Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Theoretical Background for the Measurement of the Attenuation
2.2. Finite Element Modelling
3. Experimental Set-Up
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hellier, C.J. Handbook of Nondestructive Evaluation, 2nd ed.; McGraw-Hill Companies: New York, NY, USA, 2013; p. 720. [Google Scholar]
- Blitz, J. Electrical and Magnetic Methods of Non-destructive Testing; Springer: Dordrecht, The Netherlands, 1997; p. 261. [Google Scholar]
- Staszewski, W.J.; Boller, C.; Tomlinson, G.R. Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing; John Wiley & Sons: Padstow, UK, 2004; p. 266. [Google Scholar]
- Koyama, K.; Hoshikawa, H.; Kojima, G. Eddy Current Nondestructive Testing for Carbon Fiber- Reinforced Composites. J. Pressure Vessel Technol. 2013, 135. [Google Scholar] [CrossRef]
- Luccy, E. Applications of the Infrared Thermography in the Energy Audit of Buildings: A Review. Renew. Sustain. Energy Rev. 2018, 82, 3077–3090. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Guided Waves in Solid Media; Cambridge University Press: New York, NY, USA, 2014; p. 512. [Google Scholar]
- Pant, S.; Laliberte, J.; Martinez, M.; Rocha, B. Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate. Compos. Struct. 2014, 111, 566–579. [Google Scholar] [CrossRef]
- Sharma, S.; Mukherjee, A. Damage detection in submerged plates using ultrasonic guided waves. Sadhana 2014, 39, 1009–1034. [Google Scholar] [CrossRef]
- Karim, M.R.; Mal, A.K. Inversion of leaky Lamb wave data by simplex algorithm. J. Acoust. Soc. Am. 1990, 88, 482–491. [Google Scholar] [CrossRef]
- Prada, C.; Balogun, O.; Murray, T.W. Laser-based ultrasonic generation and detection of zero-group velocity Lamb waves in thin plates. Appl. Phys. Lett. 2005, 87, 194109. [Google Scholar] [CrossRef]
- Yang, L.; Ume, I.C. Inspection of notch depths in thin structures using transmission coefficients of laser-generated Lamb waves. Ultrasonics 2015, 63, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Alkassar, Y.; Agarwal, V.K.; Alshrihi, E. Simulation of Lamb wave modes conversions in thin plate for damage detection. Proc. Eng. 2017, 173, 948–955. [Google Scholar] [CrossRef]
- Cheeke, J. Fundamentals and Applications of Ultrasonic Waves; David, N., Ed.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2012; p. 484. [Google Scholar]
- Bernard, A.; Lowe, M.J.S.; Deschamps, M. Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 2001, 110, 186–196. [Google Scholar] [CrossRef]
- Mazzotti, M.; Marzani, A.; Bartoli, I. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape. Ultrasonics 2014, 54, 408–418. [Google Scholar] [CrossRef]
- Kwun, H.; Kim, S.Y.; Choi, M.S.; Walker, S.M. Torsional guided-wave attenuation in coal-tar-enamel-coated, buried piping. NDT&E Int. 2004, 37, 663–665. [Google Scholar]
- Leinov, E.; Lowe, M.J.S.; Cawley, P. Investigation of guided wave propagation and attenuation in pipe buried in sand. J. Sound Vib. 2015, 347, 96–114. [Google Scholar] [CrossRef]
- Gresil, M.; Giurgiutiu, V. Prediction of attenuated guided waves propagation in carbon fiber composites using Rayleigh damping model. J. Intell. Mater. Syst. 2015, 26, 2151–2169. [Google Scholar] [CrossRef]
- Chimenti, D.E. Review of air-coupled ultrasonic materials characterization. Ultrasonics 2014, 54, 1804–1816. [Google Scholar] [CrossRef] [PubMed]
- Kažys, R.; Stolpe, P. Ultrasonic non-destructive on-line estimation of the tensile stiffness of a running paper web. NDT&E Int. 2001, 34, 259–267. [Google Scholar]
- Gomez, T.E.; Gonzalez, B.; Montero, F. Paper characterization by measurement of thickness and plate resonances using air-coupled ultrasound. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 865–868. [Google Scholar]
- Gomez Alvarez-Arenas, T.E.; Soto, D.A. Characterization of mineral paper by air-coupled ultrasonic spectroscopy. Ultrasonics 2012, 52, 794–801. [Google Scholar] [CrossRef]
