Application of Zeolite Membranes to Dehydrate a Bio-Ethanol Solution Produced by High-Temperature Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain and Media Used in this Study
2.2. Semi-Simultaneous Fermentation and Distillation
2.3. Membrane Preparation and Characterization
2.4. Membrane Separation
3. Results and Discussion
3.1. Comparison of Dehydration Performance between Different Types of Zeolite Membranes
3.2. Distillate Separation with LTA Membrane
3.3. Distillate Separation with MFI and MOR Membranes
3.4. Changes in the Membrane Properties by Contacting a Distillate Solution
3.5. Influence of Pre-Treatments
3.6. Other Possible Causes of the Flux Decline
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sokhansanj, S.; Mani, S.; Turhollow, A.; Kumar, A.; Bransby, D.; Lynd, L.; Laser, M. Large-Scale production, harvest and logistics of switchgrass (Panicum virgatum L.)—Current technology and envisioning a mature technology. Biofuels Bioprod. Biorefin. 2009, 3, 124–141. [Google Scholar] [CrossRef]
- Bruins, M.E.; Sanders, J.P. Small-Scale processing of biomass for biorefinery. Biofuels Bioprod. Biorefining 2012, 6, 135–145. [Google Scholar] [CrossRef]
- Abdel-Banat, B.M.; Hoshida, H.; Ano, A.; Nonklang, S.; Akada, R. High-temperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl. Microbiol. Biotechnol. 2010, 85, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Azhar, S.H.M.; Abdulla, R.; Jambo, S.A.; Marbawi, H.; Gansau, J.A.; Faik, A.A.M.; Rodrigues, K.F. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017, 10, 52–61. [Google Scholar]
- Murata, M.; Nitiupn, S.; Lertwattanasakul, N.; Sootsuwan, K.; Kosaka, T.; Thanonkeo, P.; Limtong, S.; Yamada, M. High-temperature fermentation technology for low-cost bioethanol. J. Jpn. Inst. Energy 2015, 94, 1154–1162. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, T.; Lertwattanasakul, N.; Rodrussamee, N.; Nurcholis, M.; Dung, N.T.P.; Keo-Oudone, C.; Murata, M.; Götz, P.; Theodoropoulos, C.; Maligan, J.M. Potential of thermotolerant ethanologenic yeasts isolated from ASEAN countries and their application in high-temperature fermentation. In Fuel Ethanol Production from Sugarcane; IntechOpen: London, UK, 2018; pp. 121–154. [Google Scholar]
- Rathore, A.; Shirke, A. Recent developments in membrane-based separations in biotechnology processes. Prep. Biochem. Biotechnol. 2011, 41, 398–421. [Google Scholar] [CrossRef]
- Khalid, A.; Aslam, M.; Qyyum, M.A.; Faisal, A.; Khan, A.L.; Ahmed, F.; Lee, M.; Kim, J.; Jang, N.; Chang, I.S. Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects. Renew. Sustain. Energy Rev. 2019, 105, 427–443. [Google Scholar] [CrossRef]
- Morigami, Y.; Kondo, M.; Abe, J.; Kita, H.; Okamoto, K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 2001, 25, 251–260. [Google Scholar] [CrossRef]
- Kumakiri, I.; Yokota, M.; Tanaka, R.; Shimada, Y.; Kiatkittipong, W.; Lim, J.W.; Murata, M.; Yamada, M. Process Intensification in Bio-Ethanol Production–Recent Developments in Membrane Separation. Processes 2021, 9, 1028. [Google Scholar] [CrossRef]
