Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (230)

Search Parameters:
Keywords = MB photodegradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10259 KB  
Article
Fabrication of Novel n-n Heterojunction Bi2O2CO3/AgVO3 Photocatalytic Materials with Visible-Light-Driven Photocatalytic Activity Enhancement
by Weijie Hua, Huixin Yuan and Songhua Huang
Materials 2025, 18(20), 4705; https://doi.org/10.3390/ma18204705 - 14 Oct 2025
Viewed by 209
Abstract
This research successfully synthesized a novel n-n heterojunction Bi2O2CO3/AgVO3 nanocomposite photocatalyst via the in situ chemical deposition process. Characterization results strongly confirmed the formation of a tight heterojunction at the Bi2O2CO3 [...] Read more.
This research successfully synthesized a novel n-n heterojunction Bi2O2CO3/AgVO3 nanocomposite photocatalyst via the in situ chemical deposition process. Characterization results strongly confirmed the formation of a tight heterojunction at the Bi2O2CO3/AgVO3 interface. The nanocomposite exhibited characteristic XRD peaks and FT-IR vibrational modes of both Bi2O2CO3 and AgVO3 simultaneously. Electron microscopy images revealed AgVO3 nanorods tightly and uniformly loaded onto the surface of Bi2O2CO3 nanosheets. Compared to the single-component Bi2O2CO3, the composite photocatalyst exhibited a red shift in its optical absorption edge to the visible region (515 nm) and a decrease in bandgap energy to 2.382 eV. Photoluminescence (PL) spectra demonstrated the lowest fluorescence intensity for the nanocomposite, indicating that the recombination of photogenerated electron–hole pairs was suppressed. After 90 min of visible-light irradiation, the degradation efficiency of Bi2O2CO3/AgVO3 toward methylene blue (MB) reached up to 99.55%, with photodegradation rates 2.51 and 2.79 times higher than those of Bi2O2CO3 and AgVO3, respectively. Furthermore, the nanocomposite exhibited excellent cycling stability and reusability. MB degradation was gradually enhanced with increasing the photocatalyst dosage and decreasing initial MB concentration. Radical trapping experiments and absorption spectroscopy of the MB solution revealed that reactive species h+ and ·O2 could destroy and decompose the chromophore groups of MB molecules effectively. The possible mechanism for enhancing photocatalytic performance was suggested, elucidating the crucial roles of charge carrier transfer and active species generation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

28 pages, 4553 KB  
Article
Insights of Nanostructured Ferberite as Photocatalyst, Growth Mechanism and Photodegradation Under H2O2-Assisted Sunlight
by Andarair Gomes dos Santos, Yassine Elaadssi, Virginie Chevallier, Christine Leroux, Andre Luis Lopes-Moriyama and Madjid Arab
Molecules 2025, 30(19), 4026; https://doi.org/10.3390/molecules30194026 - 9 Oct 2025
Viewed by 260
Abstract
In this study, nanostructured ferberites (FeWO4) were synthesized via hydrothermal routes in an acidic medium. It was then investigated as an efficient photocatalyst for degrading organic dye molecules, with methylene blue (MB) as a model pollutant. The formation mechanism of ferberite [...] Read more.
In this study, nanostructured ferberites (FeWO4) were synthesized via hydrothermal routes in an acidic medium. It was then investigated as an efficient photocatalyst for degrading organic dye molecules, with methylene blue (MB) as a model pollutant. The formation mechanism of ferberite revealed that the physical form of the precursor, FeSO4·7H2O, acts as a decisive factor in morphological evolution. Depending on whether it is in a solid or dilute solution form, two distinct nanostructures are produced: nanoplatelets and self-organized microspheres. Both structures are composed of stoichiometric FeWO4 (Fe: 49%, W: 51%) in a single monoclinic phase (space group P2/c:1) with high purity and crystallinity. The p-type semiconductor behavior was confirmed using Mott–Schottky model and the optical analysis, resulting in small band gap energies (≈1.7 eV) favoring visible absorption light. Photocatalytic tests under simulated solar irradiation revealed rapid and efficient degradation in less than 10 min under near-industrial conditions (pH 5). This was achieved using only a ferberite catalyst and a low concentration of H2O2 (4 mM) without additives, dopants, or artificial light sources. Advanced studies based on photocurrent measurements, trapping and stability tests were carried out to identify the main reactive species involved in the photocatalytic process and better understanding of photodegradation mechanisms. These results demonstrate the potential of nanostructured FeWO4 as a sustainable and effective photocatalyst for water purification applications. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

