Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = LCC-VSC hybrid HVdc transmission systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1980 KiB  
Article
Optimal Multiple Wind Power Transmission Schemes Based on a Life Cycle Cost Analysis Model
by Xiaotong Ji, Dan Liu, Heng Luo, Ping Xiong, Daojun Tan, Pan Hu, Hengrui Ma and Bo Wang
Processes 2024, 12(8), 1594; https://doi.org/10.3390/pr12081594 - 30 Jul 2024
Viewed by 1777
Abstract
Due to the high cost and complex challenges faced by offshore wind power transmission, economic research into offshore wind power transmission can provide a scientific basis for optimal decision-making on offshore wind power projects. Based on the analysis of the topology structure and [...] Read more.
Due to the high cost and complex challenges faced by offshore wind power transmission, economic research into offshore wind power transmission can provide a scientific basis for optimal decision-making on offshore wind power projects. Based on the analysis of the topology structure and characteristics of typical wind power transmission schemes, this paper compares the economic benefits of five different transmission schemes with a 3.6 GW sizeable onshore wind farm as the primary case. Research includes traditional high voltage alternating current (HVAC), voltage source converter high voltage direct current transmission (VSC-HVDC), a fractional frequency transmission system (FFTS), and two hybrid DC (MMC-LCC and DR-MMC) transmission scenarios. The entire life cycle cost analysis model (LCCA) is employed to thoroughly assess the cumulative impact of initial investment costs, operational expenses, and eventual scrap costs on top of the overall transmission scheme’s total cost. This comprehensive evaluation ensures a nuanced understanding of the financial implications across the project’s entire lifespan. In this example, HVAC has an economic advantage over VSC-HVDC in the transmission distance range of 78 km, and the financial range of a FFTS is 78–117 km. DR-MMC is better than the flexible DC delivery scheme in terms of transmission capacity, scalability, and offshore working platform construction costs in the DC delivery scheme. Therefore, the hybrid DC delivery scheme of offshore wind power composed of multi-type converters has excellent application prospects. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 6840 KiB  
Article
A Multi-Terminal Control Method for AC Grids Based on a Hybrid High-Voltage Direct Current with Cascaded MMC Converters
by Lei Liu, Xiaopeng Li, Qin Jiang, Yufei Teng, Mingju Chen, Yongfei Wang, Xueyang Zeng, Yiping Luo and Pengyu Pan
Electronics 2023, 12(23), 4799; https://doi.org/10.3390/electronics12234799 - 27 Nov 2023
Cited by 6 | Viewed by 1485
Abstract
The hybrid high-voltage direct current (HVDC) transmission system with cascaded MMC converters has become a promising alternative for possessing the technical merits of both line-commuted converter (LCC) and voltage source converter (VSC), resulting in favorable characteristics and potential control of good prospect. This [...] Read more.
The hybrid high-voltage direct current (HVDC) transmission system with cascaded MMC converters has become a promising alternative for possessing the technical merits of both line-commuted converter (LCC) and voltage source converter (VSC), resulting in favorable characteristics and potential control of good prospect. This paper pays heightened attention to the feasible power and DC voltage control modes of a hybrid HVDC system; characteristics of master–slave control show higher flexibility than the LCC-VSC HVDC system, which demonstrates that the exceptional potential can serve to stability support the AC power grids. To optimize the control effect, besides damping level to attenuate power oscillations, the robustness suitable for various faults is also considered to obtain a multi-objective control problem. A detailed solution is proceeding using the TLS-ESPRIT identification algorithm and H2/H hybrid robust control theory. This motivates multi-terminal controllers in the LCC rectifier and MMC inverters, which immensely improve the stability of both sending and receiving girds at the same time. According to the parameters of the actual hybrid HVDC project, the simulation model is established in PSCAD v4.6.2 software, and proposed control methods have been verified to satisfy damping objectives and perform well in multiple operating scenarios. Full article
Show Figures

