Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = LAY-FOMM®60

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2636 KB  
Article
3D Printing and Blue Sustainability: Taking Advantage of Process-Induced Defects for the Metallic Ion Removal from Water
by Akel F. Kanaan and Ana P. Piedade
Polymers 2024, 16(14), 1992; https://doi.org/10.3390/polym16141992 - 11 Jul 2024
Viewed by 1554
Abstract
Additive manufacturing (AM), commonly known as 3D printing, allows for the manufacturing of complex systems that are not possible using traditional manufacturing methods. Nevertheless, some disadvantages are attributed to AM technologies. One of the most often referred to is the defects of the [...] Read more.
Additive manufacturing (AM), commonly known as 3D printing, allows for the manufacturing of complex systems that are not possible using traditional manufacturing methods. Nevertheless, some disadvantages are attributed to AM technologies. One of the most often referred to is the defects of the produced components, particularly the porosity. One approach to solving this problem is to consider it as a non-problem, i.e., taking advantage of the defects. Commercially, LAY-FOMM®60 polymer was successfully used in AM through a material extrusion process. This filament is a blend of two polymers, one of them soluble in water, allowing, after its removal from the printed components, the increase in porosity. The defects produced were exploited to evaluate the metallic ion removal capacity of manufactured components using non-potable tap water. Two experimental setups, continuous and ultrasound-assisted methods, were compared, concerning their water cleaning capacity. Results revealed that continuous setup presented the highest metallic ion removal capacity (>80%) for the following three studied metallic ions: iron, copper, and zinc. High water swelling capacity (~80%) and the increase in porosity of 3D-printed parts played a significant role in the ion sorption capacity. The developed strategy could be considered a custom and affordable alternative to designing complex filtration/separation systems for environmental and wastewater treatment applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 10435 KB  
Article
A Nanoporous 3D-Printed Scaffold for Local Antibiotic Delivery
by Pouyan Ahangar, Jialiang Li, Leslie S. Nkindi, Zohreh Mohammadrezaee, Megan E. Cooke, Paul A. Martineau, Michael H. Weber, Elie Saade, Nima Nateghi and Derek H. Rosenzweig
Micromachines 2024, 15(1), 83; https://doi.org/10.3390/mi15010083 - 30 Dec 2023
Cited by 3 | Viewed by 2488
Abstract
Limitations of bone defect reconstruction include poor bone healing and osteointegration with acrylic cements, lack of strength with bone putty/paste, and poor osteointegration. Tissue engineering aims to bridge these gaps through the use of bioactive implants. However, there is often a risk of [...] Read more.
Limitations of bone defect reconstruction include poor bone healing and osteointegration with acrylic cements, lack of strength with bone putty/paste, and poor osteointegration. Tissue engineering aims to bridge these gaps through the use of bioactive implants. However, there is often a risk of infection and biofilm formation associated with orthopedic implants, which may develop anti-microbial resistance. To promote bone repair while also locally delivering therapeutics, 3D-printed implants serve as a suitable alternative. Soft, nanoporous 3D-printed filaments made from a thermoplastic polyurethane and polyvinyl alcohol blend, LAY-FOMM and LAY-FELT, have shown promise for drug delivery and orthopedic applications. Here, we compare 3D printability and sustained antibiotic release kinetics from two types of commercial 3D-printed porous filaments suitable for bone tissue engineering applications. We found that both LAY-FOMM and LAY-FELT could be consistently printed into scaffolds for drug delivery. Further, the materials could sustainably release Tetracycline over 3 days, independent of material type and infill geometry. The drug-loaded materials did not show any cytotoxicity when cultured with primary human fibroblasts. We conclude that both LAY-FOMM and LAY-FELT 3D-printed scaffolds are suitable devices for local antibiotic delivery applications, and they may have potential applications to prophylactically reduce infections in orthopedic reconstruction surgery. Full article
(This article belongs to the Special Issue Feature Papers from Micromachines Reviewers 2023)
Show Figures

