Mouse Models of Mayaro Virus
Abstract
:1. Introduction
2. Mouse Models and Their Applicability
2.1. Pathogenesis and Immunity
2.2. Treatment and Vaccines
2.3. Transmission and Vector Competence Studies
3. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azevedo, R.S.S.; Silva, E.V.P.; Carvalho, V.L.; Rodrigues, S.G.; Nunes Neto, J.P.; Monteiro, H.A.O.; Peixoto, V.S.; Chiang, J.O.; Nunes, M.R.T.; Vasconcelos, P.F.C. Mayaro fever virus, Brazilian amazon. Emerg. Infect. Dis. 2009, 15, 1830–1832. [Google Scholar] [CrossRef] [PubMed]
- Zuchi, N.; Da Silva Heinen, L.B.; Dos Santos, M.A.M.; Pereira, F.C.; Slhessarenko, R.D. Molecular detection of Mayaro virus during a dengue outbreak in the state of Mato Grosso, Central-West Brazil. Mem. Inst. Oswaldo Cruz 2014, 109, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, F.P.; Freitas, R.B.; Travassos Da Rosa, J.F.; Gabbay, Y.B.; Mello, W.A.; LeDuc, J.W. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am. J. Trop. Med. Hyg. 1981, 30, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Izurieta, R.O.; MacAluso, M.; Watts, D.M.; Tesh, R.B.; Guerra, B.; Cruz, L.M.; Galwankar, S.; Vermund, S.H. Hunting in the rainforest and mayaro virus infection: An emerging alphavirus in Ecuador. J. Glob. Infect. Dis. 2011, 3, 317–323. [Google Scholar] [CrossRef]
- Muñoz, M.; Navarro, J.C. Virus Mayaro: Un arbovirus reemergente en Venezuela y Latinoamérica. Biomedica 2012, 32, 286–302. [Google Scholar] [CrossRef]
- Halsey, E.S.; Siles, C.; Guevara, C.; Vilcarromero, S.; Jhonston, E.J.; Ramal, C.; Aguilar, P.V.; Ampuero, J.S. Mayaro virus infection, Amazon Basin region, Peru, 2010–2013. Emerg. Infect. Dis. 2013, 19, 1839–1842. [Google Scholar] [CrossRef]
- Mourão, M.P.G.; Bastos, M.D.S.; De Figueiredo, R.P.; Gimaque, J.B.L.; Dos Santos Galusso, E.; Kramer, V.M.; De Oliveira, C.M.C.; Naveca, F.G.; Figueiredo, L.T.M. Mayaro fever in the city of Manaus, Brazil, 2007–2008. Vector-Borne Zoonotic Dis. 2012, 12, 42–46. [Google Scholar] [CrossRef]
- De Oliveira Mota, M.T.; Ribeiro, M.R.; Vedovello, D.; Nogueira, M.L. Mayaro virus: A neglected arbovirus of the Americas. Future Virol. 2015, 10, 1109–1122. [Google Scholar] [CrossRef]
- Lorenz, C.; Freitas Ribeiro, A.; Chiaravalloti-Neto, F. Mayaro virus distribution in South America. Acta Trop. 2019, 198, 105093. [Google Scholar] [CrossRef]
- Celone, M.; Pecor, D.B.; Potter, A.; Richardson, A.; Dunford, J.; Pollett, S. An ecological niche model to predict the geographic distribution of Haemagogus janthinomys, Dyar, 1921 a yellow fever and Mayaro virus vector, in South America. PLoS Negl. Trop. Dis. 2022, 16, e0010564. [Google Scholar] [CrossRef]
- Diagne, C.T.; Bengue, M.; Choumet, V.; Hamel, R.; Pompon, J.; Missé, D. Mayaro Virus Pathogenesis and Transmission Mechanisms. Pathogens. 2020, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Tesh, R.B.; Watts, D.M.; Russell, K.L.; Damodaran, C.; Calampa, C.; Cabezas, C.; Ramirez, G.; Vasquez, B.; Hayes, C.G.; Rossi, C.A.; et al. Mayaro virus disease: An emerging mosquito-borne zoonosis in tropical South America. Clin. Infect. Dis. 1999, 28, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, E.Y.; Charniga, K.; Rueda, A.; Dorigatti, I.; Mendez, Y.; Hamlet, A.; Carrera, J.P.; Cucunubá, Z.M. The epidemiology of mayaro virus in the Americas: A systematic review and key parameter estimates for outbreak modelling. PLoS Negl. Trop. Dis. 2021, 15, e0009418. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Long, K.C.; Ziegler, S.A.; Thangamani, S.; Hausser, N.L.; Kochel, T.J.; Higgs, S.; Tesh, R.B. Experimental transmission of Mayaro virus by Aedes aegypti. Am. J. Trop. Med. Hyg. 2011, 85, 750–757. [Google Scholar] [CrossRef]
- Rosa, R.B.; Dantas, W.M.; Do Nascimento, J.C.F.; da Silva, M.V.; de Oliveira, R.N.; Pena, L.J. In vitro and in vivo models for studying SARS-CoV-2, the etiological agent responsible for COVID-19 pandemic. Viruses 2021, 13, 379. [Google Scholar] [CrossRef]
- Rosa, R.B.; de Castro, E.F.; Vieira da Silva, M.; Paiva Ferreira, D.C.; Jardim, A.C.G.; Santos, I.A.; Marinho, M.d.S.; Ferreira França, F.B.; Pena, L.J. In vitro and in vivo models for monkeypox. iScience 2023, 26, 105702. [Google Scholar] [CrossRef]
- Anderson, C.R.; Downs, W.G.; Wattley, G.H.; Ahin, N.W.; Reese, A.A. Mayaro virus: A new human disease agent. II. Isolation from blood of patients in Trinidad, B.W.I. Am. J. Trop. Med. Hyg. 1957, 6, 1012–1016. [Google Scholar] [CrossRef]
- Calisher, C.H.; Gutiérrez, E.; Maness, K.S.; Lord, R.D. Isolation of Mayaro virus from a migrating bird captured in Louisiana in 1967. Bull. Pan Am. Health Organ. 1974, 8, 243–248. [Google Scholar]
- Coimbra, T.L.M.; Santos, C.L.S.; Suzuki, A.; Petrella, S.M.C.; Bisordi, I.; Nagamori, A.H.; Marti, A.T.; Santos, R.N.; Fialho, D.M.; Lavigne, S.; et al. Mayaro virus: Imported cases of human infection in São Paulo state, Brazil. Rev. Inst. Med. Trop. Sao Paulo 2007, 49, 221–224. [Google Scholar] [CrossRef]
- De Oliveira Mota, M.T.; Costa, V.V.; Sugimoto, M.A.; Guimarães, G.d.F.; Queiroz-Junior, C.M.; Moreira, T.P.; de Sousa, C.D.; Santos, F.M.; Queiroz, V.F.; Passos, I.; et al. In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease. Sci. Rep. 2020, 10, 5306. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.M.; Dias, R.S.; de Oliveira, M.D.; Costa, I.C.T.A.; Fernandes, L.d.S.; Pessoa, C.R.; da Matta, S.L.P.; Costa, V.V.; Souza, D.G.; da Silva, C.C.; et al. Animal model of arthritis and myositis induced by the mayaro virus. PLoS Negl. Trop. Dis. 2019, 13, e0007375. [Google Scholar] [CrossRef]
- Ferraz, A.C.; Almeida, L.T.; da Silva Caetano, C.C.; da Silva Menegatto, M.B.; Souza Lima, R.L.; de Senna, J.P.N.; de Oliveira Cardoso, J.M.; Perucci, L.O.; Talvani, A.; Geraldo de Lima, W.; et al. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antivir. Res. 2021, 194, 105168. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.M.; Neris, R.L.d.S.; Gavino-Leopoldino, D.; da Silva, M.O.L.; Almeida, J.S.; Dos-Santos, J.S.; Figueiredo, C.P.; Bellio, M.; Bozza, M.T.; Assunção-Miranda, I. Mayaro Virus Replication Restriction and Induction of Muscular Inflammation in Mice Are Dependent on Age, Type-I Interferon Response, and Adaptive Immunity. Front. Microbiol. 2019, 10, 2246. [Google Scholar] [CrossRef]
