Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Leishmania (L.) infantum chagasi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5451 KiB  
Article
High Selectivity of 8-Hydroxyquinoline on Leishmania (Leishmania) and Leishmania (Viannia) Species Correlates with a Potent Therapeutic Activity In Vivo
by Sarah Kymberly Santos de Lima, Jéssica Adriana Jesus, Cristiano Raminelli, Márcia Dalastra Laurenti and Luiz Felipe Domingues Passero
Pharmaceuticals 2023, 16(5), 707; https://doi.org/10.3390/ph16050707 - 7 May 2023
Cited by 4 | Viewed by 2690
Abstract
Leishmaniasis is a neglected disease caused by protozoa of the genus Leishmania, which causes different clinical manifestations. Drugs currently used in the treatment such as pentavalent antimonial and amphotericin B cause severe side effects in patients, and parasite resistance has been reported. [...] Read more.
Leishmaniasis is a neglected disease caused by protozoa of the genus Leishmania, which causes different clinical manifestations. Drugs currently used in the treatment such as pentavalent antimonial and amphotericin B cause severe side effects in patients, and parasite resistance has been reported. Thus, it is necessary and urgent to characterize new and effective alternative drugs to replace the current chemotherapy of leishmaniasis. In this regard, it has been experimentally demonstrated that quinoline derivatives present significative pharmacological and parasitic properties. Thus, the aim of this work was to demonstrate the leishmanicidal activity of 8-hydroxyquinoline (8-HQ) in vitro and in vivo. The leishmanicidal activity (in vitro) of 8-HQ was assayed on promastigote and intracellular amastigote forms of L. (L.) amazonensis, L. (L.) infantum chagasi, L. (V.) guyanensis L. (V.) naiffi, L. (V.) lainsoni, and L. (V.) shawi. Additionally, the levels of nitric oxide and hydrogen peroxide were analyzed. The therapeutic potential of 8-HQ was analyzed in BALB/c mice infected with a strain of L. (L.) amazonensis that causes anergic cutaneous diffuse leishmaniasis. In vitro data showed that at 24 and 72 h, 8-HQ eliminated promastigote and intracellular amastigote forms of all studied species and this effect may be potentialized by nitric oxide. Furthermore, 8-HQ was more selective than miltefosine. Infected animals treated with 8-HQ by the intralesional route dramatically reduced the number of tissue parasites in the skin, and it was associated with an increase in IFN-γ and decrease in IL-4, which correlated with a reduction in inflammatory reaction in the skin. These results strongly support the idea that 8-HQ is an alternative molecule that can be employed in the treatment of leishmaniasis, given its selectivity and multispectral action in parasites from the Leishmania genus. Full article
(This article belongs to the Special Issue Natural Products for Treatment of Parasitic Diseases)
Show Figures