Figure 1

16 pages, 3323 KB  
Article
Primary Human Ligament Fibroblast Adhesion and Growth on 3D-Printed Scaffolds for Tissue Engineering Applications
by Jean-Gabriel Lacombe, Megan E. Cooke, Hyeree Park, Suliman Mohammed Alshammari, Rahul Gawri, Showan N. Nazhat, Paul A. Martineau and Derek H. Rosenzweig
Surgeries 2023, 4(2), 196-211; https://doi.org/10.3390/surgeries4020021 - 3 May 2023
Cited by 3 | Viewed by 3577
Abstract
The current gold standard technique for the treatment of anterior cruciate ligament (ACL) injury is reconstruction with a tendon autograft. These treatments have a relatively high failure and re-rupture rate and are associated with early-onset osteoarthritis, developing within two decades of injury. Furthermore, [...] Read more.
The current gold standard technique for the treatment of anterior cruciate ligament (ACL) injury is reconstruction with a tendon autograft. These treatments have a relatively high failure and re-rupture rate and are associated with early-onset osteoarthritis, developing within two decades of injury. Furthermore, both autografting and allografting come with several drawbacks. Tissue engineering and additive manufacturing present exciting new opportunities to explore 3D scaffolds as graft substitutes. We previously showed that 3D-printed scaffolds using low-cost equipment are suitable for tissue engineering approaches to regenerative medicine. Here, we hypothesize that Lay-Fomm 60, a commercially available nanoporous elastomer, may be a viable tissue engineering candidate for an ACL graft substitute. We first printed nanoporous thermoplastic elastomer scaffolds using low-cost desktop 3D printers and determined the mechanical and morphological properties. We then tested the impact of different surface coatings on primary human ACL fibroblast adhesion, growth, and ligamentous matrix deposition in vitro. Our data suggest that poly-L-lysine-coated Lay-Fomm 60 scaffolds increased ligament fibroblast activity and matrix formation when compared to uncoated scaffolds but did not have a significant effect on cell attachment and proliferation. Therefore, uncoated 3D printed Lay-Fomm 60 scaffolds may be viable standalone scaffolds and warrant further research as ligament tissue engineering and reconstruction grafts. Full article
Show Figures

Figure 1

14 pages, 5003 KB  
Article
Cardiac Radiofrequency Ablation Simulation Using a 3D-Printed Bi-Atrial Thermochromic Model
by Shu Wang, Carlo Saija, Justin Choo, Zhanchong Ou, Maria Birsoan, Sarah Germanos, Joshua Rothwell, Behrad Vakili, Irum Kotadia, Zhouyang Xu, Adrian Rolet, Adriana Namour, Woo Suk Yang, Steven E. Williams and Kawal Rhode
Appl. Sci. 2022, 12(13), 6553; https://doi.org/10.3390/app12136553 - 28 Jun 2022
Cited by 5 | Viewed by 6249
Abstract
Radiofrequency ablation (RFA) is a treatment used in the management of various arrhythmias including atrial fibrillation. Enhanced training for electrophysiologists through the use of physical simulators has a significant role in improving patient outcomes. The requirements for a high-fidelity simulator for cardiac RFA [...] Read more.
Radiofrequency ablation (RFA) is a treatment used in the management of various arrhythmias including atrial fibrillation. Enhanced training for electrophysiologists through the use of physical simulators has a significant role in improving patient outcomes. The requirements for a high-fidelity simulator for cardiac RFA are challenging and not fully met by any research or commercial simulator at present. In this study, we have produced and evaluated a 3D-printed, bi-atrial model contained in a custom-made enclosure for RFA simulation using a new soft tissue-mimicking polymer, Layfomm-40, combined with thermochromic pigment and barium sulphate in an acrylic paint carrier. We evaluated the conductive properties of Layfomm-40, its sensitivity to RFA, and its visibility in X-ray imaging, and carried a full simulation of RFA in the cardiac catheterization laboratory by an electrophysiologist. We demonstrated that a patient-specific 3D-printed Layfomm-40 bi-atrial model coated with a custom thermochromic/barium sulphate paint was compatible with the CARTO3 electroanatomic mapping system and could be effectively imaged using X-ray fluoroscopy. We demonstrated the effective delivery and visualization of radiofrequency ablation lesions in this model. The simulator meets nearly all the requirements for high-fidelity physical simulation of RFA. The use of such simulators is likely to have impact on the training of electrophysiologists and the evaluation of novel RFA devices. Full article
Show Figures