- Powers, J.M.; Haese, N.N.; Denton, M.; Ando, T.; Kreklywich, C.; Bonin, K.; Streblow, C.E.; Kreklywich, N.; Smith, P.; Broeckel, R.; et al. Non-replicating adenovirus based Mayaro virus vaccine elicits protective immune responses and cross protects against other alphaviruses. PLoS Negl. Trop. Dis. 2021, 15, e0009308. [Google Scholar] [CrossRef]
- Krokovsky, L.; Ralph, C.; Lins, B.; Ribeiro, D.; Guedes, D.; Da, G.; Wallau, L.; Flávia, C.; Ayres, J.; Santos Paiva, M.H. Dynamic of Mayaro virus transmission between Aedes aegypti and Culex quinquefasciatus mosquitoes and a mice model. bioRxiv 2022. [Google Scholar] [CrossRef]
- De Castro-Jorge, L.A.; De Carvalho, R.V.H.; Klein, T.M.; Hiroki, C.H.; Lopes, A.H.; Guimarães, R.M.; Fumagalli, M.J.; Floriano, V.G.; Agostinho, M.R.; Slhessarenko, R.D.; et al. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathog. 2019, 15, e1007934. [Google Scholar] [CrossRef]
- Fumagalli, M.J.; de Souza, W.M.; de Castro-Jorge, L.A.; de Carvalho, R.V.H.; Castro, Í.d.A.; de Almeida, L.G.N.; Consonni, S.R.; Zamboni, D.S.; Figueiredo, L.T.M. Chikungunya Virus Exposure Partially Cross-Protects against Mayaro Virus Infection in Mice. J. Virol. 2021, 95, 1122–1143. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.M.; Azar, S.R.; Haller, S.L.; Langsjoen, R.M.; Cuthbert, C.E.; Ramjag, A.T.; Luo, H.; Plante, K.; Wang, T.; Simmons, G.; et al. Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potential. Sci. Rep. 2019, 9, 20399. [Google Scholar] [CrossRef]
- Earnest, J.T.; Basore, K.; Roy, V.; Bailey, A.L.; Wang, D.; Alter, G.; Fremont, D.H.; Diamond, M.S. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J. Exp. Med. 2019, 216, 2282–2301. [Google Scholar] [CrossRef]
- Bengue, M.; Pintong, A.R.; Liegeois, F.; Nougairède, A.; Hamel, R.; Pompon, J.; de Lamballerie, X.; Roques, P.; Choumet, V.; Missé, D. Favipiravir Inhibits Mayaro Virus Infection in Mice. Viruses 2021, 13, 2213. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kudchodkar, S.B.; Reuschel, E.L.; Asija, K.; Borole, P.; Ho, M.; Wojtak, K.; Reed, C.; Ramos, S.; Bopp, N.E.; et al. Protective immunity by an engineered DNA vaccine for Mayaro virus. PLoS Negl. Trop. Dis. 2019, 13, e0007042. [Google Scholar] [CrossRef] [PubMed]
- Weise, W.J.; Hermance, M.E.; Forrester, N.; Adams, A.P.; Langsjoen, R.; Gorchakov, R.; Wang, E.; Alcorn, M.D.H.; Tsetsarkin, K.; Weaver, S.C. A novel live-attenuated vaccine candidate for mayaro Fever. PLoS Negl. Trop. Dis. 2014, 8, e2969. [Google Scholar] [CrossRef]
- Rafael, K.C.; Preciado-Llanes, L.; Azar, S.R.; Kim, Y.C.; Brandon, O.; López-Camacho, C.; Reyes-Sandoval, A.; Rossi, S.L. Adenoviral-Vectored Mayaro and Chikungunya Virus Vaccine Candidates Afford Partial Cross-Protection from Lethal Challenge in A129 Mouse Model. Front. Immunol. 2020, 11, 591885. [Google Scholar] [CrossRef] [PubMed]
- Baldon, L.V.R.; de Mendonça, S.F.; Ferreira, F.V.; Rezende, F.O.; Amadou, S.C.G.; Leite, T.H.J.F.; Rocha, M.N.; Marques, J.T.; Moreira, L.A.; Ferreira, A.G.A. AG129 Mice as a Comprehensive Model for the Experimental Assessment of Mosquito Vector Competence for Arboviruses. Pathogens 2022, 11, 879. [Google Scholar] [CrossRef]
