Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = MAYV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 18369 KiB  
Article
Identification and Characterization of Antiviral Activity of Synthetic Compounds Against Mayaro Virus
by Ana Paula Andreolla, Andrea Cristine Koishi, Alessandra Abel Borges, Larissa Albuquerque de Oliveira, Viviane Guedes de Oliveira, Nerilson Marques Lima, Eloah Pereira Ávila, Pedro Pôssa de Castro, Giovanni Wilson Amarante, Mauro Vieira de Almeida, Juliano Bordignon and Claudia Nunes Duarte dos Santos
Pharmaceuticals 2025, 18(5), 717; https://doi.org/10.3390/ph18050717 - 13 May 2025
Viewed by 769
Abstract
Background/objectives: In Brazil, the co-circulation of arboviruses—such as dengue, Zika, yellow fever, and Chikungunya viruses—creates a complex epidemiological landscape, drawing attention from health authorities due to high morbidity and mortality rates. Also present in this context is the Mayaro virus (MAYV), a neglected [...] Read more.
Background/objectives: In Brazil, the co-circulation of arboviruses—such as dengue, Zika, yellow fever, and Chikungunya viruses—creates a complex epidemiological landscape, drawing attention from health authorities due to high morbidity and mortality rates. Also present in this context is the Mayaro virus (MAYV), a neglected arbovirus, which can also cause severe syndromes and has been expanding beyond its usual endemic areas in northern and central-western Brazil. Epidemiological surveillance measures remain limited, and there are no effective prophylactic strategies or antiviral treatments for this neglected arbovirus. In this study, we evaluated the antiviral activity of commercial and synthetic compounds against MAYV using an image high-throughput screening (iHTS) system. Methods: A total of 52 compounds from an FDA-approved commercial library (Tocriscreen) and 50 other compounds were tested. Results: Seven compounds showed anti-MAYV activity and were non-toxic for the following cell lines: Naringenin, LLA9A, chrysin, and its ester C6. Post-infection treatments with these selected compounds significantly decreased the percentage of infected cells and the release of infectious viral particles in the supernatant. Additionally, anti-MAYV activity of these four selected hits was confirmed using several human cell lines and two different MAYV genotypes. Conclusions: Our results indicate that the iHTS platform is effective for screening anti-MAYV drugs and that four promising compounds can efficiently inhibit MAYV replication in human cell lines. Although in vivo studies are still required to confirm the efficacy of the selected hits, our findings provide a starting point for developing a potential treatment for MAYV infections. Full article
Show Figures

Figure 1

18 pages, 2087 KiB  
Article
In Vitro Evaluation of the Antiviral Activity of Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) Against Mayaro Virus
by Pâmela Jóyce Previdelli da Conceição, Gabriela Miranda Ayusso, Tamara Carvalho, Maria Leticia Duarte Lima, Mikaela dos Santos Marinho, Fábio Rogério Moraes, Paola Elaine Galán-Jurado, José González-Santamaría, Cíntia Bittar, Bo Zhang, Ana Carolina Gomes Jardim, Paula Rahal and Marilia Freitas Calmon
Viruses 2025, 17(2), 258; https://doi.org/10.3390/v17020258 - 14 Feb 2025
Cited by 1 | Viewed by 982
Abstract
The Mayaro virus (MAYV), Togaviridae family, genus Alphavirus, has caused several sporadic outbreaks, affecting countries in the Americas. Currently, there are no licensed drugs against MAYV, requiring the search for effective antiviral compounds. Thus, this study aimed to evaluate the antiviral potential [...] Read more.
The Mayaro virus (MAYV), Togaviridae family, genus Alphavirus, has caused several sporadic outbreaks, affecting countries in the Americas. Currently, there are no licensed drugs against MAYV, requiring the search for effective antiviral compounds. Thus, this study aimed to evaluate the antiviral potential of polyphenol (-)-epigallocatechin-3-gallate (EGCG) against MAYV infection, in vitro. Antiviral assays against MAYV were performed in BHK-21 and Vero E6 cells. In addition, molecular docking was performed with EGCG and the MAYV non-structural and structural proteins. EGCG showed a significant protective effect against MAYV infection in both cell lines. The virucidal assay showed an effect on extracellular viral particles at the entry stage into BHK-21 cells. Finally, it also showed significant inhibition in the post-entry stages of the MAYV replication cycle, acting on the replication of the genetic material and late stages, such as assembly and release. In addition, the MAYV proteins E1 and nsP1 were significantly inhibited by the EGCG treatment in BHK-21 cells. Molecular docking analysis also showed that EGCG could interact with MAYV Capsid and Envelope proteins (E1 and E2). Therefore, this study shows the potential of EGCG as a promising antiviral against MAYV, as it acts on different stages of the MAYV replication cycle. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