14 pages, 5525 KB  
Article
Preparation of Bismuth Vanadates with Rich Oxygen Vacancies Using Different Sol pH and Their Photocatalytic Behavior in Degradation of Methylene Blue
by Shengli Chen, Yuanyuan Zhong, Jie Yang, Daixiong Yang, Dong Liu, Xiaodong Zhu and Lin Huang
Gels 2025, 11(8), 625; https://doi.org/10.3390/gels11080625 - 9 Aug 2025
Viewed by 352
Abstract
Gel precursors were formed by reacting bismuth nitrate pentahydrate, acetic acid, sodium metavanadate, and NaOH. pH was adjusted using NaOH solution followed by calcination to obtain bismuth vanadate (BiVO4) photocatalysts. During synthesis, pH directly influenced the formation and structure of the [...] Read more.
Gel precursors were formed by reacting bismuth nitrate pentahydrate, acetic acid, sodium metavanadate, and NaOH. pH was adjusted using NaOH solution followed by calcination to obtain bismuth vanadate (BiVO4) photocatalysts. During synthesis, pH directly influenced the formation and structure of the gel network. Therefore, the effects of pH on the microstructure and photocatalytic activity of BiVO4 were investigated. At pH 3, the sample consisted of microspheres formed by tightly packed small particles. At pH 5, the microspheres transformed into aggregated flakes. Photocatalytic performance was evaluated through methylene blue (MB) degradation, revealing the sample prepared at pH 7 (7-BVO) demonstrated the highest efficiency. The electronic band structure, bandgap, and band edge positions of 7-BVO were probed by density functional theory (DFT) and UV-vis absorption spectra. Furthermore, photoluminescence spectroscopy, electrochemical measurements, active species trapping experiments and liquid chromatography mass spectrometry technique collectively revealed the possible mechanistic pathways for MB photodegradation by 7-BVO. Full article
Show Figures

Figure 1

25 pages, 5169 KB  
Article
Natural Sunlight Driven Photocatalytic Degradation of Methylene Blue and Rhodamine B over Nanocrystalline Zn2SnO4/SnO2
by Maria Vesna Nikolic, Zorka Z. Vasiljevic, Milena Dimitrijevic, Nadezda Radmilovic, Jelena Vujancevic, Marija Tanovic and Nenad B. Tadic
Nanomaterials 2025, 15(14), 1138; https://doi.org/10.3390/nano15141138 - 21 Jul 2025
Cited by 3 | Viewed by 1402
Abstract
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the [...] Read more.
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the solid-state synthesis method was tested as a heterojunction photocatalyst material for the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes as single and multicomponent systems in natural sunlight. Characterization of the structure and morphology of the synthesized nanocomposite using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectroscopy confirmed the formation of Zn2SnO4/SnO2 and heterojunctions between Zn2SnO4 and the SnO2 nanoparticles. A photodegradation efficiency of 99.1% was achieved in 120 min with 50 mg of the photocatalyst for the degradation of MB and 70.6% for the degradation of RhB under the same conditions. In the multicomponent system, the degradation efficiency of 97.9% for MB and 53.2% for RhB was obtained with only 15 mg of the photocatalyst. The degradation of MB occurred through N-demethylation and the formation of azure intermediates and degradation of RhB occurred through sequential deethylation and fragmentation of the xanthene ring, both in single and multicomponent systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

21 pages, 4597 KB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Cited by 1 | Viewed by 458
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

10 pages, 2064 KB  
Communication
Photocurrent, Photodegradation, and Proton Conductivity of the Stable Dipyridyl and Thiophene-Functionalized CuII2 Supramolecular Compound
by Jin-He Wang, Guang-Min Liang, Jiu-Yu Ji, Xiao-Jie Gong, Liang-Liang Huang, Li-Ping Zhao, Wen-Xuan Xie and Kun Zhou
Inorganics 2025, 13(6), 195; https://doi.org/10.3390/inorganics13060195 - 12 Jun 2025
Viewed by 632
Abstract
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been [...] Read more.
Due to its excellent visible light absorption characteristics, the photocurrent, photodegradation, and proton conductivity of the stable dipyridyl and thiophene-functionalized supramolecular compound [Cu2(TAA)4(4,4′-bpy)]n (CuII2 for short, HTAA = 2-thiopheneacetic acid, 4,4′-bpy = 4,4′-bipyridine) have been studied in detail. The current density of photocurrent of CuII2 is 1.87 μA·cm−2, and CuII2 degrades methylene blue (MB) with a degradation efficiency of 68.0% under xenon lamp. In addition, CuII2 shows remarkable proton conductivity of 1.79 × 10−3 S·cm−1 (at 75 °C and 98% relative humidity), superior to most copper(II)-based coordination polymers (CPs), and is expected to become a potential proton conductor in the future. Full article
(This article belongs to the Special Issue Supramolecular Chemistry: Prediction, Synthesis and Catalysis)
Show Figures

Figure 1

12 pages, 1455 KB  
Article
Hydrothermal Synthesis of Nanocomposites Combining Tungsten Trioxide and Zinc Oxide Nanosheet Arrays for Improved Photocatalytic Degradation of Organic Dye
by Chien-Yie Tsay, Tao-Ying Hsu, Gang-Juan Lee, Chin-Yi Chen, Yu-Cheng Chang, Jing-Heng Chen and Jerry J. Wu
Nanomaterials 2025, 15(10), 772; https://doi.org/10.3390/nano15100772 - 21 May 2025
Cited by 1 | Viewed by 695
Abstract
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy [...] Read more.
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy (FE-SEM) observations confirmed the formation of irregular oxide nanosheet arrays on the FTO surfaces. X-ray diffraction (XRD) analysis revealed the presence of hexagonal WO3 and wurtzite ZnO crystal phases. UV-Vis diffuse reflectance spectroscopy showed that integrating ZnO nanostructures with WO3 nanosheets resulted in a blue shift of the absorption edge and a reduced absorption capacity in the visible-light region. Photoluminescence (PL) spectra indicated that the WO 0.5/ZnO 2.0 sample exhibited the lowest electron-hole recombination rate among the WO3/ZnO nanocomposite sample. Photocatalytic degradation tests demonstrated that all WO3/ZnO nanocomposite samples had higher photodegradation rates for a 10 ppm methylene blue (MB) aqueous solution under visible-light irradiation compared to pristine WO3 nanosheet arrays. Among them, the WO 0.5/ZnO 2.0 sample showed the highest photocatalytic efficiency. Furthermore, it exhibited excellent recyclability and high photodegradation stability over three cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

15 pages, 3425 KB  
Article
Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Pavonia zeylanica to Mediate Photocatalytic Degradation of Methylene Blue: Studies on Reaction Kinetics, Reusability and Mineralization
by Dhananjay Purushotham, Abhilash Mavinakere Ramesh, Divakara Shetty Thimmappa, Nataraj Kalegowda, Gowtham Hittanahallikoppal Gajendramurthy, Shiva Prasad Kollur and Murali Mahadevamurthy
Int. J. Mol. Sci. 2025, 26(10), 4739; https://doi.org/10.3390/ijms26104739 - 15 May 2025
Cited by 2 | Viewed by 1515
Abstract
Nanoparticles (especially zinc and titanium oxide) have been found to be effective in photodegrading pollutants (organic/inorganic) from industrial wastewater. Presently, this study aimed at biosynthesizing zinc oxide nanoparticles (ZnO-NPs) from the leaf extract of Pavonia zeylanica, a plant with significant medical value, [...] Read more.
Nanoparticles (especially zinc and titanium oxide) have been found to be effective in photodegrading pollutants (organic/inorganic) from industrial wastewater. Presently, this study aimed at biosynthesizing zinc oxide nanoparticles (ZnO-NPs) from the leaf extract of Pavonia zeylanica, a plant with significant medical value, and evaluating their photocatalytic properties against methylene blue (MB), an azo dye (100 mg L−1, pH 7), using solar irradiation, along with the measurement of their reusability and mineralization efficiency. The characterization of the Pz-ZnO-NPs showed an absorbance peak at 313 nm, with a bandgap value of 3.04 eV and a size of 19.58 nm. This study’s results show that the synthesized Pz-ZnO-NPs, upon treatment with MB dye after 2 h of solar irradiation, showed an 89.32% degradation, which was concentration-dependent and followed pseudo-first-order kinetics. The reusability studies indicated that the Pz-ZnO-NPs were able to degrade MB dye after five repeated cycles of its usage. The structural composition of the Pz-ZnO-NPs evaluated by XRD showed that the peak position stayed constant. Nevertheless, the peak intensity dropped, indicating that the ZnO-NPs’ crystal structure was unaffected. Furthermore, advanced oxidation process studies, which included an evaluation of COD and TOC, revealed that both the contents decreased significantly during the photocatalysis process, wherein the electron-rich organic dyes were converted to nontoxic products through mineralization. Full article
Show Figures