Figure 1

14 pages, 1477 KiB  
Article
Comparative Genomic Analyses of New and Old World Viscerotropic Leishmanine Parasites: Further Insights into the Origins of Visceral Leishmaniasis Agents
by Fernando Tobias Silveira, Edivaldo Costa Sousa Junior, Rodrigo Vellasco Duarte Silvestre, Thiago Vasconcelos dos Santos, Wilfredo Sosa-Ochoa, Concepción Zúniga Valeriano, Patrícia Karla Santos Ramos, Samir Mansour Moraes Casseb, Luciana Vieira do Rêgo Lima, Marliane Batista Campos, Vania Lucia da Matta, Claudia Maria Gomes, Gabriela V. Araujo Flores, Carmen M. Sandoval Pacheco, Carlos Eduardo Corbett and Márcia Dalastra Laurenti
Microorganisms 2023, 11(1), 25; https://doi.org/10.3390/microorganisms11010025 - 21 Dec 2022
Cited by 9 | Viewed by 2984
Abstract
Visceral leishmaniasis (VL), also known as kala-azar, is an anthropozoonotic disease affecting human populations on five continents. Aetiologic agents belong to the Leishmania (L.) donovani complex. Until the 1990s, three leishmanine parasites comprised this complex: L. (L.) donovani Laveran & Mesnil 1903, L. [...] Read more.
Visceral leishmaniasis (VL), also known as kala-azar, is an anthropozoonotic disease affecting human populations on five continents. Aetiologic agents belong to the Leishmania (L.) donovani complex. Until the 1990s, three leishmanine parasites comprised this complex: L. (L.) donovani Laveran & Mesnil 1903, L. (L.) infantum Nicolle 1908, and L. (L.) chagasi Lainson & Shaw 1987 (=L. chagasi Cunha & Chagas 1937). The VL causal agent in the New World (NW) was previously identified as L. (L.) chagasi. After the development of molecular characterization, however, comparisons between L. (L.) chagasi and L. (L.) infantum showed high similarity, and L. (L.) chagasi was then regarded as synonymous with L. (L.) infantum. It was, therefore, suggested that L. (L.) chagasi was not native to the NW but had been introduced from the Old World by Iberian colonizers. However, in light of ecological evidence from the NW parasite’s enzootic cycle involving a wild phlebotomine vector (Lutzomyia longipalpis) and a wild mammal reservoir (the fox, Cerdocyon thous), we have recently analyzed by molecular clock comparisons of the DNA polymerase alpha subunit gene the whole-genome sequence of L. (L.) infantum chagasi of the most prevalent clinical form, atypical dermal leishmaniasis (ADL), from Honduras (Central America) with that of the same parasite from Brazil (South America), as well as those of L. (L.) donovani (India) and L. (L.) infantum (Europe), which revealed that the Honduran parasite is older ancestry (382,800 ya) than the parasite from Brazil (143,300 ya), L. (L.) donovani (33,776 ya), or L. (L.) infantum (13,000 ya). In the present work, we have now amplified the genomic comparisons among these leishmanine parasites, exploring mainly the variations in the genome for each chromosome, and the number of genomic SNPs for each chromosome. Although the results of this new analysis have confirmed a high genomic similarity (~99%) among these parasites [except L. (L.) donovani], the Honduran parasite revealed a single structural variation on chromosome 17, and the highest frequency of genomic SNPs (more than twice the number seen in the Brazilian one), which together to its extraordinary ancestry (382,800 ya) represent strong evidence that L. (L.) chagasi/L. (L.) infantum chagasi is, in fact, native to the NW, and therefore with valid taxonomic status. Furthermore, the Honduran parasite, the most ancestral viscerotropic leishmanine parasite, showed genomic and clinical taxonomic characteristics compatible with a new Leishmania species causing ADL in Central America. Full article
Show Figures