16 pages, 3261 KiB  
Article
Antiviral Potential of Chiococca alba (L.) Hitchc. Plant Extracts Against Chikungunya and Mayaro Viruses
by Ellen Caroline Feitoza Pires, Francini Pereira da Silva, Karoline Schallenberger, Bruna Saraiva Hermann, Larissa Mallmann, Wellington Souza Moura, Sergio Donizeti Ascêncio, Robson dos Santos Barbosa, Ilsamar Mendes Soares, Juliane Deise Fleck, Eugênio Eduardo de Oliveira, Guy Smagghe, Bergmann Morais Ribeiro and Raimundo Wagner de Souza Aguiar
Int. J. Mol. Sci. 2024, 25(21), 11397; https://doi.org/10.3390/ijms252111397 - 23 Oct 2024
Cited by 1 | Viewed by 1612
Abstract
Chikungunya and Mayaro fevers are viral infectious diseases characterized by fever and arthralgia, for which there are currently no effective vaccines or treatments. The urgent need for novel antiviral agents against Chikungunya virus (CHIKV) and Mayaro virus (MAYV) has led to interest in [...] Read more.
Chikungunya and Mayaro fevers are viral infectious diseases characterized by fever and arthralgia, for which there are currently no effective vaccines or treatments. The urgent need for novel antiviral agents against Chikungunya virus (CHIKV) and Mayaro virus (MAYV) has led to interest in plant-based compounds that can disrupt the viral replication cycle. Chiococca alba (L.) Hitchc., a Neotropical plant traditionally used by Yucatec Maya healers as an antipyretic and antirheumatic, may hold potential as a source of antiviral agents. This study aimed to evaluate the antiviral potential of C. alba methanolic extracts (CAH21 and CAH24) against CHIKV and MAYV through preliminary in vitro and in silico analyses. The cytotoxicity of two methanolic extracts from C. alba roots was assessed in Vero cells using the neutral red assay, and their viral activity was determined via plaque assay post-treatment. Given the observed antiviral effects, we used computational predictions to explore interactions between the multifunctional nsP2 proteases and secondary metabolites identified in C. alba extracts. The metabolites were identified using high-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS). Phytochemical analysis revealed the presence of flavonoids, coumarins, and phenolic acids in the C. alba extracts. In vitro assays demonstrated that both extracts inhibited over 70% of activity against CHIKV and MAYV at a concentration of 60 µg/mL. In silico predictions suggested that the flavonoids naringin and vitexin had the highest affinity for the nsP2 proteases of CHIKV and MAYV, indicating their potential as viral inhibitors. Our findings revealed that C. alba extract represents a promising source of novel antiviral compounds. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 4328 KiB  
Article
Nonreciprocity in CHIKV and MAYV Vaccine-Elicited Protection
by Whitney C. Weber, Takeshi F. Andoh, Craig N. Kreklywich, Zachary J. Streblow, Michael Denton, Magdalene M. Streblow, John M. Powers, Gauthami Sulgey, Samuel Medica, Igor Dmitriev, David T. Curiel, Nicole N. Haese and Daniel N. Streblow
Vaccines 2024, 12(9), 970; https://doi.org/10.3390/vaccines12090970 - 27 Aug 2024
Cited by 1 | Viewed by 1979
Abstract
Chikungunya virus (CHIKV) is a pathogenic arthritogenic alphavirus responsible for large-scale human epidemics for which a vaccine was recently approved for use. Mayaro virus (MAYV) is a related emerging alphavirus with epidemic potential with circulation overlap potential with CHIKV. We previously reported the [...] Read more.
Chikungunya virus (CHIKV) is a pathogenic arthritogenic alphavirus responsible for large-scale human epidemics for which a vaccine was recently approved for use. Mayaro virus (MAYV) is a related emerging alphavirus with epidemic potential with circulation overlap potential with CHIKV. We previously reported the ability of a non-replicating human adenovirus (AdV)-vectored vaccine expressing the MAYV structural polyprotein to protect against disease in mice following challenge with MAYV, CHIKV and UNAV. Herein, we evaluated mouse immunity and protective efficacy for an AdV-CHIKV full structural polyprotein vaccine in combination with heterologous AdV-MAYV prime/boost regimens versus vaccine coadministration. Heterologous prime/boost regimens skewed immunity toward the prime vaccine antigen but allowed for a boost of cross-neutralizing antibodies, while vaccine co-administration elicited robust, balanced responses capable of boosting. All immunization strategies protected against disease from homologous virus infection, but reciprocal protective immunity differences were revealed upon challenge with heterologous viruses. In vivo passive transfer experiments reproduced the inequity in reciprocal cross-protection after heterologous MAYV challenge. We detected in vitro antibody-dependent enhancement of MAYV replication, suggesting a potential mechanism for the lack of cross-protection. Our findings provide important insights into rational alphavirus vaccine design that may have important implications for the evolving alphavirus vaccine landscape. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

17 pages, 12312 KiB  
Article
Chikungunya and Mayaro Viruses Induce Chronic Skeletal Muscle Atrophy Triggered by Pro-Inflammatory and Oxidative Response
by Mariana Oliveira Lopes da Silva, Camila Menezes Figueiredo, Rômulo Leão Silva Neris, Iris Paula Guimarães-Andrade, Daniel Gavino-Leopoldino, Leonardo Linhares Miler-da-Silva, Helber da Maia Valença, Leandro Ladislau, Caroline Victorino Felix de Lima, Fernanda Meireles Coccarelli, Claudia Farias Benjamim and Iranaia Assunção-Miranda
Int. J. Mol. Sci. 2024, 25(16), 8909; https://doi.org/10.3390/ijms25168909 - 16 Aug 2024
Viewed by 2004
Abstract
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle–articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of [...] Read more.
Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle–articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention. Full article
(This article belongs to the Special Issue Advanced Research on Immune Response to Viral Infection)
Show Figures

Figure 1

18 pages, 1603 KiB  
Review
Mayaro Virus: An Emerging Alphavirus in the Americas
by Lily Li Lin Wei, Rufaro Tom and Young Chan Kim
Viruses 2024, 16(8), 1297; https://doi.org/10.3390/v16081297 - 14 Aug 2024
Cited by 3 | Viewed by 2866
Abstract
Mayaro virus (MAYV) is an arbovirus first isolated in Trinidad and Tobago in 1954. MAYV is the causative agent of Mayaro fever, which is characterised by high fever, maculopapular rash, myalgia and arthralgia. The potential for chronic arthralgia is of particular clinical concern. [...] Read more.
Mayaro virus (MAYV) is an arbovirus first isolated in Trinidad and Tobago in 1954. MAYV is the causative agent of Mayaro fever, which is characterised by high fever, maculopapular rash, myalgia and arthralgia. The potential for chronic arthralgia is of particular clinical concern. Currently, MAYV outbreaks are restricted to South and Central America, with some cases reported in Africa as well as several imported cases in Europe. However, in recent years, MAYV has become a growing global concern due to its potential to emerge into urban transmission cycles. Challenges faced with diagnostics, as well as a lack of specific antivirals or licensed vaccines further exacerbate the potential global health threat posed by MAYV. In this review, we discuss this emerging arboviral threat with a particular focus on the current treatment and vaccine development efforts. Overall, MAYV remains a neglected arbovirus due to its limited area of transmission. However, with the potential of its urbanisation and expanding circulation, the threat MAYV poses to global health cannot be overlooked. Further research into the improvement of current diagnostics, as well as the development of efficacious antivirals and vaccines will be crucial to help prevent and manage potential MAYV outbreaks. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research)
Show Figures

Figure 1

19 pages, 2554 KiB  
Article
The Approved Live-Attenuated Chikungunya Virus Vaccine (IXCHIQ®) Elicits Cross-Neutralizing Antibody Breadth Extending to Multiple Arthritogenic Alphaviruses Similar to the Antibody Breadth Following Natural Infection
by Whitney C. Weber, Zachary J. Streblow, Craig N. Kreklywich, Michael Denton, Gauthami Sulgey, Magdalene M. Streblow, Dorca Marcano, Paola N. Flores, Rachel M. Rodriguez-Santiago, Luisa I. Alvarado, Vanessa Rivera-Amill, William B. Messer, Romana Hochreiter, Karin Kosulin, Katrin Dubischar, Vera Buerger and Daniel N. Streblow
Vaccines 2024, 12(8), 893; https://doi.org/10.3390/vaccines12080893 - 7 Aug 2024
Cited by 10 | Viewed by 4210
Abstract
The first vaccine against chikungunya virus (CHIKV) was recently licensed in the U.S., Europe, and Canada (brand IXCHIQ®, referred to as VLA1553). Other pathogenic alphaviruses co-circulate with CHIKV and major questions remain regarding the potential of IXCHIQ to confer cross-protection for [...] Read more.
The first vaccine against chikungunya virus (CHIKV) was recently licensed in the U.S., Europe, and Canada (brand IXCHIQ®, referred to as VLA1553). Other pathogenic alphaviruses co-circulate with CHIKV and major questions remain regarding the potential of IXCHIQ to confer cross-protection for populations that are exposed to them. Here, we characterized the cross-neutralizing antibody (nAb) responses against heterotypic CHIKV and additional arthritogenic alphaviruses in individuals at one month, six months, and one year post-IXCHIQ vaccination. We characterized nAbs against CHIKV strains LR2006, 181/25, and a 2021 isolate from Tocantins, Brazil, as well as O’nyong-nyong virus (ONNV), Mayaro virus (MAYV), and Ross River virus (RRV). IXCHIQ elicited 100% seroconversion to each virus, with the exception of RRV at 83.3% seroconversion of vaccinees, and cross-neutralizing antibody potency decreased with increasing genetic distance from CHIKV. We compared vaccinee responses to cross-nAbs elicited by natural CHIKV infection in individuals living in the endemic setting of Puerto Rico at 8–9 years post-infection. These data suggest that IXCHIQ efficiently and potently elicits cross-nAb breadth that extends to related alphaviruses in a manner similar to natural CHIKV infection, which may have important implications for individuals that are susceptible to alphavirus co-circulation in regions of potential vaccine rollout. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

15 pages, 5242 KiB  
Article
Evolutionary Profile of Mayaro Virus in the Americas: An Update into Genome Variability
by Mikaela dos Santos Marinho, Giulia Magalhães Ferreira, Victória Riquena Grosche, Nilson Nicolau-Junior, Túlio de Lima Campos, Igor Andrade Santos and Ana Carolina Gomes Jardim
Viruses 2024, 16(5), 809; https://doi.org/10.3390/v16050809 - 20 May 2024
Cited by 3 | Viewed by 2606
Abstract
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized [...] Read more.
The Mayaro virus (MAYV) is an arbovirus with emerging potential, though with a limited understanding of its epidemiology and evolution due to the lack of studies and surveillance. Here, we investigated 71 MAYV genome sequences from the Americas available at GenBank and characterized the phylogenetic relationship among virus strains. A phylogenetic analysis showed that sequences were grouped according to the genotypes L, D, and N. Genotype D sequences were closely related to sequences collected in adjacent years and from their respective countries, suggesting that isolates may have originated from circulating lineages. The coalescent analysis demonstrated similar results, indicating the continuous circulation of the virus between countries as well. An unidentified sequence from the USA was grouped with genotype D, suggesting the insertion of this genotype in the country. Furthermore, the recombination analysis detected homologous and three heterologous hybrids which presented an insertion into the nsP3 protein. Amino acid substitutions among sequences indicated selective pressure sites, suggesting viral adaptability. This also impacted the binding affinity between the E1–E2 protein complex and the Mxra8 receptor, associated with MAYV entry into human cells. These results provide information for a better understanding of genotypes circulating in the Americas. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

12 pages, 648 KiB  
Review
Mouse Models of Mayaro Virus
by Rafael Borges Rosa, Emilene Ferreira de Castro, Débora de Oliveira Santos, Murilo Vieira da Silva and Lindomar José Pena
Viruses 2023, 15(9), 1803; https://doi.org/10.3390/v15091803 - 24 Aug 2023
Cited by 3 | Viewed by 2137
Abstract
Mayaro virus (MAYV), the etiologic agent of Mayaro fever, leads patients to severe myalgia and arthralgia, which can have a major impact on public health in all the countries where the virus circulates. The emergence and dissemination of new viruses have led the [...] Read more.
Mayaro virus (MAYV), the etiologic agent of Mayaro fever, leads patients to severe myalgia and arthralgia, which can have a major impact on public health in all the countries where the virus circulates. The emergence and dissemination of new viruses have led the scientific community to develop new in vivo models that can help in the fight against new diseases. So far, mice have been the most used animal model in studies with MAYV and have proved to be an adequate model for recapitulating several aspects of the disease observed in humans. Mice are widely used in in vivo research and, therefore, are well known in the scientific community, which has allowed for different strains to be investigated in the study of MAYV. In this review, we summarize the main studies with MAYV using mice as an experimental model and discuss how they can contribute to the advancement of the understanding of its pathogenesis and the development of new drugs and vaccines. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Graphical abstract

11 pages, 3081 KiB  
Brief Report
In Silico Physicochemical Characterization of Fusion Proteins from Emerging Amazonian Arboviruses
by Crislaine S. Leal and Carlos Alberto M. Carvalho
Life 2023, 13(8), 1687; https://doi.org/10.3390/life13081687 - 4 Aug 2023
Cited by 1 | Viewed by 1608
Abstract
Mayaro (MAYV), Saint Louis encephalitis (SLEV), and Oropouche (OROV) viruses are neglected members of the three main families of arboviruses with medical relevance that circulate in the Amazon region as etiological agents of outbreaks of febrile illnesses in humans. As enveloped viruses, MAYV, [...] Read more.
Mayaro (MAYV), Saint Louis encephalitis (SLEV), and Oropouche (OROV) viruses are neglected members of the three main families of arboviruses with medical relevance that circulate in the Amazon region as etiological agents of outbreaks of febrile illnesses in humans. As enveloped viruses, MAYV, SLEV, and OROV largely depend on their class II fusion proteins (E1, E, and Gc, respectively) for entry into the host cell. Since many aspects of the structural biology of such proteins remain unclear, the present study aimed at physicochemically characterizing them by an in silico approach. The complete amino acid sequences of MAYV E1, SLEV E, and OROV Gc proteins derived by conceptual translation from annotated coding regions in the reference sequence genome of the respective viruses were obtained from the NCBI Protein database in the FASTA format and then submitted to the ClustalO, Protcalc, Pepstats, Predator, Proscan, PCprof, Phyre2, and 3Drefine web servers for the determination of sequence identities, the estimation of residual properties, the prediction of secondary structures, the identification of potential post-translational modifications, the recognition of antigenic propensities, and the modeling/refinement of three-dimensional structures. Sequence identities were 20.44%, 18.82%, and 13.70% between MAYV/SLEV, SLEV/OROV, and MAYV/OROV fusion proteins, respectively. As for the residual properties, MAYV E1 and SLEV E proteins showed a predominance of the non-polar profile (56% and 55% of the residues, respectively), whereas the OROV Gc protein showed a predominance of the polar profile (52% of the residues). Regarding predicted secondary structures, MAYV E1 and SLEV E proteins showed fewer alpha-helices (16.51% and 15.17%, respectively) than beta-sheets (21.79% and 25.15%, respectively), while the opposite was observed in the OROV Gc protein (20.39% alpha-helices and 12.14% beta-sheets). Regarding post-translational modifications, MAYV E1, SLEV E, and OROV Gc proteins showed greater relative potential for protein kinase C phosphorylation, N-myristoylation, and casein kinase II phosphorylation, respectively. Finally, antigenic propensities were higher in the N-terminus half than in the C-terminus half of these three proteins, whose three-dimensional structures revealed three distinctive domains. In conclusion, MAYV E1 and SLEV E proteins were found to share more physicochemical characteristics with each other than the OROV Gc protein, although they are all grouped under the same class of viral fusion proteins. Full article
(This article belongs to the Special Issue Genetic and Antigenic Diversity of Pathogenic Viruses)
Show Figures

Figure 1

13 pages, 2421 KiB  
Article
Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model
by Larissa Krokovsky, Carlos Ralph Batista Lins, Duschinka Ribeiro Duarte Guedes, Gabriel da Luz Wallau, Constância Flávia Junqueira Ayres and Marcelo Henrique Santos Paiva
Viruses 2023, 15(3), 799; https://doi.org/10.3390/v15030799 - 21 Mar 2023
Cited by 10 | Viewed by 2857
Abstract
Mayaro virus (MAYV) is transmitted by Haemagogus spp. mosquitoes and has been circulating in Amazon areas in the North and Central West regions of Brazil since the 1980s, with an increase in human case notifications in the last 10 years. MAYV introduction in [...] Read more.
Mayaro virus (MAYV) is transmitted by Haemagogus spp. mosquitoes and has been circulating in Amazon areas in the North and Central West regions of Brazil since the 1980s, with an increase in human case notifications in the last 10 years. MAYV introduction in urban areas is a public health concern as infections can cause severe symptoms similar to other alphaviruses. Studies with Aedes aegypti have demonstrated the potential vector competence of the species and the detection of MAYV in urban populations of mosquitoes. Considering the two most abundant urban mosquito species in Brazil, we investigated the dynamics of MAYV transmission by Ae. aegypti and Culex quinquefasciatus in a mice model. Mosquito colonies were artificially fed with blood containing MAYV and infection (IR) and dissemination rates (DR) were evaluated. On the 7th day post-infection (dpi), IFNAR BL/6 mice were made available as a blood source to both mosquito species. After the appearance of clinical signs of infection, a second blood feeding was performed with a new group of non-infected mosquitoes. RT-qPCR and plaque assays were carried out with animal and mosquito tissues to determine IR and DR. For Ae. aegypti, we found an IR of 97.5–100% and a DR reached 100% in both 7 and 14 dpi. While IR and DR for Cx. quinquefasciatus was 13.1–14.81% and 60% to 80%, respectively. A total of 18 mice were used (test = 12 and control = 6) for Ae. aegypti and 12 (test = 8 and control = 4) for Cx. quinquefasciatus to evaluate the mosquito–mice transmission rate. All mice that were bitten by infected Ae. aegypti showed clinical signs of infection while all mice exposed to infected Cx. quinquefasciatus mosquitoes remained healthy. Viremia in the mice from Ae. aegypti group ranged from 2.5 × 108 to 5 × 109 PFU/mL. Ae. aegypti from the second blood feeding showed a 50% IR. Our study showed the applicability of an efficient model to complete arbovirus transmission cycle studies and suggests that the Ae. aegypti population evaluated is a competent vector for MAYV, while highlighting the vectorial capacity of Ae. aegypti and the possible introduction into urban areas. The mice model employed here is an important tool for arthropod–vector transmission studies with laboratory and field mosquito populations, as well as with other arboviruses. Full article
(This article belongs to the Special Issue Animal Flaviviruses and Alphaviruses)
Show Figures

Figure 1

17 pages, 2888 KiB  
Article
Characterization of Systemic Disease Development and Paw Inflammation in a Susceptible Mouse Model of Mayaro Virus Infection and Validation Using X-ray Synchrotron Microtomography
by Ana Carolina de Carvalho, Carlos Sato B. Dias, Laís D. Coimbra, Rebeca P. F. Rocha, Alexandre Borin, Marina A. Fontoura, Murilo Carvalho, Paul Proost, Maurício L. Nogueira, Sílvio R. Consonni, Renata Sesti-Costa and Rafael Elias Marques
Int. J. Mol. Sci. 2023, 24(5), 4799; https://doi.org/10.3390/ijms24054799 - 2 Mar 2023
Cited by 3 | Viewed by 3062
Abstract
Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR−/−) to characterize [...] Read more.
Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR−/−) to characterize the disease. MAYV inoculations in the hind paws of IFNAR−/− mice result in visible paw inflammation, evolve into a disseminated infection and involve the activation of immune responses and inflammation. The histological analysis of inflamed paws indicated edema at the dermis and between muscle fibers and ligaments. Paw edema affected multiple tissues and was associated with MAYV replication, the local production of CXCL1 and the recruitment of granulocytes and mononuclear leukocytes to muscle. We developed a semi-automated X-ray microtomography method to visualize both soft tissue and bone, allowing for the quantification of MAYV-induced paw edema in 3D with a voxel size of 69 µm3. The results confirmed early edema onset and spreading through multiple tissues in inoculated paws. In conclusion, we detailed features of MAYV-induced systemic disease and the manifestation of paw edema in a mouse model extensively used to study infection with alphaviruses. The participation of lymphocytes and neutrophils and expression of CXCL1 are key features in both systemic and local manifestations of MAYV disease. Full article
(This article belongs to the Special Issue Inflammation Cell Signaling and Infectious Diseases)
Show Figures

Figure 1

14 pages, 2465 KiB  
Article
Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform
by Yuxiang Wang, Anthony Griffiths, Douglas E. Brackney and Paulo H. Verardi
Pathogens 2022, 11(12), 1505; https://doi.org/10.3390/pathogens11121505 - 9 Dec 2022
Cited by 8 | Viewed by 3006
Abstract
As demonstrated by the 2015 Zika virus outbreak in the Americas, emerging and re-emerging arboviruses are public health threats that warrant research investment for the development of effective prophylactics and therapeutics. Many arboviral diseases are underreported, neglected, or of low prevalence, yet they [...] Read more.
As demonstrated by the 2015 Zika virus outbreak in the Americas, emerging and re-emerging arboviruses are public health threats that warrant research investment for the development of effective prophylactics and therapeutics. Many arboviral diseases are underreported, neglected, or of low prevalence, yet they all have the potential to cause outbreaks of local and international concern. Here, we show the production of virus-like particles (VLPs) using a rapid and efficient recombinant vaccinia virus (VACV) expression system for five tick- and mosquito-borne arboviruses: Powassan virus (POWV), Heartland virus (HRTV), severe fever with thrombocytopenia syndrome virus (SFTSV), Bourbon virus (BRBV) and Mayaro virus (MAYV). We detected the expression of arbovirus genes of interest by Western blot and observed the expression of VLPs that resemble native virions under transmission electron microscopy. We were also able to improve the secretion of POWV VLPs by modifying the signal sequence within the capsid gene. This study describes the use of a rapid VACV platform for the production and purification of arbovirus VLPs that can be used as subunit or vectored vaccines, and provides insights into the selection of arbovirus genes for VLP formation and genetic modifications to improve VLP secretion and yield. Full article
(This article belongs to the Special Issue Poxvirus-Driven Insights into Virus and Host Biology)
Show Figures

Figure 1

14 pages, 1737 KiB  
Article
Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes
by Fernando Luz de Castro, Otávio José Bernandes Brustolini, Victor Emmanuel Viana Geddes, Jorge Paes Barreto Marcondes de Souza, Soniza Vieira Alves-Leon, Renato Santana Aguiar and Ana Tereza Ribeiro Vasconcelos
Viruses 2022, 14(11), 2505; https://doi.org/10.3390/v14112505 - 12 Nov 2022
Cited by 10 | Viewed by 2513
Abstract
Human retroelements (HERVs) are retroviral origin sequences fixed in the human genome. HERVs induction is associated with neurogenesis, cellular development, immune activation, and neurological disorders. Arboviruses are often associated with the development of encephalitis. The interplay between these viruses and HERVs has not [...] Read more.
Human retroelements (HERVs) are retroviral origin sequences fixed in the human genome. HERVs induction is associated with neurogenesis, cellular development, immune activation, and neurological disorders. Arboviruses are often associated with the development of encephalitis. The interplay between these viruses and HERVs has not been fully elucidated. In this work, we analyzed RNAseq data derived from infected human primary astrocytes by Zika (ZikV), Mayaro (MayV), Oropouche (OroV) and Chikungunya (ChikV) viruses, and evaluated the modulation of HERVs and their nearby genes. Our data show common HERVs expression modulation by both alphaviruses, suggesting conserved evolutionary routes of transcription regulation. A total of 15 HERVs were co-modulated by the four arboviruses, including the highly upregulated HERV4_4q22. Data on the upregulation of genes nearby to these elements in ChikV, MayV and OroV infections were also obtained, and interaction networks were built. The upregulation of 14 genes common among all viruses was observed in the networks, and 93 genes between MayV and ChikV. These genes are related to cellular processes such as cellular replication, cytoskeleton, cell vesicle traffic and antiviral response. Together, our results support the role of HERVs induction in the transcription regulation process of genes during arboviral infections. Full article
(This article belongs to the Special Issue Endogenous Retrovirus Proteins and Their Functions)
Show Figures

Figure 1

20 pages, 5214 KiB  
Article
Honokiol and Alpha-Mangostin Inhibit Mayaro Virus Replication through Different Mechanisms
by Patricia Valdés-Torres, Dalkiria Campos, Madhvi Bhakta, Paola Elaine Galán-Jurado, Armando A. Durant-Archibold and José González-Santamaría
Molecules 2022, 27(21), 7362; https://doi.org/10.3390/molecules27217362 - 29 Oct 2022
Cited by 5 | Viewed by 3321
Abstract
Mayaro virus (MAYV) is an emerging arbovirus with an increasing circulation across the Americas. In the present study, we evaluated the potential antiviral activity of the following natural compounds against MAYV and other arboviruses: Sanguinarine, (R)-Shikonin, Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin. Sanguinarine [...] Read more.
Mayaro virus (MAYV) is an emerging arbovirus with an increasing circulation across the Americas. In the present study, we evaluated the potential antiviral activity of the following natural compounds against MAYV and other arboviruses: Sanguinarine, (R)-Shikonin, Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin. Sanguinarine and Shikonin showed significant cytotoxicity, whereas Fisetin, Honokiol, Tanshinone IIA, and α-Mangostin were well tolerated in all the cell lines tested. Honokiol and α-Mangostin treatment protected Vero-E6 cells against MAYV-induced damage and resulted in a dose-dependent reduction in viral progeny yields for each of the MAYV strains and human cell lines assessed. These compounds also reduced MAYV viral RNA replication in HeLa cells. In addition, Honokiol and α-Mangostin disrupted MAYV infection at different stages of the virus life cycle. Moreover, Honokiol and α-Mangostin decreased Una, Chikungunya, and Zika viral titers and downmodulated the expression of E1 and nsP1 viral proteins from MAYV, Una, and Chikungunya. Finally, in Honokiol- and α-Mangostin-treated HeLa cells, we observed an upregulation in the expression of type I interferon and specific interferon-stimulated genes, including IFNα, IFNβ, MxA, ISG15, OAS2, MDA-5, TNFα, and IL-1β, which may promote an antiviral cellular state. Our results indicate that Honokiol and α-Mangostin present potential broad-spectrum activity against different arboviruses through different mechanisms. Full article
(This article belongs to the Special Issue Antiviral Agents for RNA-Virus Infection)
Show Figures

Figure 1

Back to TopTop