Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Lamb wave mode control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4412 KB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 3050
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

13 pages, 1582 KB  
Article
Numerical Study on Sharp Defect Evaluation Using Higher Order Modes Cluster (HOMC) Guided Waves and Machine Learning Models
by Jing Xiao and Fangsen Cui
Acoustics 2025, 7(2), 22; https://doi.org/10.3390/acoustics7020022 - 17 Apr 2025
Viewed by 810
Abstract
The inspection of corrosion and pitting-type defects is critical in the petrochemical, marine, and offshore industries. Guided wave inspection is widely used to detect these flaws and control operational costs. Higher order modes cluster (HOMC) guided waves, composed of higher-order Lamb wave modes, [...] Read more.
The inspection of corrosion and pitting-type defects is critical in the petrochemical, marine, and offshore industries. Guided wave inspection is widely used to detect these flaws and control operational costs. Higher order modes cluster (HOMC) guided waves, composed of higher-order Lamb wave modes, offer enhanced resolution compared to low-frequency guided waves. They exhibit minimal dispersion, reduced sensitivity to surface features such as T-joints, and retain most of their energy upon interacting with surface defects. This study employs two-dimensional finite element simulations to investigate the propagation and interaction of HOMC guided waves with defects in a T-joint and an aluminum plate. Both conventional fitting methods and machine learning (ML) models are used to estimate the depth of sharp defects reaching up to half the plate thickness. The results demonstrate that both approaches can utilize data from defects of one width to predict the depth of defects with a different width. The ML model outperforms the fitting method, achieving higher prediction accuracy while reducing dependence on expert knowledge. The developed method shows strong potential for characterizing sharp defects of varying widths, closely resembling real-world pitting corrosion scenarios. Full article
Show Figures

Figure 1

24 pages, 5693 KB  
Review
Physical Sensors Based on Lamb Wave Resonators
by Zixia Yu, Yongqing Yue, Zhaozhao Liang, Xiaolong Zhao, Fangpei Li, Wenbo Peng, Quanzhe Zhu and Yongning He
Micromachines 2024, 15(10), 1243; https://doi.org/10.3390/mi15101243 - 9 Oct 2024
Cited by 4 | Viewed by 5149
Abstract
A Lamb wave is a guided wave that propagates within plate-like structures, with its vibration mode resulting from the coupling of a longitudinal wave and a shear vertical wave, which can be applied in sensors, filters, and frequency control devices. The working principle [...] Read more.
A Lamb wave is a guided wave that propagates within plate-like structures, with its vibration mode resulting from the coupling of a longitudinal wave and a shear vertical wave, which can be applied in sensors, filters, and frequency control devices. The working principle of Lamb wave sensors relies on the excitation and propagation of this guided wave within piezoelectric material. Lamb wave sensors exhibit significant advantages in various sensing applications due to their unique wave characteristics and design flexibility. Compared to traditional surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors, Lamb wave sensors can not only achieve higher frequencies and quality factors in smaller dimensions but also exhibit superior integration and multifunctionality. In this paper, we briefly introduce Lamb wave sensors, summarizing methods for enhancing their sensitivity through optimizing electrode configurations and adjusting piezoelectric thin plate structures. Furthermore, this paper systematically explores the development of Lamb wave sensors in various sensing applications and provides new insights into their future development. Full article
Show Figures

Figure 1

22 pages, 13293 KB  
Article
Research on Delamination Damage Quantification Detection of CFRP Bending Plate Based on Lamb Wave Mode Control
by Quanpeng Yu, Shiyuan Zhou, Yuhan Cheng and Yao Deng
Sensors 2024, 24(6), 1790; https://doi.org/10.3390/s24061790 - 10 Mar 2024
Cited by 8 | Viewed by 2483
Abstract
The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the [...] Read more.
The carbon-fiber-reinforced polymer (CFRP) bending structure is widely used in aviation. The emergence and spread of delamination damage will decrease the safety of in-service bending structures. Lamb waves can effectively identify delamination damage as a high-damage-sensitivity detection tool. For this present study, the signal difference coefficient (SDC) was introduced to quantify delamination damage and evaluate the sensitivity of A0-mode and S0-mode Lamb waves to delamination damage. The simulation results show that compared with the S0-mode Lamb wave, the A0-mode Lamb wave exhibits higher delamination damage sensitivity. The delamination damage can be quantified based on the strong correlation between the SDC and the delamination damage size. The control effect of the linear array PZT phase time-delay method on the Lamb wave mode was investigated by simulation. The phase time-delay method realizes the generation of a single-mode Lamb wave, which can separately excite the A0-mode and S0-mode Lamb wave to identify delamination damage of different sizes. The A0-mode Lamb wave was excited by the developed one-dimensional miniaturized linear comb transducer (LCT), which was used to conduct the detection experiment on the CFRP bending plate with delamination damage sizes of Φ6.0 mm, Φ10.0 mm, and Φ15.0 mm. The experimental results verify the correctness of the simulation. According to the Hermite interpolation results of the finite-element simulation data, the relationship between the delamination damage size and the SDC was fitted by the Gaussian function and Rational function, which can accurately quantify the delamination damage. The absolute error of the delamination damage quantification with Gaussian and Rational fitting expression does not exceed 0.8 mm and 0.7 mm, and the percentage error is not more than 8% and 7%. The detection and signal processing methods employed in the present research are easy to operate and implement, and accurate delamination damage quantification results have been obtained. Full article
(This article belongs to the Special Issue Advanced Sensing and Evaluating Technology in Nondestructive Testing)
Show Figures