Figure 1

20 pages, 5425 KB  
Article
Rational Synthesis of a Dual Z-Scheme CdS/Ag2MoO4/β-Bi2O3 Heterojunction for the Deep Photodegradation of Methylene Blue and Analysis of Its Mechanisms
by Weiyi Ma, Yelin Xing, Xiaofeng Sun, Qianfei Ma, Yufen Gu, Hui Zhou, Guorong Liu, Jinyuan Ma and Hua Yang
Catalysts 2025, 15(5), 438; https://doi.org/10.3390/catal15050438 - 29 Apr 2025
Viewed by 688
Abstract
In this work, a novel dual Z-scheme CdS/Ag2MoO4/β-Bi2O3 (CAB) composite heterojunction was synthesized, with the ultrafine CdS nanoparticles decorating two different-sized particles. In the beginning, the synergistic effect between BO and AMO makes the 10% Ag [...] Read more.
In this work, a novel dual Z-scheme CdS/Ag2MoO4/β-Bi2O3 (CAB) composite heterojunction was synthesized, with the ultrafine CdS nanoparticles decorating two different-sized particles. In the beginning, the synergistic effect between BO and AMO makes the 10% Ag2MoO4/β-Bi2O3 (10AB) photocatalyst exhibit an optimal degradation efficiency of 87.1% for methylene blue (MB) of 10 mg·L−1 within 60 min; furthermore, its photocatalytic activity was enhanced by incorporating CdS nanoparticles on the surface of the AB heterojunction. The results showed that the 25% CdS/10% AMO/BO (25C10AB) composite achieved a maximum MB degradation efficiency of 99%. Optical and photoluminescence measurements showed that the dual Z-scheme CAB heterojunction has high crystallinity and efficient charge carrier migration and separation, which makes the samples more efficient for removing pollutants. Theoretical studies (DFT/FEM calculations) were performed to better understand the migration direction of e and h+ in the photocatalytic degradation mechanism. This work provides a feasible approach to obtaining an efficient heterojunction composite photodegradation catalyst. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

10 pages, 8796 KB  
Communication
Photocatalysis and Electrocatalysis Properties of a Keggin-Type Inorganic–Organic Hybrid SiW12O40@Ag
by Xin-Xin Hu, Tai-Dan Chen, Xiao-Jie Gong, Jiu-Yu Ji, Li-Ping Zhao, Wen-Xuan Xie and Kun Zhou
Inorganics 2025, 13(5), 132; https://doi.org/10.3390/inorganics13050132 - 25 Apr 2025
Viewed by 756
Abstract
An example of an inorganic–organic hybrid compound {[Ag4(SiW12O40)(HBTA)8][Ag4(SiW12O40)(HBTA)8(H2O)]}n·(1) modified by the Keggin-type [SiW12O40]4− polyoxoanion was synthesized [...] Read more.
An example of an inorganic–organic hybrid compound {[Ag4(SiW12O40)(HBTA)8][Ag4(SiW12O40)(HBTA)8(H2O)]}n·(1) modified by the Keggin-type [SiW12O40]4− polyoxoanion was synthesized hydrothermally, which was determined by single crystal X-ray diffraction. Two 1-dimensional (1D) chains are present in 1: chain a is connected by Ag···Ag interactions and chain b is connected by π···π stacking. Finally, they were extended into 2D and 3D supramolecular structures by hydrogen bonding. The photodegradation of methylene blue (MB) was investigated under visible light irradiation, and the degradation rate reached 99.4% within 200 min. In addition, 1 catalyzes the reduction of sodium nitrite and can be used as a potential electrocatalytic material. Full article
Show Figures