Figure 1

17 pages, 1458 KiB  
Article
Visceral Leishmaniasis Urbanization in the Brazilian Amazon Is Supported by Significantly Higher Infection Transmission Rates Than in Rural Area
by Rodrigo R. Furtado, Ana Camila Alves, Luciana V. R. Lima, Thiago Vasconcelos dos Santos, Marliane B. Campos, Patrícia Karla S. Ramos, Claudia Maria C. Gomes, Márcia D. Laurenti, Vânia Lucia da Matta, Carlos Eduardo Corbett and Fernando T. Silveira
Microorganisms 2022, 10(11), 2188; https://doi.org/10.3390/microorganisms10112188 - 4 Nov 2022
Cited by 2 | Viewed by 2269
Abstract
This was an open cohort prospective study (2016–2018) that analyzed the prevalence and incidence rates of human Leishmania (L.) infantum chagasi-infection and the evolution of their clinical-immunological profiles in distinct urban and rural scenarios of American visceral leishmaniasis (AVL) in [...] Read more.
This was an open cohort prospective study (2016–2018) that analyzed the prevalence and incidence rates of human Leishmania (L.) infantum chagasi-infection and the evolution of their clinical-immunological profiles in distinct urban and rural scenarios of American visceral leishmaniasis (AVL) in Pará State, in the Brazilian Amazon. These infection profiles were based on species-specific DTH/IFAT-IgG assays and clinical evaluation of infected individuals, comprising five profiles: three asymptomatic, Asymptomatic Infection [AI], Subclinical Resistant Infection [SRI], and Indeterminate Initial Infection [III]; and two symptomatic, Subclinical Oligosymptomatic Infection [SOI] and Symptomatic Infection [SI = AVL]. The two distinct scenarios (900 km away) were the urban area of Conceição do Araguaia municipality and the rural area of Bujaru municipality in the southeast and northeast of Pará State. Human populations were chosen based on a simple convenience sampling design (5–10% in each setting), with 1723 individuals (5.3%) of the population (32,464) in the urban area and 1568 individuals (8.9%) of the population (17,596) in the rural one. A serological survey (IFAT-IgG) of canine infection was also performed in both scenarios: 195 dogs in the urban area and 381 in the rural one. Prevalence and incidence rates of human infection were higher in the urban area (20.3% and 13.6/100 person-years [py]) than in the rural setting (14.1% and 6.8/100-py). The AI profile was the most prevalent and incident in both urban (13.4% and 8.1/100-py) and rural (8.3% and 4.2/100-py) scenarios, but with higher rates in the former. An III profile case evolved to SOI profile after four weeks of incubation and another to SI (=AVL) after six. The prevalence of canine infection in an urban setting (39.2%) was also higher (p < 0.05) than that (32%) in the rural zone. AVL urbanization in Pará State, in the Brazilian Amazon, has led to infection rates significantly higher than those in rural sites, requiring more intense control measures. Full article
(This article belongs to the Special Issue Leishmaniasis: Interventions Used to Control Infection)
Show Figures

Figure 1

15 pages, 1741 KiB  
Article
In Vitro Susceptibility to Miltefosine of Leishmania infantum (syn. L. chagasi) Isolates from Different Geographical Areas in Brazil
by Caroline Ricce Espada, Erica V. de Castro Levatti, Mariana Côrtes Boité, Dorcas Lamounier, Jorge Alvar, Elisa Cupolillo, Carlos Henrique Nery Costa, Joelle Rode and Silvia R. B. Uliana
Microorganisms 2021, 9(6), 1228; https://doi.org/10.3390/microorganisms9061228 - 5 Jun 2021
Cited by 10 | Viewed by 4084
Abstract
Treatment of visceral leishmaniasis in Brazil still relies on meglumine antimoniate, with less than ideal efficacy and safety, making new therapeutic tools an urgent need. The oral drug miltefosine was assayed in a phase II clinical trial in Brazil with cure rates lower [...] Read more.
Treatment of visceral leishmaniasis in Brazil still relies on meglumine antimoniate, with less than ideal efficacy and safety, making new therapeutic tools an urgent need. The oral drug miltefosine was assayed in a phase II clinical trial in Brazil with cure rates lower than previously demonstrated in India. The present study investigated the susceptibility to miltefosine in 73 Brazilian strains of Leishmania infantum from different geographic regions, using intracellular amastigote and promastigote assays. The EC50 for miltefosine of 13 of these strains evaluated in intracellular amastigotes varied between 1.41 and 4.57 μM. The EC50 of the 73 strains determined in promastigotes varied between 5.89 and 23.7 μM. No correlation between in vitro miltefosine susceptibility and the presence of the miltefosine sensitive locus was detected among the tested strains. The relatively low heterogeneity in miltefosine susceptibility observed for the 73 strains tested in this study suggests the absence of decreased susceptibility to miltefosine in Brazilian L. infantum and does not exclude future clinical evaluation of miltefosine for VL treatment in Brazil. Full article
(This article belongs to the Special Issue Leishmania and Leishmaniasis)
Show Figures