- Fox, J.M.; Long, F.; Edeling, M.A.; Lin, H.; van Duijl-Richter, M.K.S.; Fong, R.H.; Kahle, K.M.; Smit, J.M.; Jin, J.; Simmons, G.; et al. Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell 2015, 163, 1095–1107. [Google Scholar] [CrossRef]
- Jin, J.; Simmons, G. Antiviral Functions of Monoclonal Antibodies against Chikungunya Virus. Viruses 2019, 11, 305. [Google Scholar] [CrossRef]
- Pal, P.; Dowd, K.A.; Brien, J.D.; Edeling, M.A.; Gorlatov, S.; Johnson, S.; Lee, I.; Akahata, W.; Nabel, G.J.; Richter, M.K.; et al. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog. 2013, 9, e1003312. [Google Scholar] [CrossRef]
- Earnest, J.T.; Holmes, A.C.; Basore, K.; Mack, M.; Fremont, D.H.; Diamond, M.S. The mechanistic basis of protection by non-neutralizing anti-alphavirus antibodies. Cell Rep. 2021, 35, 108962. [Google Scholar] [CrossRef]
- Lum, F.M.; Couderc, T.; Chia, B.S.; Ong, R.Y.; Her, Z.; Chow, A.; Leo, Y.-S.; Kam, Y.-W.; Rénia, L.; Lecuit, M.; et al. Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci. Rep. 2018, 8, 1860. [Google Scholar] [CrossRef]
Mouse Strain | Age | Viral Strain | Route of Infection/Dose | Major Findings | Reference |
---|---|---|---|---|---|
Balb/c | 6-week-old | MAYV wt human isolate from Peru 2001 | Subcutaneous plantar surface of the right hind paw/50 μL 2 × 105 p.f.u | MAYV induced transient viral replication with persistent hypernociception and production of inflammatory cytokines, chemokines, and humoral responses. An attenuated vaccine induced specific cellular and humoral responses and resulted in protection in immunocompetent mice. | [21] |
15-day-old | TR4675 | Subcutaneously, right footpad/10 μL 2.57 × 106 p.f.u of virus suspension in PBS and Subcutaneously in the chest, below the right forelimb/50 μL 1.25 × 107 p.f.u of viral suspension | MAYV infection resulted in the development of acute disease with overt clinical signs. Histopathological studies demonstrated joint impairment mediated by a strong inflammatory response. | [22] | |
3-week-old | Acre27 | Subcutaneously in the left footpad/20 μL 106 p.f.u | Silymarin helped to improve the condition of MAYV infection in BALB/c mice. | [23] | |
129 Sv/Ev | 6-, 11-, 21-day-old | TR4675 | Subcutaneously in the left footpad/20 μL 106 p.f.u | 11-day-old immunocompetent mice show clinical signs of MAYV infection, but the phenotypes are completely unapparent after 21 days of age. | [24] |
IFNαR1 −/− | 8-week-old | TR4675 | Subcutaneously in the left footpad/20 μL 105 p.f.u | Infected mice showed a continuous increase in viremia followed by lethality. The animals showed clinical signs of the disease and histopathology showed tissue damage. | [24] |
5-week-old | Mayaro, BeAr505411, NR- 49910 | Injection right posterior footpad/20 μL 104 p.f.u | Mice vaccinated with AdV-MAYV were protected from viral infection. Vaccination was able to prevent viral spread and passive transfer of immune serum was able to significantly reduce the pathological symptoms of the infection. | [25] | |