- Ueno, K.; Negishi, H.; Okuno, T.; Saito, T.; Tawarayama, H.; Ishikawa, S.; Miyamoto, M.; Uemiya, S.; Sawada, Y.; Oumi, Y. A simple secondary growth method for the preparation of silicalite-1 membrane on a tubular silica support via gel-free steam-assisted conversion. J. Membr. Sci. 2017, 542, 150–158. [Google Scholar] [CrossRef]
- Kumakiri, I.; Yamaguchi, T.; Nakao, S.-i. Preparation of zeolite A and faujasite membranes from a clear solution. Ind. Eng. Chem. Res. 1999, 38, 4682–4688. [Google Scholar] [CrossRef]
- Plaza, A.; Merlet, G.; Hasanoglu, A.; Isaacs, M.; Sanchez, J.; Romero, J. Separation of butanol from ABE mixtures by sweep gas pervaporation using a supported gelled ionic liquid membrane: Analysis of transport phenomena and selectivity. J. Membr. Sci. 2013, 444, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.-H.; Kumakiri, I.; Tanaka, K.; Kita, H. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane. Microporous Mesoporous Mater. 2013, 181, 47–53. [Google Scholar] [CrossRef]
- Zhu, M.-H.; Xia, S.-L.; Hua, X.-M.; Feng, Z.-J.; Hu, N.; Zhang, F.; Kumakiri, I.; Lu, Z.-H.; Chen, X.-S.; Kita, H. Rapid preparation of acid-stable and high dehydration performance mordenite membranes. Ind. Eng. Chem. Res. 2014, 53, 19168–19174. [Google Scholar] [CrossRef]
- Limtong, S.; Sringiew, C.; Yongmanitchai, W. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 2007, 98, 3367–3374. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.iza-structure.org/databases/ (accessed on 10 October 2021).
- Borjigin, T.; Sun, F.; Zhang, J.; Cai, K.; Ren, H.; Zhu, G. A microporous metal–organic framework with high stability for GC separation of alcohols from water. Chem. Commun. 2012, 48, 7613–7615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Kumakiri, I.; Tanaka, K.; Chen, X.; Kita, H. NaY zeolite membranes with high performance prepared by a variable-temperature synthesis. Microporous Mesoporous Mater. 2013, 182, 250–258. [Google Scholar] [CrossRef]
- Baran, R.; Millot, Y.; Onfroy, T.; Krafft, J.-M.; Dzwigaj, S. Influence of the nitric acid treatment on Al removal, framework composition and acidity of BEA zeolite investigated by XRD, FTIR and NMR. Microporous Mesoporous Mater. 2012, 163, 122–130. [Google Scholar] [CrossRef]
- Ravenelle, R.M.; Schüβler, F.; D’Amico, A.; Danilina, N.; Van Bokhoven, J.A.; Lercher, J.A.; Jones, C.W.; Sievers, C. Stability of zeolites in hot liquid water. J. Phys. Chem. C 2010, 114, 19582–19595. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, K.; Chen, B.; White, J.L.; Resasco, D.E. Factors that determine zeolite stability in hot liquid water. J. Am. Chem. Soc. 2015, 137, 11810–11819. [Google Scholar] [CrossRef]
- Ikegami, T.; Negishi, H.; Kitamoto, D.; Sakaki, K.; Imura, T.; Okamoto, M.; Idemoto, Y.; Koura, N.; Sano, T.; Haraya, K. Stabilization of bioethanol recovery with silicone rubber-Coated ethanol-Permselective silicalite membranes by controlling the pH of acidic feed solution. J. Chem. Technol. Biotechnol. Int. Res. Process., Environ. Clean Technol. 2005, 80, 381–387. [Google Scholar] [CrossRef]
- Aljundi, I.H.; Belovich, J.M.; Talu, O. Adsorption of lactic acid from fermentation broth and aqueous solutions on Zeolite molecular sieves. Chem. Eng. Sci. 2005, 60, 5004–5009. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, S.; Shi, R.; Du, P.; Qiu, X.; Gu, X. Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane. Sep. Purif. Technol. 2018, 204, 234–242. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Hu, N.; Zhang, F.; Wu, T.; Chen, X.; Kita, H. Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures. J. Membr. Sci. 2018, 564, 174–183. [Google Scholar] [CrossRef]
Membrane Type | Synthesized Gel Composition | Hydrothermal Conditions | |
---|---|---|---|
Temperature (°C) | Time (h) | ||
LTA | 1SiO2: 0.5Al2O3: 1Na2O: 75H2O | 100 | 4 |
MFI | 1SiO2: 0.0447Al2O3: 0.134Na2O: 0.67NaF: 33.3H2O | 180 | 48 |
MOR | 1SiO2: 0.08Al2O3: 0.15Na2O: 0.10NaF: 35H2O | 175 | 6 |
Membrane No. | Conditions * | Water in the Permeate (wt%) | Total Flux (J) (kg m−2 h−1) | Partial Flux Change | Selectivity (-) | |
---|---|---|---|---|---|---|
J/J0 (H2O) | J/J0 (EtOH) | |||||
LTA-1 | Before | 99.9 | 2.1 | - | - | 9770 |
After | 76.7 | 0.87 | 0.32 | 97 | 15 | |
MFI-1 | Before | 98.1 | 0.67 | - | - | 522 |
After | 98.7 | 0.44 | 0.66 | 0.46 | 680 | |
MOR-1 | Before | 99.3 | 0.84 | - | - | 1260 |
After | 98.0 | 0.69 | 0.81 | 2.3 | 463 |
Membrane Type | Ethanol in the Feed (wt%) | Ethanol in the Permeate (wt%) | Total Flux (J) (kg m−2 h−1) | α (-) |
---|---|---|---|---|
LTA-1 | 18.0 | 0.57 | 1.4 | 38 |
MFI-1 | 14.3 | 0.11 | 1.5 | 152 |
MOR-1 | 13.4 | <0.01 | 3.3 | 245 |
Membrane No. | PV Conditions * | Water in the Feed (wt%) | Water in the Permeate (wt%) | Flux (kg·m−2·h−1) | J/J0 (-) | α (-) |
---|---|---|---|---|---|---|
MOR-2 | F | 11.0 | 99.9 | 1.5 | - | 6190 |
D | 88.7 | 99.9 | 3.3 | - | 127 | |
A | 11.8 | 99.8 | 1.3 | 0.82 ± 0.02 | 4810 | |
MOR-3 | F | 10.1 | 99.9 | 1.4 | - | 10,300 |
D + AC | 82.7 | 100 # | 3.0 | - | >2090 | |
A | 10.0 | 99.9 | 1.1 | 0.83 ± 0.02 | 13,500 | |
MOR-4 | F | 9.59 | 99.9 | 1.4 | - | 6320 |
D + NaOH | 85.3 | 99.8 | 3.1 | - | 97 | |
A | 9.33 | 97.5 | 0.86 | 0.61 ± 0.02 | 378 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumakiri, I.; Maruo, Y.; Kishibe, R.; Murata, M.; Kosaka, T.; Yamada, M. Application of Zeolite Membranes to Dehydrate a Bio-Ethanol Solution Produced by High-Temperature Fermentation. Fuels 2021, 2, 533-545. https://doi.org/10.3390/fuels2040031
Kumakiri I, Maruo Y, Kishibe R, Murata M, Kosaka T, Yamada M. Application of Zeolite Membranes to Dehydrate a Bio-Ethanol Solution Produced by High-Temperature Fermentation. Fuels. 2021; 2(4):533-545. https://doi.org/10.3390/fuels2040031
Chicago/Turabian StyleKumakiri, Izumi, Yusuke Maruo, Ryotaro Kishibe, Masayuki Murata, Tomoyuki Kosaka, and Mamoru Yamada. 2021. "Application of Zeolite Membranes to Dehydrate a Bio-Ethanol Solution Produced by High-Temperature Fermentation" Fuels 2, no. 4: 533-545. https://doi.org/10.3390/fuels2040031
APA StyleKumakiri, I., Maruo, Y., Kishibe, R., Murata, M., Kosaka, T., & Yamada, M. (2021). Application of Zeolite Membranes to Dehydrate a Bio-Ethanol Solution Produced by High-Temperature Fermentation. Fuels, 2(4), 533-545. https://doi.org/10.3390/fuels2040031