Figure 1

13 pages, 2383 KB  
Article
Ultrasonic Attenuation of Carbon-Fiber Reinforced Composites
by Kanji Ono
J. Compos. Sci. 2023, 7(11), 479; https://doi.org/10.3390/jcs7110479 - 17 Nov 2023
Cited by 3 | Viewed by 2992
Abstract
Ultrasonic attenuation measurements were conducted on cross-ply and quasi-isotropic lay-ups of eight types of carbon-fiber reinforced composites (CFRPs) using through-transmission methods with diffraction correction. Attenuation values were substantially higher than those of unidirectional composites and other structural materials. Wave modes, fiber distributions, matrix [...] Read more.
Ultrasonic attenuation measurements were conducted on cross-ply and quasi-isotropic lay-ups of eight types of carbon-fiber reinforced composites (CFRPs) using through-transmission methods with diffraction correction. Attenuation values were substantially higher than those of unidirectional composites and other structural materials. Wave modes, fiber distributions, matrix resins, and consolidation methods affected total attenuation. Transverse mode, quasi-isotropic lay-up, and polyimide and thermoplastic resins generally produced higher attenuation. No clear trends from the fiber distribution were revealed, indicating that it is not feasible presently to predict the attenuation of various lay-ups from the unidirectional values. That is, direct attenuation tests for different laminate lay-ups are needed. This work expanded the existing attenuation database by properly determining the attenuation coefficients of two additional layup types of CFRP laminates. Results showed the merit of ultrasonic attenuation measurements for quality control and structural health monitoring applications. A crucial benefit of the through-transmission methods is that they enable the prediction of Lamb wave attenuation in combination with software like Disperse (ver. 2.0.20a, Imperial College, London, UK, 2013). Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

23 pages, 6709 KB  
Article
Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests
by Roshan Joseph and Victor Giurgiutiu
Actuators 2023, 12(3), 93; https://doi.org/10.3390/act12030093 - 21 Feb 2023
Cited by 3 | Viewed by 2360
Abstract
Acoustic emission (AE) was monitored during stress intensity factor (SIF)-controlled high-cycle fatigue (HCF) tests on an aluminum 2024-T3 specimen with a fatigue crack growing at its center. The SIF control was implemented in such a manner that crack growth could be slowed down [...] Read more.
Acoustic emission (AE) was monitored during stress intensity factor (SIF)-controlled high-cycle fatigue (HCF) tests on an aluminum 2024-T3 specimen with a fatigue crack growing at its center. The SIF control was implemented in such a manner that crack growth could be slowed down and even inhibited while the fatigue experiment continued. In the beginning, a specific type of AE signal was observed while the crack was allowed to grow to up to approximately 9.4 mm in length. Subsequently, the load was reduced in order to control the SIF value at the crack tip and to inhibit the crack growth. AE signals were recorded even when the crack stopped growing, although the specific signature of these AE signals was different from those observed when the crack was growing, as discussed in the text. The gist of the phenomenon reported in this article is that strong AE signals could still be observed even when the crack stopped growing. These latter AE signals could be due to rubbing and clapping of the crack faying surfaces. Travel analysis was consistently performed to ensure that these AE signals were originating from the crack, though not necessarily from the crack tip. In addition, absorbing clay wave dams were built around the crack region to inhibit boundary reflections and grip noise. Fast Fourier Transform (FFT) and Choi–Williams Transform (CWT) analysis were performed to classify the AE signals. It was observed that the AE signals related to crack growth were clearly different from the AE signals originating from the crack while the crack was not growing. Strong S0-mode Lamb wave components were observed in the crack-growth AE signals, whereas strong A0-mode Lamb wave components dominated the non-crack-growth AE signals. Pearson correlation clustering analysis was performed to compare the crack-growth and non-crack growth AE signals. We propose that the fatigue-crack faying surfaces may undergo rubbing and/or clapping during fatigue cyclic loading and thus produce strong AE signals that are registered by the AE system as hits, although the crack is not actually growing. The understanding of this phenomenon is very important for the design of the structural health monitoring (SHM) system based on AE-hit signal capture and interpretation. Full article
Show Figures

