Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Lorentz motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5448 KiB  
Article
Analytical Approach for Estimating the Average Torque of Synchronous Motors by Using the Flux Density in the Air Gap
by Zheng-Feng Li, Lin-Wei Huang, Shih-Gang Chen, Yu-Tse Hsu, Jun-Ming Hsu and Ming-Shi Huang
Energies 2023, 16(23), 7832; https://doi.org/10.3390/en16237832 - 28 Nov 2023
Cited by 1 | Viewed by 2560
Abstract
In this study, a generalized torque estimation method is proposed for synchronous motors, including surface permanent magnet synchronous motors (SPMSMs), synchronous reluctance motors (SynRMs), and interior permanent magnet synchronous motors (IPMSMs) for building the analytical motor model. The average motor torque is estimated [...] Read more.
In this study, a generalized torque estimation method is proposed for synchronous motors, including surface permanent magnet synchronous motors (SPMSMs), synchronous reluctance motors (SynRMs), and interior permanent magnet synchronous motors (IPMSMs) for building the analytical motor model. The average motor torque is estimated using the Lorentz force by the generated flux density in the air gap to determine the relationships among torque, flux density, and injected current. In the proposed method, the generated flux density is derived step by step by considering the effects of magnetic flux saturation, the stator slot, the rotor barrier, and permanent magnets (PMs) to ensure that the generated average torque complies with the operating condition of the motor. To verify the proposed method, the output torque of finite element analysis (FEA), Maxwell 2D, is compared to the proposed method in a SPMSM. Moreover, a phasor diagram is plotted to determine the mechanism through which torque is generated in SynRMs and IPMSMs. A SynRM and an IPMSM with ferrites PMs are analyzed using the proposed method, FEA, and the experimental results of this study indicate the effectiveness. Full article
Show Figures

Figure 1

20 pages, 18579 KiB  
Article
A Novel Wrench–Current Decoupling Strategy to Extend the Use of Small Lookup Data for a Long-Range Maglev Planar Motor
by Chanuphon Trakarnchaiyo and Mir Behrad Khamesee
Actuators 2023, 12(9), 358; https://doi.org/10.3390/act12090358 - 13 Sep 2023
Cited by 2 | Viewed by 2068
Abstract
The maglev planar motor is one of the most promising industrial applications. The planar motor can increase flexibility in modern manufacturing with the multidirectional motion of the mover. In levitation control, the decoupling matrix is used to decouple the strong cross-coupling effect. The [...] Read more.
The maglev planar motor is one of the most promising industrial applications. The planar motor can increase flexibility in modern manufacturing with the multidirectional motion of the mover. In levitation control, the decoupling matrix is used to decouple the strong cross-coupling effect. The Lorentz force-based wrench matrices can be precomputed and stored in the lookup table. However, the motion range is restricted by the data range. This paper presents a wrench–current decoupling strategy to extend the use of small lookup data for long-range planar motion. The horizontal data range is 40 mm by 40 mm, which is determined from the minimally repetitive area of the planar coil array. The quadrant symmetry transformation is used to estimate the data for other areas. The experiment results demonstrated the accomplishment of the developed technique for long-range motion with a maximum motion stroke of 380 mm. The disc-magnet movers can levitate with a large air gap of 30 mm and have a total roll and pitch rotation range of 20 degrees. Full article
(This article belongs to the Special Issue Conventional and Micromachined Electromagnetic Levitation Actuators)
Show Figures

Figure 1

22 pages, 13533 KiB  
Article
Design of a Compact Planar Magnetic Levitation System with Wrench–Current Decoupling Enhancement
by Chanuphon Trakarnchaiyo, Yang Wang and Mir Behrad Khamesee
Appl. Sci. 2023, 13(4), 2370; https://doi.org/10.3390/app13042370 - 12 Feb 2023
Cited by 8 | Viewed by 3403
Abstract
Magnetic levitation technology has promising applications in modern manufacturing, especially for fine-motion stage and long-range omnidirectional planar motors. This paper presents the development of a compact planar maglev prototype with the potential to achieve both applications to increase flexibility for the manufacturing system. [...] Read more.
Magnetic levitation technology has promising applications in modern manufacturing, especially for fine-motion stage and long-range omnidirectional planar motors. This paper presents the development of a compact planar maglev prototype with the potential to achieve both applications to increase flexibility for the manufacturing system. The planar stator is designed by using optimized square coils arranged in the zigzag configuration, which provides a better uniform magnetic flux density compared with another configuration. The stator is a compact and portable module with built-in current amplifier units. The single-disc magnet mover is deployed with five controllable degrees of freedom. The cross-coupling effect is decoupled by a precomputed Lorentz force based wrench—current transformation matrix stored in the lookup table. A 2-D linear interpolation is implemented to enhance decoupling effectiveness which is offered via discrete lookup data. Experiments with motion-tracking cameras and a basic controller demonstrate the results of fine step motion of 10 and 20 µm and rotation steps of 0.5 and 1.0 mrad. The potential for multidirectional material handling is represented by a total horizontal translation range of 20 mm by 20 mm with a maximum air gap of 26 mm and a total rotation range of 20 degrees for both roll and pitch. Full article
(This article belongs to the Special Issue Smart Machines and Intelligent Manufacturing)
Show Figures

