Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Lobelia dortmanna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1662 KiB  
Article
Environmental Changes as a Factor in the Dynamics of Aquatic Vegetation Distribution in Belarusian Soft-Water Lakes
by Nina Sukhovilo, Daria Vlasova, Aliaksei Novik and Boris Vlasov
Limnol. Rev. 2025, 25(2), 26; https://doi.org/10.3390/limnolrev25020026 - 5 Jun 2025
Viewed by 475
Abstract
This article describes the reasons for and trends in the overgrowth of soft-water lakes in Belarus. Due to their unique water properties (low mineralization, pH, and nitrogen and phosphorus concentrations) and high water transparency, soft-water lakes are home to protected plant species like [...] Read more.
This article describes the reasons for and trends in the overgrowth of soft-water lakes in Belarus. Due to their unique water properties (low mineralization, pH, and nitrogen and phosphorus concentrations) and high water transparency, soft-water lakes are home to protected plant species like Lobelia dortmanna L., Isöetes lacustris L., and Littorella uniflora L. The purpose of this study was to analyze changes in aquatic vegetation distribution in seven soft-water Belarusian lakes and identify the causes of these changes. The initial data for this research were the results of field observations, the archive materials of the research laboratory of lake research conducted by the Belarusian State University for the period from 1971 to 2016, including morphometric and hydrochemical parameters, the characteristics of catchments and water exchange, and the results of studying the species composition and distribution of aquatic vegetation. The authors’ field studies were carried out in 2022–2024. We used expeditionary, hydrochemical, cartographic, and comparative research methods. The most significant changes in overgrowth were observed in Lakes Svityaz and Beloe (Luninets District). These lakes have high recreational loads. Significant negative trends were also noted in Lakes Bolshoe Ostrovito and Bredno. Over 35 years, the depth of distribution of submerged macrophytes in Lake Svityaz has decreased from 7 to 2 m, and the abundance and projective cover of semi-submerged macrophytes have increased. In Lake Beloe, I. lacustris, which forms a tier of submerged plants, has almost completely disappeared, and a previously absent strip of air-aquatic plants has formed. The total area of overgrowth in the lake has decreased from 35% of the water area to 3.2%. In Lake Bolshoe Ostrovito, Fontinalis sp., previously common at depths of up to 5 m, has practically disappeared. In Lake Bredno, the water moss Drepanocladus has spread to a depth of 4 m. In Lake Glubokoe, a new area of I. lacustris growth was discovered around an island at depths of up to 4 m. In Lake Cherbomyslo, the decrease in the species’ depth and area of distribution is associated with a weakening of the inflow of bog waters due to their backwater. The main causes of these changes are largely due to anthropogenic factors (water pollution by biogenic compounds) and, to a lesser extent, hydrological changes (decrease in the moisture content of lake catchments). Full article
Show Figures

Figure 1

13 pages, 2315 KiB  
Article
Lobelia Lakes’ Vegetation and Its Photosynthesis Pathways Concerning Water Parameters and the Stable Carbon Isotopic Composition of Plants’ Organic Matter
by Eugeniusz Pronin, Krzysztof Banaś, Rafał Chmara, Rafał Ronowski, Marek Merdalski, Anne-Lise Santoni and Olivier Mathieu
Plants 2024, 13(17), 2529; https://doi.org/10.3390/plants13172529 - 9 Sep 2024
Cited by 4 | Viewed by 1251
Abstract
Most of the aquatic vegetation produces organic substances via the C3 photosynthetic pathway (mosses, isoetids—Lobelia dortmanna L., Luronium natans (L.) Raf., and vascular plants) or Crassulacean acid metabolism (CAM, e.g., Littorella uniflora (L.) Asch. and Isoëtes lacustris L.) or by their ability to use HCO3 [...] Read more.
Most of the aquatic vegetation produces organic substances via the C3 photosynthetic pathway (mosses, isoetids—Lobelia dortmanna L., Luronium natans (L.) Raf., and vascular plants) or Crassulacean acid metabolism (CAM, e.g., Littorella uniflora (L.) Asch. and Isoëtes lacustris L.) or by their ability to use HCO3 via carbon concentration mechanisms (CCMs—some elodeids and charophytes). Differentiating these predominant photosynthetic pathways in aquatic vegetation based on their organic matter (OM) carbon stable isotopes (δ13CORG) is a complex task, in contrast to terrestrial plants. This study investigates the OM deposition, characterized by δ13CORG values in 10 macrophyte species with different photosynthetic pathways (C3, CAM, and CCM) collected from 14 softwater Lobelia lakes in northern Poland. The higher δ13CORG values distinguish the CCM group, indicating their use of 13C-enriched HCO3¯ in photosynthesis. CAM species show slightly higher δ13CORG values than C3, particularly in lower pH lakes. Principal component analysis of isotopic and environmental data did not yield clear distinctions by the groups, but still, they significantly differ in light of analyzed parameters and isotopic signals (PRMANOVA = 5.08, p < 0.01; K-W H = 27.01, p < 0.001). The first two PCA dimensions showed that the water pH and Ca2+ concentration positively influenced δ13C values. The influence of light conditions on δ13CORG values revealed by third PCA components seems to also be important. In summary, northern Polish Lobelia lakes serve as a key differentiation point between vegetation employing CCMs and those relying on C3/CAM photosynthesis without HCO3 utilization, providing insights into transitions in plant communities within these ecosystems. Full article
(This article belongs to the Special Issue Physiology and Ecology of Aquatic Plants)
Show Figures

Figure 1

36 pages, 16048 KiB  
Article
The Recent Environmental History, Attempted Restoration and Future Prospects of a Challenged Lobelia Pond in Northeastern Belgium
by Luc Denys, Jo Packet, An Leyssen and Floris Vanderhaeghe
Diversity 2024, 16(8), 487; https://doi.org/10.3390/d16080487 - 9 Aug 2024
Viewed by 2088
Abstract
Softwater ponds with Lobelia dortmanna (EU habitat type 3110) represent the rarest aquatic habitat in Belgium. As in many other European countries, its unfavourable conservation status necessitates restoration according to the EU Habitats Directive, which is compromised by a range of pressures and [...] Read more.
Softwater ponds with Lobelia dortmanna (EU habitat type 3110) represent the rarest aquatic habitat in Belgium. As in many other European countries, its unfavourable conservation status necessitates restoration according to the EU Habitats Directive, which is compromised by a range of pressures and faces increasing social–economic opposition. To explore appropriate goals and remaining obstacles for its ecological rehabilitation, we investigated the environmental history of a pond, formerly renowned for the occurrence of this habitat. We complemented monitoring data with information inferred from diatoms analysed from old samples, herbarium specimens and surface sediments, vegetation records, physical–chemical analyses and additional observations. This indicated almost circumneutral, slightly buffered and nutrient-poor conditions for the first decades of the 20th century. Deposition of atmospheric pollutants caused gradual acidification from the early 1940s, intensifying into mineral-acidic conditions by the 1970s. More recently, a period of alkalinisation and eutrophication followed despite some restoration efforts. We discuss these changes in the contexts of general setting, external pressures and internal processes. Reflecting upon the prospects for restoring the pond’s emblematic biodiversity, management implications for this and other softwater sites dealing with similar problems are discussed. A new combination in the diatom genus Iconella is proposed. Full article
(This article belongs to the Special Issue Aquatic Plant Diversity, Conservation, and Restoration)
Show Figures

Figure 1

20 pages, 3748 KiB  
Article
The Effect of Human Impact on the Water Quality and Biocoenoses of the Soft Water Lake with Isoetids: Lake Jeleń, NW Poland
by Piotr Klimaszyk, Dariusz Borowiak, Ryszard Piotrowicz, Joanna Rosińska, Elżbieta Szeląg-Wasielewska and Marek Kraska
Water 2020, 12(4), 945; https://doi.org/10.3390/w12040945 - 26 Mar 2020
Cited by 17 | Viewed by 4302
Abstract
Soft water lakes with isoetids (SLI) are ecosystems prone to degradation due to the low buffer capacity of their waters. One of the main threats resulting from human impact is eutrophication due to agriculture, catchment urbanization and recreational use. In this paper, changes [...] Read more.
Soft water lakes with isoetids (SLI) are ecosystems prone to degradation due to the low buffer capacity of their waters. One of the main threats resulting from human impact is eutrophication due to agriculture, catchment urbanization and recreational use. In this paper, changes in the water chemistry and transformation of biocoenoses of one of the largest Polish SLI, Lake Jeleń, over the past 30 years are presented. The lake is located within the borders of a city, and a significant part of its catchment is under agriculture and recreation use. The physicochemical (concentration of nutrients, organic matter, electrical conductivity, oxygen saturation and water pH) and biological parameters (macrophytes and phytoplankton) were measured in summer 1991, 2004, 2013 and 2018. Since the beginning of the 1990s, a gradual increase in the trophy of the lake has been observed as indicated by increased nutrient availability, deterioration of oxygen conditions and a decrease in water transparency. The alterations of water chemistry induce biological transformations, in particular, an increase in phytoplankton abundance (4-fold increase of biomass in epilimnion) as well as a gradual reduction in the range of the phytolittoral (from 10 to 6 m), a decrease in the frequency of isoetids, Lobelia dortmanna and Isoetes lacustris, and expansion of plant species characteristic for eutrophy. Full article
(This article belongs to the Special Issue Water Quality of Freshwater Ecosystems in a Temperate Climate)
Show Figures

Figure 1

25 pages, 3229 KiB  
Article
The Variability of Lake Water Chemistry in the Bory Tucholskie National Park (Northern Poland)
by Mariusz Sojka, Adam Choiński, Mariusz Ptak and Marcin Siepak
Water 2020, 12(2), 394; https://doi.org/10.3390/w12020394 - 1 Feb 2020
Cited by 15 | Viewed by 3364
Abstract
The paper presents the results of chemical analysis of lake waters in Bory Tucholskie National Park (BTNP). The BTNP area is unique due to its location within a single catchment and high variability in geological structure. Moreover, the lakes have different morphometric parameters, [...] Read more.
The paper presents the results of chemical analysis of lake waters in Bory Tucholskie National Park (BTNP). The BTNP area is unique due to its location within a single catchment and high variability in geological structure. Moreover, the lakes have different morphometric parameters, represent different hydrological types, trophic types and thermal regimes. Another unique feature is the existence of five lobelia lakes. This name comes from the Latin name of the taxon – Lobelia dortmanna L. which has been included in the Polish Red Data Book of Plants. The chemical analysis included 55 parameters, within macro elements (MEs), trace elements (TEs) and rare earth elements (REEs). Low concentrations of MEs, TEs and REEs confirm the absence of anthropogenic pressure. High variation of ME, TE and REE contents between individual lakes is due to different geological structure. The cluster analysis enabled lakes to be divided into six groups taking into account all analyzed water quality parameters. The lobelia lakes were characterized by the lowest concentrations of MEs and REEs, which mainly result from the small catchment area and their mainly endorheic character. The highest variability of MEs, TEs and REEs occurred in endorheic lakes, where the geological structure was dominant. The lowest variability of MEs, TEs and REEs occurred in the lakes connected by the Struga Siedmiu Jezior stream. The analysis of MEs, TEs and REEs in relation to the environmental factors and trophic, hydrologic and thermal typology allowed a better understanding of their spatial distribution in the BTNP lakes. The obtained results indicate that the values of the studied elements were generally close to the average values noted in surface waters according to the Geochemical Atlas of Europe. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

12 pages, 1258 KiB  
Article
Light Requirements of Water Lobelia (Lobelia dortmanna L.)
by Dariusz Borowiak, Katarzyna Bociąg, Kamil Nowiński and Magdalena Borowiak
Limnol. Rev. 2017, 17(4), 171-182; https://doi.org/10.1515/limre-2017-0016 (registering DOI) - 16 Feb 2018
Cited by 4 | Viewed by 479
Abstract
Maximum depth of colonization (zC) and total area covered by a population of Lobelia dortmanna, as well as underwater light regime were studied in 25 soft water lobelia lakes in north-western Poland. Variations in underwater light conditions among the lakes [...] Read more.
Maximum depth of colonization (zC) and total area covered by a population of Lobelia dortmanna, as well as underwater light regime were studied in 25 soft water lobelia lakes in north-western Poland. Variations in underwater light conditions among the lakes were described by Secchi disc depths (zSD), and by attenuation coefficients of irradiance within photosynthetically active radiation range (Kd,PAR), and euphotic zone depths (zEU) derived from photometric measurements conducted twice a year (in midspring and midsummer) during the period 2014–2015. Maximum depth of colonization of water lobelia ranged from 0.1 to 2.2 m (median zC = 0.8 m; mean zC = 1.0 m). Nine lakes showed the relative coverage of the littoral zone (RCLZ) by L. dortmanna to be greater than the mean value, which was 4.8%. Studies showed that light requirements of water lobelia increase when the maximum depth of colonization also increases. This pattern could be partially related to the greater energy needs of deeper growing individuals due to enlarged seed production and their incubation, and for the creation of much heavier inflorescences. Assessment of the light requirements of L. dortmanna along the depth gradient indicates that relative irradiance (percentage of subsurface irradiance of PAR) should be at the level of: (i) 47–50% (annual total of quantum irradiance 3083–3280 mol m−2 yr−2) for plants growing within a depth range of 2.0–2.5 m; (ii) 44–47% (2886–3083 mol m−2yr−1) for plants growing within a depth range of 1.5–2.0 m; (iii) 41–44% (2690–2886 mol m−2yr−2) for plants growing within a depth range of 1.0–1.5 m; and (iv) 34–41% (2230–2690 mol m−1 yr−1) for those growing in the littoral zone at a depth of between 0.5 and 1.0 m. In average conditions in the Pomeranian lakes, the maximum depth of colonization by L. dortmanna accounts for approximately a third of the Secchi disc depth and a fifth of the depth of the euphotic zone with irradiance of PAR at zC equal to about 43% of subsurface irradiance. It has also been demonstrated that the light factor is a crucial one that limits the absolute maximum depth of lobelia population occurrence in Pomeranian lakes. The cleanest and most transparent lakes of this region have light attenuation coefficients (Kd,PAR) within the range of 0.35–0.42 m−1, which corresponds to the maximum colonization depths of 1.8–2.2 m. Full article
Back to TopTop