- Fan, Z.; Jiang, W.; Cai, M.; Wright, W.M.D. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Ultrasonics 2016, 65, 282–295. [Google Scholar] [CrossRef]
- Testoni, N.; De Marchi, L.; Marzani, A. Detection and characterization of delaminations in composite plates via air-coupled probes and warped-domain filtering. Compos. Struct. 2016, 153, 773–781. [Google Scholar] [CrossRef]
- Kažys, R.J.; Mažeika, L.; Šliteris, R.; Šeštokė, J. Air-coupled excitation of a slow A0 mode wave in thin plastic plates by ultrasonic PMN-32%PT array. Sensors 2018, 18, 3156. [Google Scholar]
- Cegla, F.B.; Cawley, P.; Lowe, M.J.S. Material property measurement using the quasi- Scholtte mode- A waveguide sensor. J. Acoust. Soc. Am. 2005, 117, 1098–1107. [Google Scholar] [CrossRef]
- Aubert, V.; Wunenburger, R.; Valier-Brasier, T.; Rabaud, D.; Kleman, J.-P.; Poulain, C. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves. Lab Chip. 2016, 16, 2532–2539. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.L.; Franklin, H.; Raju, P.K.; Uberall, H. The splitting of dispersion curves for plates fluid- loaded on both sides. J. Acoust. Soc. Am. 1997, 102, 1246–1248. [Google Scholar] [CrossRef]
- Plastics Europe—Association of Plastics Manufacturers. Plastics—the Facts 2014/2015. An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf (accessed on 2 April 2019).
- United States Plastics Corporation, Typical Physical Properties: Vintec® Clear PVC. Available online: http://www.usplastic.com/catalog/files/specsheets/Clear%20PVC%20-%20Vycom.pdf (accessed on 10 May 2019).
- Kažys, R.J.; Šliteris, R.; Šeštokė, J. Air-coupled low frequency ultrasonic transducers and arrays with PMN-32%PT piezoelectric crystals. Sensors 2017, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
- Abaqus 6.12. Analysis User‘s Manual. Volume III: Materials. Available online: https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt05ch20s01abm43.html (accessed on 10 May 2019).
- Piezoelectric PMN-PT Crystal Products. Available online: http://www.hcmat.com/Pmn_Products.html (accessed on 10 May 2019).
- AIREX® T90. Available online: https://www.3accorematerials.com/en/products/airex-foam/airex-t90-fire-resistant-foam (accessed on 10 May 2019).
- OFV-5000 MODULAR VIBROMETER. Available online: https://www.polytec.com/eu/vibrometry/products/single-point-vibrometers/ofv-5000-modular-vibrometer/ (accessed on 10 May 2019).
- Motorized XY Scanning Stage. Available online: http://www.standa.lt/products/catalog/motorised_positioners?item=311&prod=motrized_xy_scanning_stage&print=1 (accessed on 10 May 2019).
- AFG-3000 Series Arbitrary Function Generator. Available online: https://www.gwinstek.com/en-global/products/detail/AFG-3000_Series (accessed on 10 May 2019).
- DAQ/Digitizer: ADQ214—Dual, 14-bit, 400 MSPS, 128 MSamples. Available online: https://spdevices.com/products/hardware/14-bit-digitizers/adq214 (accessed on 10 May 2019).
- Khan, J.G.; Dalu, R.S.; Gadekar, S.S. Defects in extrusion process and their impact on product quality. Int. J. Mech. Eng. Rob. Res. 2014, 3, 187–194. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kažys, R.; Šliteris, R.; Mažeika, L.; Tumšys, O.; Žukauskas, E. Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films. Materials 2019, 12, 1648. https://doi.org/10.3390/ma12101648
Kažys R, Šliteris R, Mažeika L, Tumšys O, Žukauskas E. Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films. Materials. 2019; 12(10):1648. https://doi.org/10.3390/ma12101648
Chicago/Turabian StyleKažys, Rymantas, Reimondas Šliteris, Liudas Mažeika, Olgirdas Tumšys, and Egidijus Žukauskas. 2019. "Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films" Materials 12, no. 10: 1648. https://doi.org/10.3390/ma12101648
APA StyleKažys, R., Šliteris, R., Mažeika, L., Tumšys, O., & Žukauskas, E. (2019). Attenuation of a Slow Subsonic A0 Mode Ultrasonic Guided Wave in Thin Plastic Films. Materials, 12(10), 1648. https://doi.org/10.3390/ma12101648