Figure 1

28 pages, 4160 KiB  
Article
An Analysis on the VSC-HVDC Contribution for the Static Voltage Stability Margin and Effective Short Circuit Ratio Enhancement in Hybrid Multi-Infeed HVDC Systems
by Diego Oliveira, Gustavo C. Borges Leal, Danilo Herrera, Eduardo Galván-Díez, Juan M. Carrasco and Mauricio Aredes
Energies 2023, 16(1), 532; https://doi.org/10.3390/en16010532 - 3 Jan 2023
Cited by 10 | Viewed by 2745
Abstract
Over the years, high voltage transmission of large energy blocks over long distances has widely developed from the Line Commutated Converter (LCC) technology. However, the continuous expansion of the AC network and the increase in renewable energy penetration leads to the weakening of [...] Read more.
Over the years, high voltage transmission of large energy blocks over long distances has widely developed from the Line Commutated Converter (LCC) technology. However, the continuous expansion of the AC network and the increase in renewable energy penetration leads to the weakening of Electric Power Systems (EPS), causing operational problems for the LCC-HVDC. This paper evaluates the degree of contribution of the VSC-HVDC on the LCC-HVDC dynamic performance when the infeed is in a hybrid multi-infeed HVDC system. Through a steady-state mathematical framework, the new concept of Hybrid Power Voltage Interaction Factor (hPVIF) is proposed to assess the transient stability improvement of LCC. Additionally, this article introduces two key contributions from hPVIF: the complementary Improved Commutation Failure Immunity Index (iCFII), as a measure of the effective short circuit enhancement, as well as the apparent line length, which emulates the line lengths adjusting the power dispatch in the VSC-HVDC. PSCAD/EMTDCTM time-domain dynamic simulations are performed to assess the indexes, and the Matlab® software will be used to assist in mathematical operations. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 3170 KiB  
Article
Optimal Current Allocation Strategy for Hybrid Hierarchical HVDC System with Parallel Operation of High-Voltage and Low-Voltage DC Lines
by Zhichao Yang, Bingtuan Gao and Zeyu Cao
Processes 2022, 10(3), 579; https://doi.org/10.3390/pr10030579 - 16 Mar 2022
Cited by 2 | Viewed by 2880
Abstract
For long-distance and bulk-power delivery of new energy, high-voltage direct current (HVDC) is a more effective way than high-voltage alternative current (HVAC). In view of the current capacity disparity between line commutated converter (LCC) and voltage source converter (VSC), a hybrid hierarchical HVDC [...] Read more.
For long-distance and bulk-power delivery of new energy, high-voltage direct current (HVDC) is a more effective way than high-voltage alternative current (HVAC). In view of the current capacity disparity between line commutated converter (LCC) and voltage source converter (VSC), a hybrid hierarchical HVDC topology with parallel operation of 800 kV and 400 kV DC lines is investigated. The optimal current allocation method for hybrid hierarchical HVDC is proposed distinct from the same rated current command configuration method of high-voltage and low-voltage converters in traditional topology. Considering the transmission loss reduction of the HVDC system, a multi-order fitting function of transmission loss including LCC converter stations, VSC converter stations and DC lines is established. To minimize the transmission loss and the voltage deviation of key DC nodes comprehensively, a multi-objective genetic algorithm and maximum satisfaction method are utilized to obtain the optimal allocation value of rated current command for high-voltage and low-voltage converters. Through the optimization model, an improved constant current controller based on the current allocation strategy is designed. The hybrid hierarchical HVDC system model is built in PSCAD software, and simulation results verify the effectiveness of the proposed topology and optimal current allocation strategy. Full article
(This article belongs to the Special Issue Modeling, Analysis and Control Processes of New Energy Power Systems)
Show Figures

Figure 1

21 pages, 23566 KiB  
Article
A Selective Fault Clearing Scheme for a Hybrid VSC-LCC Multi-Terminal HVdc System
by Naushath M. Haleem, Athula D. Rajapakse, Aniruddha M. Gole and Ioni T. Fernando
Energies 2020, 13(14), 3554; https://doi.org/10.3390/en13143554 - 10 Jul 2020
Cited by 1 | Viewed by 3003
Abstract
A selective fault clearing scheme is proposed for a hybrid voltage source converter (VSC)-line commutated converter (LCC) multi-terminal high voltage direct current (HVdc) transmission structure in which two small capacity VSC stations tap into the main transmission line of a high capacity LCC-HVdc [...] Read more.
A selective fault clearing scheme is proposed for a hybrid voltage source converter (VSC)-line commutated converter (LCC) multi-terminal high voltage direct current (HVdc) transmission structure in which two small capacity VSC stations tap into the main transmission line of a high capacity LCC-HVdc link. The use of dc circuit breakers (dc CBs) on the branches connecting to VSCs at the tapping points is explored to minimize the impact of tapping on the reliability of the main LCC link. This arrangement allows clearing of temporary faults on the main LCC line as usual by force retardation of the LCC rectifier. The faults on the branches connecting to VSC stations can be cleared by blocking insulated gate bipolar transistors (IGBTs) and opening ac circuit breakers (ac CB), without affecting the main line’s performance. A local voltage and current measurement based fault discrimination scheme is developed to identify the faulted sections and pole(s), and trigger appropriate fault recovery functions. This fault discrimination scheme is capable of detecting and discriminating short circuits and high resistances faults in any branch well before 2 ms. For the test grid considered, 6 kA, 2 ms dc CBs can easily facilitate the intended fault clearing functions and maintain the power transfer through healthy pole during single-pole faults. Full article
(This article belongs to the Special Issue Protection of Future Multi-Terminal HVDC Grids)
Show Figures

Figure 1

22 pages, 9986 KiB  
Article
An Operation Strategy of the Hybrid Multi-Terminal HVDC for Contingency
by Sungchul Hwang, Sungyoon Song, Gilsoo Jang and Minhan Yoon
Energies 2019, 12(11), 2042; https://doi.org/10.3390/en12112042 - 28 May 2019
Cited by 9 | Viewed by 3709
Abstract
The application of the direct current (DC) transmission is increasing through the interconnection between grids or the renewable energy resource integration. Various types of DC transmission topology are researched, and the hybrid multi-terminal high voltage DC (HVDC), called the “MTDC”, is one of [...] Read more.
The application of the direct current (DC) transmission is increasing through the interconnection between grids or the renewable energy resource integration. Various types of DC transmission topology are researched, and the hybrid multi-terminal high voltage DC (HVDC), called the “MTDC”, is one of the research subjects. The hybrid multi-terminal HVDC is the MTDC system that is composed with the Line Commutated Converter (LCC) and Voltage Source Converter (VSC). Most hybrid MTDC research has been focused on the connection of the renewable energy generation sources, especially offshore wind farms. However, the DC grid built with a hybrid MTDC was recently proposed due to the development of the converter technology. Therefore, the DC grid is expected to be able to substitute some parts of the transmission grid instead of the alternating current (AC) system, and the operation strategies of the DC grid are still being researched. The DC grid has the advantage of being able to control the power flow, which can even improve the stability of the connected AC system. The dynamic model is required to analyze the improvement of the AC system by the operation strategy of the hybrid MTDC, however, there is no generic model for the system. In this paper, an operation strategy of the hybrid MTDC is proposed to improve the stability of the AC power system by increasing the utilization of parallel AC transmission lines under the contingency condition. Furthermore, studies on the modeling method for a hybrid MTDC analysis were performed. The proposed modeling method and operation strategy were verified in simulations for which a modified IEEE 39 bus test system was used. The improvement of transient stability by the proposed hybrid MTDC system was shown in the simulation results. Full article
(This article belongs to the Special Issue HVDC/FACTS for Grid Services in Electric Power Systems)
Show Figures

Figure 1

Back to TopTop