Figure 1

17 pages, 6844 KiB  
Article
Research on Magnetic Field and Force Characteristics of a Novel Four-Quadrant Lorentz Force Motor
by Xiangrui Meng, Changhong Wang, Jiapeng Zhong, Hongwei Xia, Liwei Song and Guoqing Yang
Energies 2023, 16(3), 1091; https://doi.org/10.3390/en16031091 - 19 Jan 2023
Cited by 3 | Viewed by 2101
Abstract
The 6-DOF vibration isolation platform (VIP) is used to isolate vibration in the processing and manufacturing of semiconductor chips, especially electric vehicle chips. The 6-DOF VIP has the characteristics of high position accuracy, fast dynamic response, and short motion travel. In this paper, [...] Read more.
The 6-DOF vibration isolation platform (VIP) is used to isolate vibration in the processing and manufacturing of semiconductor chips, especially electric vehicle chips. The 6-DOF VIP has the characteristics of high position accuracy, fast dynamic response, and short motion travel. In this paper, a novel four-quadrant Lorentz force motor (FQLFM) applied on the 6-DOF VIP is proposed. The structure of this LFM has a high force density, low force fluctuation, and low coupling force. First, the basic structure and operating principle of the proposed FQLFM are presented. Secondly, the expressions of the magnetic field and electromagnetic force are obtained based on an equivalent current model and the permanent magnet mirror-image method (PMMIM). Thirdly, the magnetic field and electromagnetic force characteristics of the proposed FQLFM and an LFM with a traditional bilateral structure are analyzed and compared. The relationship between the force and displacement of the FQLFM is investigated. Moreover, the PMMIM is verified by a 3D finite element analysis (FEA). Finally, the experimental platform for a force test is built and the above results are validated by an experiment. Full article
(This article belongs to the Special Issue Advanced Permanent-Magnet Machines for Electric Vehicles)
Show Figures

Figure 1

21 pages, 8123 KiB  
Article
Design and Analysis: Servo-Tube-Powered Liquid Jet Injector for Drug Delivery Applications
by Rocco Portaro and Hoi Dick Ng
Appl. Sci. 2022, 12(14), 6920; https://doi.org/10.3390/app12146920 - 8 Jul 2022
Cited by 2 | Viewed by 2846
Abstract
The current state of commercially available needle-free liquid jet injectors for drug delivery offers no way of controlling the output pressure of the device in real time, as the driving mechanism for these injectors provides a fixed delivery pressure profile. In order to [...] Read more.
The current state of commercially available needle-free liquid jet injectors for drug delivery offers no way of controlling the output pressure of the device in real time, as the driving mechanism for these injectors provides a fixed delivery pressure profile. In order to improve the delivery efficiency as well as the precision of the targeted tissue depth, it is necessary to develop a power source that can accurately control the plunger velocity. The duration of a liquid jet injection can vary from 10 to 100 ms, and it generate acceleration greater than 2 g (where g is the gravity); thus, a platform for real-time control must exhibit a response time greater than 1 kHz and good accuracy. Improving the pioneering work by Taberner and others whereby a Lorentz force actuator based upon a voice coil is designed, this study presents a prototype injector system with greater controllability based on the use of a fully closed-loop control system and a classical three-phase linear motor consisting of three fixed coils and multiple permanent magnets. Apart from being capable of generating jets with a required stagnation pressure of 15–16 MPa for skin penetration and liquid injection, as well as reproducing typical injection dynamics using commercially available injectors, the novelty of this proposed platform is that it is proven to be capable of shaping the real-time jet injection pressure profile, including pulsed injection, so that it can later be tailored for more efficient drug delivery. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

13 pages, 7974 KiB  
Article
Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor
by Yi-Hsuan Lin, Chien-Sheng Liu and Chiu-Nung Yeh
Actuators 2021, 10(7), 155; https://doi.org/10.3390/act10070155 - 7 Jul 2021
Cited by 12 | Viewed by 5347
Abstract
Multi-DOF motion is realized in the eyes and joints of robots mostly through the combination of multiple one-degree-of-freedom (1-DOF) motors. However, this results in reduced efficiency, a large volume, reduced response speed, and inaccurate positioning. To solve these problems, this study proposes a [...] Read more.
Multi-DOF motion is realized in the eyes and joints of robots mostly through the combination of multiple one-degree-of-freedom (1-DOF) motors. However, this results in reduced efficiency, a large volume, reduced response speed, and inaccurate positioning. To solve these problems, this study proposes a novel 3-DOF spherical voice coil motor (VCM). In this VCM, 16 coils and a radially oriented ring magnet are used to generate a Lorentz force to achieve motion. In particular, coils for Z-axis rotation are sandwiched between the coils for X- and Y-axis rotation. Furthermore, the proposed VCM can achieve 360° rotation about the Z-axis. The commercial software ANSYS was used to design and verify the performance of the proposed VCM. Simulation results indicate that this VCM affords improved power efficiency because only a suitable combination of coils, rather than all coils, needs to be powered on. The results demonstrate the feasibility of the proposed 3-DOF spherical VCM. Full article
(This article belongs to the Special Issue Design and Application of Actuators with Multi-DOF Movement)
Show Figures

Figure 1

14 pages, 3350 KiB  
Article
Design and Optimization of a Lorentz-Force-Driven Planar Motor
by He Zhang and Baoquan Kou
Appl. Sci. 2017, 7(1), 7; https://doi.org/10.3390/app7010007 - 22 Dec 2016
Cited by 6 | Viewed by 7884
Abstract
This paper describes a short-stroke Lorentz-force-driven planar motor which can realize three-degree-of-freedom motions in high-precision positioning systems. It is an extended version of our previous publication. Based on the analytical model, the force expression concerning the main dimensional parameters is derived. Compared with [...] Read more.
This paper describes a short-stroke Lorentz-force-driven planar motor which can realize three-degree-of-freedom motions in high-precision positioning systems. It is an extended version of our previous publication. Based on the analytical model, the force expression concerning the main dimensional parameters is derived. Compared with the finite element simulation, the optimization method in this paper is completely based on the mathematical model, which saves considerable time and has clear physical meaning. The effect of the main parameters on the motor performances such as force, force density, and acceleration are analyzed. This information can provide important design references for researchers. Finally, one prototype is tested. The testing values for the resistance and inductance of the square coil agree well with the analytical values. Additionally, the measured forces show a good agreement with the analytical force expression, and the force characteristics show a good symmetry in the x and y directions. Full article
Show Figures

Figure 1

15 pages, 554 KiB  
Article
Magnetic Field Analysis of Lorentz Motors Using a Novel Segmented Magnetic Equivalent Circuit Method
by Junbing Qian, Xuedong Chen, Han Chen, Lizhan Zeng and Xiaoqing Li
Sensors 2013, 13(2), 1664-1678; https://doi.org/10.3390/s130201664 - 28 Jan 2013
Cited by 13 | Viewed by 6985
Abstract
A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated [...] Read more.
A simple and accurate method based on the magnetic equivalent circuit (MEC) model is proposed in this paper to predict magnetic flux density (MFD) distribution of the air-gap in a Lorentz motor (LM). In conventional MEC methods, the permanent magnet (PM) is treated as one common source and all branches of MEC are coupled together to become a MEC network. In our proposed method, every PM flux source is divided into three sub-sections (the outer, the middle and the inner). Thus, the MEC of LM is divided correspondingly into three independent sub-loops. As the size of the middle sub-MEC is small enough, it can be treated as an ideal MEC and solved accurately. Combining with decoupled analysis of outer and inner MECs, MFD distribution in the air-gap can be approximated by a quadratic curve, and the complex calculation of reluctances in MECs can be avoided. The segmented magnetic equivalent circuit (SMEC) method is used to analyze a LM, and its effectiveness is demonstrated by comparison with FEA, conventional MEC and experimental results. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Back to TopTop