2–4 week-old | MAYV/BR/Sinop/H307/2015 (MH513597) | Natural infection (Aedes aegypti) | Mice infected with MAYV showed clinical signs of the disease and the virus was transmitted to Aedes aegypti mosquitoes during a blood meal, closing the transmission cycle. | [26] | |
C57BL/6 | 8-week-old | TR4675 | Subcutaneously in the left footpad/20μL 106 p.f.u | MAYV inoculation in wt C57BL/6 adult mice did not cause any clinical signs of infection. | [24] |
6–8-week-old | BeAr 20290 | Subcutaneously ventral side of the footpad/10 μL 105 or 106 p.f.u | Mice infected with MAYV showed swelling and pain in the foot pad. The viral load was transient in all analyzed tissues, falling during the course of the infection, remaining stable only in the spleen. | [27] | |
10–12-week-old | TRVL 4675 | Ventral side of each foot/20 μL 105 p.f.u | The pre-existing immunity to CHIKV conferred cross-protection against secondary MAYV infection by reducing disease severity, tissue viral load, and histopathological scores in infected mice. | [28] | |
4-week-old | 12A | Intradermally in the hind footpad/104 p.f.u | Immunity derived from CHIKV infection (WT) decreased disease and prevented viremin in MAYV-infected mice. Immunity induced by highly immunogenic and effective CHIKV vaccines did not provide protection against the virus. | [29] | |
4-week-old | MAYV (Beh428890, BeH473130, BeH343155, BeH506151, FSB0311, IQU2950, OBS6443, TRVL15537, BeH407 e Uruma) | Left footpad/103 f.f.u | A panel of anti-MAYV neutralizing mAbs was able to neutralize 11 different strains of MAYV. A subset of mAbs were strongly neutralizing and kept mice protected from lethal challenge. | [30] | |
5-week-old | Mayaro, BeAr505411, NR-49910 | Injection right posterior footpad/20 μL 104 p.f.u | Robust neutralizing antibody titers were obtained for mice vaccinated with AdV-MAYV. Serum viral titers of vaccinated animals were not detected. | [25] | |
4-week-old | UVE/MAYV/1954/TT/TC625 | Subcutaneously in the right hind footpad/20 µL 106 p.f.u | The antiviral Favipiravir contributed to the reduction in infection in pre- and concomitantly treated animals. In contrast, post-infection treatment did not result in reduced viral replication. | [31] | |
RAG-1 −/− | 8-week-old | TR4675 | Subcutaneously in the left footpad/20 μL 106 p.f.u | MAYV persistently replicated in RAG−/− mice. Despite this, infection in adult mice did not cause lethality and the appearance of clinical signs. | [24] |
Nlrp3 −/− | 6–8-week-old | BeAr 20,290 | Subcutaneously ventral side of the footpad/10 μL 105 or 106 p.f.u | Mice infected with MAYV showed edema in the paws with high presence of neutrophils and tissue damage. Joint washes of the approved high number of inflammatory cells. | [27] |
IFNα/βR−/− | 6-week-old | MAYV wt human isolate from Peru 2001 | Subcutaneous plantar surface of the right hind paw/50 μL 2 × 105 p.f.u | The lethality of mice immunized with the MAYV/IRES strain was significantly delayed. Mice infected with MAYV (WT) showed high lethality and high viral load. | [21] |
4-week-old | 12A | Intradermally in the hind footpad/104 p.f.u | After challenge with a lethal dose of MAYV, groups vaccinated with EILV/CHIKV showed clinical signs of the disease and consequent mortality. In contrast, MAYV/IRES completely protected against the disease. Passive transfer of CHIKV immune serum was not protective against MAYV challenge in immunocompromised mice. | [29] | |
4–6-week-old | Trinidad Regional Virus Laboratory (TRVL) 15,537 MAYV | Intraperitoneal/100 µL 102 p.f.u | The scMAYV-E vaccine protected mice from morbidity and mortality after MAYV challenge. Electroporation-enhanced immunization of mice with this vaccine induced potent humoral responses. | [32] | |
5–8-week-old | MAYV wt human isolate from Peru 2001 | Intradermally on the left footpad/104 p.f.u | Mice infected with the attenuated MAYV/IRES strain and the wt MAYV strain lost weight. There was no significant difference in footpad swelling. All vaccinated mice survived, whereas all sham mice died on the seventh day after infection. | [33] | |
5-week-old | MAYV CH-IQT4235 | Intradermally left foot/20 µL 1.6 × 104 p.f.u | The ChAdOx1 May construct provided rapid and robust immunity with high titers of neutralizing antibodies against MAYV, capable of protecting A129 mice from a lethal attack and reducing viremia to undetectable levels. Furthermore, vaccination with ChAdOx1 may offer cross-protection against a lethal CHIKV challenge. | [34] | |
ICR/CD-1 | 6- and 28-day-old | MAYV wt human isolate from Peru 2001 | Dorsum subcutaneously/104 p.f.u | Six-day-old mice infected with MAYV/IRES survived, unlike animals infected with MAYV WT that died. Adult animals infected with MAYV/IRES steadily gained weight throughout the experiment, while mice infected with MAYV WT lost some weight initially but recovered. A single vaccination proved to be immunogenic in adult CD1 mice and efficacy was demonstrated indirectly through passive transfer of immune mouse serum to infant mice, followed by lethal challenge. | [33] |
FcγR −/− | 4-week-old | BeH407 | Subcutaneous/103 f.f.u | Animals treated with isotype control mAb showed 100% mortality, whereas animals treated with MAY-115 or MAY-134 were only partially protected. MAY-117 also failed to protect mice against MAYV. | [30] |
IFNα/β/γR −/− | 8–9-week-old | TRVL4645 | Intraperitoneal/105 p.f.u | AG129 mice developed transient viremia. The observed viremia was large enough to infect Aedes aegypti mosquitoes during a blood meal. Infected mosquitoes transmitted MAYV back to uninfected mice, completing a full cycle of transmission. | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, R.B.; de Castro, E.F.; de Oliveira Santos, D.; da Silva, M.V.; Pena, L.J. Mouse Models of Mayaro Virus. Viruses 2023, 15, 1803. https://doi.org/10.3390/v15091803
Rosa RB, de Castro EF, de Oliveira Santos D, da Silva MV, Pena LJ. Mouse Models of Mayaro Virus. Viruses. 2023; 15(9):1803. https://doi.org/10.3390/v15091803
Chicago/Turabian StyleRosa, Rafael Borges, Emilene Ferreira de Castro, Débora de Oliveira Santos, Murilo Vieira da Silva, and Lindomar José Pena. 2023. "Mouse Models of Mayaro Virus" Viruses 15, no. 9: 1803. https://doi.org/10.3390/v15091803
APA StyleRosa, R. B., de Castro, E. F., de Oliveira Santos, D., da Silva, M. V., & Pena, L. J. (2023). Mouse Models of Mayaro Virus. Viruses, 15(9), 1803. https://doi.org/10.3390/v15091803