Figure 1

16 pages, 10019 KB  
Article
Bifunctional N-TiO2/C/PU Foam for Interfacial Water Evaporation and Sewage Purification
by Ke Wang, Weifeng Li and Yumei Long
Materials 2025, 18(7), 1550; https://doi.org/10.3390/ma18071550 - 29 Mar 2025
Viewed by 777
Abstract
As an environmentally friendly and clean energy technology, solar-driven interfacial evaporation technology has attracted wide attention. However, organic pollutants can easily pollute distilled water during the evaporation of wastewater. In this work, we report a strategy of N-TiO2/C solar absorption with [...] Read more.
As an environmentally friendly and clean energy technology, solar-driven interfacial evaporation technology has attracted wide attention. However, organic pollutants can easily pollute distilled water during the evaporation of wastewater. In this work, we report a strategy of N-TiO2/C solar absorption with a low bandgap (2.33 eV), excellent light absorption ability, and high photothermal conversion efficiency (48.2%). Black N-TiO2/C was prepared by the sol-gel method in the presence of hexamethylenetetramine as a source of nitrogen and carbon. The simultaneous N doping and C with superior photothermal effect rapidly increased the surface temperature of the material, reduced the recombination rate of electrons and holes, and improved the photocatalytic activity, showing great potential for solar thermal energy conversion. The prepared solar absorbent and polyurethane (PU) were mixed evenly to form a porous N-TiO2/C/PU (NTCP) foam for purifying water. The evaporator produced clean water at a rate of 1.73 kg m−2 h−1 under the simulated sunlight of 1 sun irradiation. Meanwhile, the evaporator simultaneously photodegraded methylene blue (MB) and rhodamine B (RhB) underwater at a removal rate > 90%. The bifunctional solar water evaporation device combining photocatalytic and photothermal effects holds great potential for water purification. Full article
Show Figures

Figure 1

22 pages, 9934 KB  
Article
The Application of Al-Pillared Clays Impregnated with Cerium and Al/Ce-Pillared Clays for the Treatment of Simulated Textile Effluents Through Photocatalysis
by Beatriz P. Dias, Lindiane Bieseki, Clenildo de Longe and Sibele B. C. Pergher
Minerals 2025, 15(2), 152; https://doi.org/10.3390/min15020152 - 5 Feb 2025
Cited by 1 | Viewed by 895
Abstract
The objective of this study is to utilize a simulation employing advanced oxidation processes (AOPs) from photodegradation to examine the treatment of textile effluents. The selection of textile effluents as the material to be degraded is justified by the significant volume of water [...] Read more.
The objective of this study is to utilize a simulation employing advanced oxidation processes (AOPs) from photodegradation to examine the treatment of textile effluents. The selection of textile effluents as the material to be degraded is justified by the significant volume of water containing dyes, such as methylene blue (MB), generated daily by the textile industry. Often, this water is discarded without undergoing effective treatment. The purification of textile effluents would enable the reuse of water within the textile production cycle, thereby promoting sustainability. This study focuses on AOPs, which are extensively utilized in photocatalytic processes. The catalytic precursor material consists of two types of clay: a commercial clay and a natural clay. The natural clay is pillared with Al and impregnated with Ce, while the commercial clay is also pillared with Al and impregnated with Ce. Both clays are also pillared with a mixed pillar of Al and Ce. This results in three comparable materials. These clays are characterized by the presence of montmorillonite as their predominant mineral component. The selected clays were commercial bentonite and natural clay (FCN). Photocatalytic performance validation tests were conducted using UV-Vis spectroscopy. Material characterization methods included crystallographic analysis (by X-Ray diffraction (XRD)), chemical composition (by X-Ray fluorescence (XRF)), morphological studies (by scanning electron microscopy (SEM)) and textural property analysis (by N2 adsorption). The outcomes of these investigations offer signification insights into the potential applications of these materials in the treatment of textile effluents and the development of more sustainable processes within the textile industry. Furthermore, the results contribute to the advancement of photocatalytic material design. Full article
(This article belongs to the Collection Clays and Other Industrial Mineral Materials)
Show Figures