Figure 1

15 pages, 1095 KiB  
Review
Urine-Based Antigen (Protein) Detection Test for the Diagnosis of Visceral Leishmaniasis
by Antonio Campos-Neto and Claudia Abeijon
Microorganisms 2020, 8(11), 1676; https://doi.org/10.3390/microorganisms8111676 - 28 Oct 2020
Cited by 9 | Viewed by 4025
Abstract
This review describes and appraises a novel protein-based antigen detection test for visceral leishmaniasis (VL). The test detects in patient’s urine six proteins from Leishmania infantum (chagasi) and Leishmania donovani, the etiological agents of VL. The gold standard test for VL is [...] Read more.
This review describes and appraises a novel protein-based antigen detection test for visceral leishmaniasis (VL). The test detects in patient’s urine six proteins from Leishmania infantum (chagasi) and Leishmania donovani, the etiological agents of VL. The gold standard test for VL is microscopic observation of the parasites in aspirates from spleen, liver, or bone marrow (and lymph node for dogs). Culture of the parasites or detection of their DNA in these aspirates are also commonly used. Serological tests are available but they cannot distinguish patients with active VL from either healthy subjects exposed to the parasites or from subjects who had a successful VL treatment. An antigen detection test based on the agglutination of anti-leishmania carbohydrates antibody coated latex beads has been described. However, the results obtained with this carbohydrate-based test have been conflicting. Using mass spectrometry, we discovered six L. infantum/L. donovani proteins excreted in the urine of VL patients and used them as markers for the development of a robust mAb-based antigen (protein) detection test. The test is assembled in a multiplexed format to simultaneously detect all six markers. Its initial clinical validation showed a sensitivity of 93% and specificity of 100% for VL diagnosis. Full article
(This article belongs to the Special Issue Leishmania and Leishmaniasis)
Show Figures

Figure 1

10 pages, 2319 KiB  
Article
The Antileishmanial Potential of C-3 Functionalized Isobenzofuranones against Leishmania (Leishmania) Infantum Chagasi
by Wagner Luiz Pereira, Raphael De Souza Vasconcellos, Christiane Mariotini-Moura, Rodrigo Saar Gomes, Rafaela De Cássia Firmino, Adalberto Manoel Da Silva, Abelardo Silva Júnior, Gustavo Costa Bressan, Márcia Rogéria Almeida, Luís Carlos Crocco Afonso, Róbson Ricardo Teixeira and Juliana Lopes Rangel Fietto
Molecules 2015, 20(12), 22435-22444; https://doi.org/10.3390/molecules201219857 - 14 Dec 2015
Cited by 9 | Viewed by 5660
Abstract
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. Clinically, leishmaniases range from cutaneous to visceral forms, with estimated global incidences of 1.2 and 0.4 million cases per year, respectively. The treatment of these diseases relies on multiple parenteral injections [...] Read more.
Leishmaniases are diseases caused by protozoan parasites of the genus Leishmania. Clinically, leishmaniases range from cutaneous to visceral forms, with estimated global incidences of 1.2 and 0.4 million cases per year, respectively. The treatment of these diseases relies on multiple parenteral injections with pentavalent antimonials or amphotericin B. However, these pharmaceuticals are either too toxic or expensive for routine use in developing countries. These facts call for safer, cheaper, and more effective new antileishmanial drugs. In this investigation, we describe the results of the assessment of the activities of a series of isobenzofuran-1(3H)-ones (phtalides) against Leishmania (Leishmania) infantum chagasi, which is the main causative agent of visceral leishmaniasis in the New World. The compounds were tested at concentrations of 100, 75, 50, 25 and 6.25 µM over 24, 48, and 72 h. After 48 h of treatment at the 100 µM concentration, compounds 7 and 8 decreased parasite viability to 4% and 6%, respectively. The concentration that gives half-maximal responses (LC50) for the antileishmanial activities of compounds 7 and 8 against promastigotes after 24 h were 60.48 and 65.93 µM, respectively. Additionally, compounds 7 and 8 significantly reduced parasite infection in macrophages. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop