy was followed, based on the findings of the PCA for the entire dataset. This resulted in an enhanced overall contribution and the revelation of diverse patterns among the membranes and the considered manufacturing factors (total variance between 55% and 77%). The segmentation of the data unveiled a robust correlation between silica (SiO2) concentration and pervaporation conditions. Additionally, a notable clustering of the chemical compositions of the preparation solutions underscored their significant influence on the operational efficacy of MFI zeolite membranes. On the other hand, an exclusive chemical composition of the preparation solution was noticed. This highlighted the high influence of the chemical composition on the operational efficiency of MFI zeolite membranes. The coupling of PCA with experimental results can provide a data-driven enhancement strategy for the manufacturing of MFI-type zeolite membranes used for ethanol/water separation. Full article
Show Figures

Graphical abstract

13 pages, 3094 KiB  
Article
Application of Zeolite Membranes to Dehydrate a Bio-Ethanol Solution Produced by High-Temperature Fermentation
by Izumi Kumakiri, Yusuke Maruo, Ryotaro Kishibe, Masayuki Murata, Tomoyuki Kosaka and Mamoru Yamada
Fuels 2021, 2(4), 533-545; https://doi.org/10.3390/fuels2040031 - 3 Dec 2021
Cited by 3 | Viewed by 3651
Abstract
The combination of high-temperature fermentation and membrane separation has the potential to realize a simple on-site process to produce concentrated bioethanol. The performance of dehydration membranes in separating bioethanol was investigated in this study. Three types of zeolite membranes, LTA, MFI, and MOR, [...] Read more.
The combination of high-temperature fermentation and membrane separation has the potential to realize a simple on-site process to produce concentrated bioethanol. The performance of dehydration membranes in separating bioethanol was investigated in this study. Three types of zeolite membranes, LTA, MFI, and MOR, were synthesized. Their dehydration ability was compared using a bioethanol solution produced by high-temperature fermentation followed by vacuum distillation. The LTA zeolite membranes deformed and became amorphous while treating the distillate. On the contrary, no significant changes were observed in the MFI and MOR zeolite membranes analyzed by X-ray diffraction after treating the distillate. However, the flux declined when the membranes were in contact with the distillate (pH = 3.8). Neutralizing the distillate to pH 6.6 with sodium hydroxide did not prevent the flux decline. Even though flux decreased by about 20–30%, the MOR membrane showed quite high water-selectivity, with a water concentration of over 99.9% in the permeate, suggesting the feasibility of its application to concentrate bioethanol. Full article
(This article belongs to the Special Issue Biomass Conversion to Biofuels)
Show Figures

Figure 1

19 pages, 2350 KiB  
Article
A Comparative Analysis of In Vitro Toxicity of Synthetic Zeolites on IMR-90 Human Lung Fibroblast Cells
by Seung-Hye Yu, Manjesh Kumar, Il Won Kim, Jeffrey D. Rimer and Tae-Jung Kim
Molecules 2021, 26(11), 3194; https://doi.org/10.3390/molecules26113194 - 26 May 2021
Cited by 6 | Viewed by 4575
Abstract
Broad industrial application of zeolites increases the opportunity of inhalation. However, the potential impact of different types and compositions of zeolite on cytotoxicity is still unknown. Four types of synthetic zeolites have been prepared for assessing the effect on lung fibroblast: two zeolite [...] Read more.
Broad industrial application of zeolites increases the opportunity of inhalation. However, the potential impact of different types and compositions of zeolite on cytotoxicity is still unknown. Four types of synthetic zeolites have been prepared for assessing the effect on lung fibroblast: two zeolite L (LTL-R and LTL-D), ZSM-5 (MFI-S), and faujasite (FAU-S). The cytotoxicity of zeolites on human lung fibroblast (IMR-90) was assessed using WST1 cell proliferation assay, mitochondrial function, membrane leakage of lactate dehydrogenase, reduced glutathione levels, and mitochondrial membrane potential were assessed under control. Intracellular changes were examined using transmission electron microscopy (TEM). Toxicity-related gene expressions were evaluated by PCR array. The result showed significantly higher toxicity in IMR-90 cells with FAU-S than LTL-R, LTL-D and MFI-S exposure. TEM showed FAU-S, spheroidal zeolite with a low Si/Al ratio, was readily internalized forming numerous phagosomes in IMR-90 cells, while the largest and disc-shaped zeolites showed the lowest toxicity and were located in submembranous phagosomes in IMR-90 cells. Differential expression of TNF related genes was detected using PCR arrays and confirmed using qRT-PCR analysis of selected genes. Collectively, the exposure of different zeolites shows different toxicity on IMR-90 cells. Full article
(This article belongs to the Special Issue Zeolites and Mesoporous Materials: Properties and Applications)
Show Figures

Figure 1

13 pages, 4077 KiB  
Article
Prediction of Adsorption and Diffusion Behaviors of CO2 and CH4 in All-Silica Zeolites Using Molecular Simulation
by Yasuhisa Hasegawa and Chie Abe
Membranes 2021, 11(6), 392; https://doi.org/10.3390/membranes11060392 - 26 May 2021
Cited by 5 | Viewed by 3728
Abstract
Computational chemistry is a promising technique for the prediction of material properties. Adsorption and diffusion behaviors in zeolite micropores are important for zeolite membranes. In this study, we investigated novel non-bonding interaction parameters of all-silica zeolites for the prediction of the adsorption and [...] Read more.
Computational chemistry is a promising technique for the prediction of material properties. Adsorption and diffusion behaviors in zeolite micropores are important for zeolite membranes. In this study, we investigated novel non-bonding interaction parameters of all-silica zeolites for the prediction of the adsorption and diffusion behaviors by focusing on the Si atom of zeolite frameworks. Our parameters (σ = 0.421 nm, ε = 0.954 kJ mol−1, and q = +1.10 e) were close to theoretically derived values, and the adsorption isotherms of CO2 and CH4 on several zeolites could be predicted with high accuracy. Furthermore, the parameters gave the suitable self-diffusivities of CO2 and CH4 within MFI-type zeolite micropores through molecular dynamics simulation. Those suggest that our derived parameters are useful for selecting zeolite structure as the membrane material. Full article
(This article belongs to the Special Issue Zeolite Membrane: From Microstructure to Separation Performance)
Show Figures

Figure 1

10 pages, 711 KiB  
Article
Development of Ammonia Selectively Permeable Zeolite Membrane for Sensor in Sewer System
by Hisao Inami, Chie Abe and Yasuhisa Hasegawa
Membranes 2021, 11(5), 348; https://doi.org/10.3390/membranes11050348 - 10 May 2021
Cited by 12 | Viewed by 3822
Abstract
Ammonia (NH3) and hydrogen sulfide (H2S) are hazardous and odorous gases. A special device that is not affected by other gases is necessary so that it can detect such gases. Zeolite membranes can separate the desired component selectively by [...] Read more.
Ammonia (NH3) and hydrogen sulfide (H2S) are hazardous and odorous gases. A special device that is not affected by other gases is necessary so that it can detect such gases. Zeolite membranes can separate the desired component selectively by molecular sieving and selective adsorption. LTA-, MFI-, and FAU-type zeolite membranes were prepared in this study, and the permeation and separation performances were determined for the ternary mixture of NH3, H2S, and N2 to develop an NH3 selectively permeable membrane. Although the separation factors of NH3 were high enough for the LTA-type zeolite membrane, the NH3 permeance was the lowest among the three membranes. In contrast, the FAU-type zeolite membrane with Si/Al = 1.35 showed a high enough NH3 permeance and a NH3/N2 separation factor. The membrane modification and varying the membrane composition were carried out to reduce the H2S permeance. As a result, the H2S permeance could be decreased by modification with silane coupling agents, and a separation factor of NH3 toward H2S of over 3000 was achieved. Full article
(This article belongs to the Special Issue Zeolite Membrane: From Microstructure to Separation Performance)
Show Figures

Figure 1

11 pages, 3409 KiB  
Article
Control of Sequential MTO Reactions through an MFI-Type Zeolite Membrane Contactor
by Shusei Tanizume, Toshihiro Yoshimura, Katsunori Ishii and Mikihiro Nomura
Membranes 2020, 10(2), 26; https://doi.org/10.3390/membranes10020026 - 7 Feb 2020
Cited by 11 | Viewed by 3698
Abstract
A membrane for controlling methanol-to-olefin (MTO) reactions was developed, which featured an MFI-type zeolite membrane (Si/Al = 25) that was synthesized on a porous α-alumina substrate using a secondary growth method. Here, the H2/SF6 permeance ratios were between 150 and [...] Read more.
A membrane for controlling methanol-to-olefin (MTO) reactions was developed, which featured an MFI-type zeolite membrane (Si/Al = 25) that was synthesized on a porous α-alumina substrate using a secondary growth method. Here, the H2/SF6 permeance ratios were between 150 and 450. The methanol conversion rate was 70% with 38% ethylene selectivity and 28% propylene selectivity as determined using a cross-flow membrane contactor. In order to improve the olefin selectivity of the membrane, the MFI zeolite layer (Si/Al = ∞) was coated on an MFI-type zeolite membrane (Si/Al = 25). Using this two-layered membrane system, the olefin selectivity value increased to 85%; this was 19% higher than the value obtained during the single-layer membrane system. Full article
(This article belongs to the Special Issue Mass Transfer in Membranes)
Show Figures

Figure 1

11 pages, 3390 KiB  
Article
Effects of Silica-Particle Coating on a Silica Support for the Fabrication of High-Performance Silicalite-1 Membranes by Gel-Free Steam-Assisted Conversion
by Kyohei Ueno, Hideyuki Negishi, Takuya Okuno, Hiromasa Tawarayama, Shinji Ishikawa, Manabu Miyamoto, Shigeyuki Uemiya and Yasunori Oumi
Membranes 2019, 9(4), 46; https://doi.org/10.3390/membranes9040046 - 1 Apr 2019
Cited by 14 | Viewed by 5346
Abstract
Silicalite-1 membranes with high pervaporation performance were prepared successfully on a silica-particle-coated tubular silica support using a gel-free steam-assisted conversion (SAC) method. The effects of the silica-particle layer formed on the top surface of the silica support and the physical properties of the [...] Read more.
Silicalite-1 membranes with high pervaporation performance were prepared successfully on a silica-particle-coated tubular silica support using a gel-free steam-assisted conversion (SAC) method. The effects of the silica-particle layer formed on the top surface of the silica support and the physical properties of the silica particles themselves on the membrane-formation process were investigated. The silica particles coated served as the additional silica source for growing the silicalite-1 seed crystal layer into the silicalite-1 membrane. As a result, it was possible to form a dense and continuous membrane even under gel-free conditions. Furthermore, it was found that the properties of the silica particles, such as their primary particle diameter, had a determining effect on their solubility during the steam treatment, that is, on the supply rate of the silica source. The silicalite-1 membrane obtained using the spherical-silica-particle-coated support had an approximately 9-μm-thick separation layer and showed very high pervaporation performance, exhibiting a separation factor of 105 and a flux of 3.72 kg m−2 h−1 for a 10 wt % ethanol/water mixture at 323 K. Thus, the gel-free SAC method can be used with a silica support coated with silica particles to readily prepare high-performance membranes without producing any chemical waste. Full article
(This article belongs to the Special Issue Zeolitic Membranes: Advances and Applications)
Show Figures

Figure 1

13 pages, 1634 KiB  
Article
Low-Temperature Steam Reforming of Natural Gas after LPG-Enrichment with MFI Membranes
by Dominik Seeburg, Dongjing Liu, Radostina Dragomirova, Hanan Atia, Marga-Martina Pohl, Hadis Amani, Gabriele Georgi, Stefanie Kreft and Sebastian Wohlrab
Processes 2018, 6(12), 263; https://doi.org/10.3390/pr6120263 - 12 Dec 2018
Cited by 6 | Viewed by 6783
Abstract
Low-temperature hydrogen production from natural gas via steam reforming requires novel processing concepts as well as stable catalysts. A process using zeolite membranes of the type MFI (Mobile FIve) was used to enrich natural gas with liquefied petroleum gas (LPG) alkanes (in particular, [...] Read more.
Low-temperature hydrogen production from natural gas via steam reforming requires novel processing concepts as well as stable catalysts. A process using zeolite membranes of the type MFI (Mobile FIve) was used to enrich natural gas with liquefied petroleum gas (LPG) alkanes (in particular, propane and n-butane), in order to improve the hydrogen production from this mixture at a reduced temperature. For this purpose, a catalyst precursor based on Rh single-sites (1 mol% Rh) on alumina was transformed in situ to a Rh1/Al2O3 catalyst possessing better performance capabilities compared with commercial catalysts. A wet raw natural gas (57.6 vol% CH4) was fully reformed at 650 °C, with 1 bar absolute pressure over the Rh1/Al2O3 at a steam to carbon ratio S/C = 4, yielding 74.7% H2. However, at 350 °C only 21 vol% H2 was obtained under these conditions. The second mixture, enriched with LPG, was obtained from the raw gas after the membrane process and contained only 25.2 vol% CH4. From this second mixture, 47 vol% H2 was generated at 350 °C after steam reforming over the Rh1/Al2O3 catalyst at S/C = 4. At S/C = 1 conversion was suppressed for both gas mixtures. Single alkane reforming of C2–C4 showed different sensitivity for side reactions, e.g., methanation between 350 and 650 °C. These results contribute to ongoing research in the field of low-temperature hydrogen release from natural gas alkanes for fuel cell applications as well as for pre-reforming processes. Full article
(This article belongs to the Special Issue Novel Membrane Technologies for Traditional Industrial Processes)
Show Figures

Figure 1

20 pages, 6617 KiB  
Article
Synthesis of Silicalite Membrane with an Aluminum-Containing Surface for Controlled Modification of Zeolitic Pore Entries for Enhanced Gas Separation
by Shaowei Yang, Antonios Arvanitis, Zishu Cao, Xinhui Sun and Junhang Dong
Processes 2018, 6(2), 13; https://doi.org/10.3390/pr6020013 - 5 Feb 2018
Cited by 6 | Viewed by 5642
Abstract
The separation of small molecule gases by membrane technologies can help performance enhancement and process intensification for emerging advanced fossil energy systems with CO2 capture capacity. This paper reports the demonstration of controlled modification of zeolitic channel size for the MFI-type zeolite [...] Read more.
The separation of small molecule gases by membrane technologies can help performance enhancement and process intensification for emerging advanced fossil energy systems with CO2 capture capacity. This paper reports the demonstration of controlled modification of zeolitic channel size for the MFI-type zeolite membranes to enhance the separation of small molecule gases such as O2 and N2. Pure-silica MFI-type zeolite membranes were synthesized on porous α-alumina disc substrates with and without an aluminum-containing thin skin on the outer surface of zeolite membrane. The membranes were subsequently modified by on-stream catalytic cracking deposition (CCD) of molecular silica to reduce the effective openings of the zeolitic channels. Such a pore modification caused the transition of gas permeation from the N2-selective gaseous diffusion mechanism in the pristine membrane to the O2-selective activated diffusion mechanism in the modified membrane. The experimental results indicated that the pore modification could be effectively limited within the aluminum-containing surface of the MFI zeolite membrane to minimize the mass transport resistance for O2 permeation while maintaining its selectivity. The implications of pore modification on the size-exclusion-enabled gas selectivity were discussed based on the kinetic molecular theory. In light of the theoretical analysis, experimental investigation was performed to further enhance the membrane separation selectivity by chemical liquid deposition of silica into the undesirable intercrystalline spaces. Full article
(This article belongs to the Special Issue Novel Membrane Technologies for Traditional Industrial Processes)
Show Figures

Graphical abstract

14 pages, 1800 KiB  
Article
Temperature and Pressure Effects of Desalination Using a MFI-Type Zeolite Membrane
by Bo Zhu, Jun Hyun Kim, Yong-Han Na, Il-Shik Moon, Greg Connor, Shuichi Maeda, Gayle Morris, Stephen Gray and Mikel Duke
Membranes 2013, 3(3), 155-168; https://doi.org/10.3390/membranes3030155 - 17 Jul 2013
Cited by 37 | Viewed by 10692
Abstract
Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of [...] Read more.
Zeolites are potentially a robust desalination alternative, as they are chemically stable and possess the essential properties needed to reject ions. Zeolite membranes could desalinate “challenging” waters, such as saline secondary effluent, without any substantial pre-treatment, due to the robust mechanical properties of ceramic membranes. A novel MFI-type zeolite membrane was developed on a tubular α-Al2O3 substrate by a combined rubbing and secondary hydrothermal growth method. The prepared membrane was characterised by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and single gas (He or N2) permeation and underwent desalination tests with NaCl solutions under different pressures (0.7 MPa and 7 MPa). The results showed that higher pressure resulted in higher Na+ rejection and permeate flux. The zeolite membrane achieved a good rejection of Na+ (~82%) for a NaCl feed solution with a TDS (total dissolved solids) of 3000 mg·L−1 at an applied pressure of 7 MPa and 21 °C. To explore the opportunity for high salinity and high temperature desalination, this membrane was also tested with high concentration NaCl solutions (up to TDS 90,000 mg·L−1) and at 90 °C. This is the first known work at such high salinities of NaCl. It was found that increasing the salinity of the feed solution decreased both Na+ rejection and flux. An increase in testing temperature resulted in an increase in permeate flux, but a decrease in ion rejection. Full article
(This article belongs to the Special Issue Membranes and Water Treatment)
Show Figures

Figure 1

Back to TopTop