Figure 1

17 pages, 4446 KB  
Article
TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications
by Saloua Helali
C 2025, 11(1), 11; https://doi.org/10.3390/c11010011 - 26 Jan 2025
Viewed by 1175
Abstract
A series of single-walled carbon nanotube/titanium dioxide (SWCNTs/TiO2) composites were prepared by the incorporation of various concentrations (0, 5, 10, 20 V.%) of SWCNTs in TiO2. The prepared solutions were successfully formed on silicon and quartz substrates using the [...] Read more.
A series of single-walled carbon nanotube/titanium dioxide (SWCNTs/TiO2) composites were prepared by the incorporation of various concentrations (0, 5, 10, 20 V.%) of SWCNTs in TiO2. The prepared solutions were successfully formed on silicon and quartz substrates using the sol–gel spin-coating approach at 600 °C in ambient air. The X-ray diffraction method was used to investigate the structure of the samples. The absorbance and transmittance data of the samples were measured using a UV–vis spectrophotometer. Through the analysis of these data, both the linear and nonlinear optical properties of the samples were examined. Wemple–DiDomenico’s single-oscillator model was used to calculate the single-oscillator energy and dispersion energy. Finally, all samples’ photocatalytic performance was studied by the photodegradation of methylene blue (MB) in an aqueous solution under UV irradiation. It is found that the photocatalytic efficiency increases when increasing the SWCNT content. This research offers a new perspective for the creation of new photocatalysts for environmental applications. Full article
(This article belongs to the Special Issue Carbon Functionalization: From Synthesis to Applications)
Show Figures

Graphical abstract

12 pages, 6641 KB  
Article
Effect of Electrodeposition Conditions on Adsorption and Photocatalytic Properties of ZnO
by Alina Pruna, Iulian Poliac, David Busquets-Mataix and Antonio Ruotolo
Materials 2025, 18(3), 497; https://doi.org/10.3390/ma18030497 - 22 Jan 2025
Cited by 1 | Viewed by 1121
Abstract
The electrodeposition of ZnO films was studied using potentiostatic mode in varying conditions including the presence of graphene oxide (GO) as a buffer layer and an additional deposition step. The obtained films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier [...] Read more.
The electrodeposition of ZnO films was studied using potentiostatic mode in varying conditions including the presence of graphene oxide (GO) as a buffer layer and an additional deposition step. The obtained films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform Infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of electrodeposition conditions on the adsorption and photocatalytic properties of ZnO nanostructured films was analyzed by using methylene blue (MB) as a model dye molecule and exposure to UV light. The results indicated a marked effect of GO content in the buffer layer and the duration of nucleation on the properties of electrodeposited ZnO films. Lower GO content and an additional deposition step of 60 s resulted in the best adsorption and photocatalytic activity, these being 7 and 5-folds, respectively, in comparison to ZnO in absence of these adjustments. The MB photodegradation was found to follow first-order kinetics, the rate constant reaching a value of 2.38 × 10−3 min−1. Full article
(This article belongs to the Special Issue Catalysis: Where We Are and Where We Go)
Show Figures

Figure 1

13 pages, 4419 KB  
Article
High-Performance Photocatalytic Multifunctional Material Based on Bi4Ti3O12-Supported Ag and Ti3C2Tx for Organic Degradation and Antibacterial Applications
by Kexi Zhang, Bingdong Yan, Xiaohong Wang, Yang Cao, Wanjun Hao and Jinchun Tu
Biosensors 2025, 15(1), 11; https://doi.org/10.3390/bios15010011 - 31 Dec 2024
Viewed by 1151
Abstract
With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are [...] Read more.
With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are dedicated to developing new multifunctional biomaterials with multiple activities. Bi4Ti3O12 (BTO), despite its versatility and application potential, has insufficient photocatalytic performance. Silver nanoparticles (Ag) and Ti3C2Tx are particularly effective as antibacterial materials but they have relatively single functions. In this study, BTO/Ag/Ti3C2Tx biomultifunctional materials were constructed by combining BTO with Ag and Ti3C2Tx. We discovered that the addition of Ag and Ti3C2Tx effectively optimized the visible light absorption characteristics of BTO, reduced the electron transfer resistance, and increased the carrier concentration, thus significantly improving the photocatalytic performance of composite material, thereby markedly improving the composite’s photocatalytic performance and its efficacy in photochemical sensing and photodegradation. At the same time, BTO, as a carrier, effectively avoids Ag and Ti3C2Tx agglomeration and gives full play to its antibacterial properties. In the specific performance studies, ascorbic acid and MB were used as the subjects of photochemical sensing and photodegradation properties, while Escherichia coli and Staphylococcus aureus were tested for antibacterial properties. The BTO/Ag/Ti3C2Tx composite showed remarkable results in all assessments, demonstrating its potential as a versatile antibacterial and photocatalytic material. Full article
Show Figures

Figure 1

Back to TopTop