Figure 1

16 pages, 5926 KB  
Article
Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves
by Jin-Chen Hsu and Chih-Yu Chang
Micromachines 2022, 13(12), 2175; https://doi.org/10.3390/mi13122175 - 8 Dec 2022
Cited by 5 | Viewed by 2302
Abstract
In this study, we realize acoustic aggregation and separation of microparticles in fluid channels driven by standing Lamb waves of a 300-μm-thick double-side polished lithium-niobate (LiNbO3) plate. We demonstrate that the counter-propagating lowest-order antisymmetric and symmetric Lamb modes can be excited [...] Read more.
In this study, we realize acoustic aggregation and separation of microparticles in fluid channels driven by standing Lamb waves of a 300-μm-thick double-side polished lithium-niobate (LiNbO3) plate. We demonstrate that the counter-propagating lowest-order antisymmetric and symmetric Lamb modes can be excited by double interdigitated transducers on the LiNbO3 plate to produce interfacial coupling with the fluid in channels. Consequently, the solid–fluid coupling generates radiative acoustic pressure and streaming fields to actuate controlled acoustophoretic motion of particles by means of acoustic radiation and Stokes drag forces. We conducted finite-element simulations based on the acoustic perturbation theory with full-wave modeling to tailor the acoustic and streaming fields in the channels driven by the standing Lamb waves. As a result, the acoustic process and the mechanism of particle aggregation and separation were elucidated. Experiments on acoustic manipulation of particles in channels validate the capability of aggregation and separation by the designed devices. It is observed that strong streaming dominates the particle aggregation while the acoustic radiation force differentially expels particles with different sizes from pressure antinodes to achieve continuous particle separation. This study paves the way for Lamb-wave acoustofluidics and may trigger more innovative acoustofluidic systems driven by Lamb waves and other manipulating approaches incorporated on a thin-plate platform. Full article
(This article belongs to the Special Issue Acoustofluidics: Applications, Phenomena and Fabrication Technique)
Show Figures

Figure 1

18 pages, 6849 KB  
Article
Modeling Magnetostrictive Transducers for Structural Health Monitoring: Ultrasonic Guided Wave Generation and Reception
by Gaofeng Sha and Cliff J. Lissenden
Sensors 2021, 21(23), 7971; https://doi.org/10.3390/s21237971 - 29 Nov 2021
Cited by 18 | Viewed by 4358
Abstract
Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used [...] Read more.
Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used to generate and receive both SH and Lamb waves and yet their characteristics have not been thoroughly studied, certainly not on par with piezoelectric transducers. A series of multiphysics simulations of the MST/plate system is conducted to investigate the characteristics of MSTs that affect guided wave generation and reception. The results are presented in the vein of showing the flexibility that MSTs provide for guided waves in a diverse range of applications. In addition to studying characteristics of the MST components (i.e., the magnetostrictive layer, meander electric coil, and biased magnetic field), single-sided and double-sided MSTs are compared for preferential wave mode generation. The wave mode control principle is based on the activation line for phase velocity dispersion curves, whose slope is the wavelength, which is dictated by the meander coil spacing. A double-sided MST with in-phase signals preferentially excites symmetric SH and Lamb modes, while a double-sided MST with out-of-phase signals preferentially excites antisymmetric SH and Lamb modes. All attempted single-mode actuations with double-sided MSTs were successful, with the SH3 mode actuated at 922 kHz in a 6-mm-thick plate being the highest frequency. Additionally, the results show that increasing the number of turns in the meander coil enhances the sensitivity of the MST as a receiver and substantially reduces the frequency bandwidth. Full article
Show Figures

Figure 1

14 pages, 7498 KB  
Article
Modelling and Validation of a Guided Acoustic Wave Temperature Monitoring System
by Lawrence Yule, Bahareh Zaghari, Nicholas Harris and Martyn Hill
Sensors 2021, 21(21), 7390; https://doi.org/10.3390/s21217390 - 6 Nov 2021
Cited by 9 | Viewed by 3638
Abstract
The computer modelling of condition monitoring sensors can aide in their development, improve their performance, and allow for the analysis of sensor impact on component operation. This article details the development of a COMSOL model for a guided wave-based temperature monitoring system, with [...] Read more.
The computer modelling of condition monitoring sensors can aide in their development, improve their performance, and allow for the analysis of sensor impact on component operation. This article details the development of a COMSOL model for a guided wave-based temperature monitoring system, with a view to using the technology in the future for the temperature monitoring of nozzle guide vanes, found in the hot section of aeroengines. The model is based on an experimental test system that acts as a method of validation for the model. Piezoelectric wedge transducers were used to excite the S0 Lamb wave mode in an aluminium plate, which was temperature controlled using a hot plate. Time of flight measurements were carried out in MATLAB and used to calculate group velocity. The results were compared to theoretical wave velocities extracted from dispersion curves. The assembly and validation of such a model can aide in the future development of guided wave based sensor systems, and the methods provided can act as a guide for building similar COMSOL models. The results show that the model is in good agreement with the experimental equivalent, which is also in line with theoretical predictions. Full article
(This article belongs to the Special Issue Sensors for Severe Environments)
Show Figures

Figure 1

12 pages, 2740 KB  
Article
Modes Control of Lamb Wave in Plates Using Meander-Line Electromagnetic Acoustic Transducers
by Yinghong Zhang, Zhenghua Qian and Bin Wang
Appl. Sci. 2020, 10(10), 3491; https://doi.org/10.3390/app10103491 - 18 May 2020
Cited by 10 | Viewed by 3834
Abstract
The multimode and dispersion characteristics of Lamb waves make them difficult to apply to nondestructive evaluation. This paper presents a paired configuration of a meander-line coil electromagnetic acoustic transducer (EMAT) to generate a single-mode symmetric and antisymmetric Lamb wave in aluminum plates. In [...] Read more.
The multimode and dispersion characteristics of Lamb waves make them difficult to apply to nondestructive evaluation. This paper presents a paired configuration of a meander-line coil electromagnetic acoustic transducer (EMAT) to generate a single-mode symmetric and antisymmetric Lamb wave in aluminum plates. In the paired structure, the bias magnetic field of the EMAT that generates symmetric mode Lamb waves is perpendicular to the plate surface, while the bias magnetic field of the EMAT that generates antisymmetric Lamb waves is parallel to the plate surface. The symmetric and antisymmetric exciting forces generated by these two EMATs are consistent with the dispersion equations of single symmetric and antisymmetric Lamb wave modes, respectively. The numerical simulations and experiments verified that the presented paired configurations of meander-line coil EMATs can effectively control the generation of single-mode Lamb waves at low frequencies. Full article
(This article belongs to the Special Issue Guided Wave-Based Damage Identification for Composite Structures)
Show Figures

Figure 1

15 pages, 5097 KB  
Article
Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films
by Rymantas Kažys, Reimondas Šliteris, Liudas Mažeika, Olgirdas Tumšys and Egidijus Žukauskas
Materials 2019, 12(10), 1648; https://doi.org/10.3390/ma12101648 - 21 May 2019
Cited by 9 | Viewed by 3893
Abstract
The ultrasonic testing technique using Lamb waves is widely used for the non-destructive testing and evaluation of various structures. For air-coupled excitation and the reception of A0 mode Lamb waves, leaky guided waves are usually exploited. However, at low frequencies (<100 kHz), [...] Read more.
The ultrasonic testing technique using Lamb waves is widely used for the non-destructive testing and evaluation of various structures. For air-coupled excitation and the reception of A0 mode Lamb waves, leaky guided waves are usually exploited. However, at low frequencies (<100 kHz), the velocity of this mode in plastic and composite materials can become slower than the ultrasound velocity in air, and its propagation in films is accompanied only by an evanescent wave in air. To date, the information about the attenuation of the slow A0 mode is very contradictory. Therefore, the objective of this investigation was the measurement of the attenuation of the slow A0 mode in thin plastic films. The measurement of the attenuation of normal displacements of the film caused by a propagating slow A0 mode is discussed. The normal displacements of the film at different distances from the source were measured by a laser interferometer. In order to reduce diffraction errors, the measurement method based on the excitation of cylindrical but not plane waves was proposed. The slow A0 mode was excited in the polyvinylchloride film by a dry contact type ultrasonic transducer made of high-efficiency PMN-32%PT strip-like piezoelectric crystal. It was found that that the attenuation of the slow A0 mode in PVC film at the frequency of 44 kHz is 2 dB/cm. The obtained results can be useful for the development of quality control methods for plastic films. Full article
(This article belongs to the Special Issue Non-destructive Inspection)
Show Figures

Figure 1

Back to TopTop