Figure 1

19 pages, 4377 KB  
Article
3D Printing for Cartilage Replacement: A Preliminary Study to Explore New Polymers
by Gonçalo F. Delgado, Ana C. Pinho and Ana P. Piedade
Polymers 2022, 14(5), 1044; https://doi.org/10.3390/polym14051044 - 5 Mar 2022
Cited by 12 | Viewed by 3833
Abstract
The use of additive manufacturing technologies for biomedical applications must begin with the knowledge of the material to be used, by envisaging a very specific application rather than a more general aim. In this work, the preliminary study was focused on considering the [...] Read more.
The use of additive manufacturing technologies for biomedical applications must begin with the knowledge of the material to be used, by envisaging a very specific application rather than a more general aim. In this work, the preliminary study was focused on considering the cartilaginous tissue. This biological tissue exhibits different characteristics, such as thickness and mechanical properties, depending on its specific function in the body. Due to the lack of vascularization, cartilage is a supporting connective tissue with limited capacity for recovery and regeneration. For this reason, any approach, whether to repair/regenerate or as a total replacement, needs to fulfill the adequate mechanical and chemical properties of the surrounding native cartilage to be successful. This work aims to explore the possibility of using new polymers for cartilage total replacement approaches with polymeric materials processed with the specific 3D printing technique of fused filament fabrication (FFF). The materials studied were Nylon® 12 (PA12), already described for this purpose, and LAY-FOMM® 60 (FOMM). FOMM has not been described in the literature for biomedical purposes. Therefore, the chemical, thermal, swelling capacity, and mechanical properties of the filaments were thoroughly characterized to better understand the structure–properties–application relationships of this new polymer. In addition, as the FFF technology is temperature based, the properties were also evaluated in the printed specimens. Due to the envisaged application, the specimens were also characterized in the wet state. When comparing the obtained results with the properties of native cartilage, it was possible to conclude that: (i) PA12 exhibits low swelling capacity, while FOMM, in its dry and wet forms, has a higher swelling capacity, closer to that of native cartilage; (ii) the mechanical properties of the polymeric materials, especially PA12, are higher than those of native cartilage; and (iii) from the mechanical properties evaluated by ultra-micro hardness tests, the values for FOMM indicate that this material could be a good alternative for cartilage replacement in older patients. This preliminary study, essentially devoted to expanding the frontiers of the current state of the art of new polymeric materials, provides valuable indications for future work targeting the envisaged applications. Full article
Show Figures

Figure 1

15 pages, 1747 KB  
Article
Investigating Commercial Filaments for 3D Printing of Stiff and Elastic Constructs with Ligament-Like Mechanics
by Audrey A. Pitaru, Jean-Gabriel Lacombe, Megan E. Cooke, Lorne Beckman, Thomas Steffen, Michael H. Weber, Paul A. Martineau and Derek H. Rosenzweig
Micromachines 2020, 11(9), 846; https://doi.org/10.3390/mi11090846 - 11 Sep 2020
Cited by 31 | Viewed by 5569
Abstract
The current gold standard technique for treatment of anterior cruciate ligament (ACL) injury is reconstruction with autograft. These treatments have a relatively high failure and re-tear rate. To overcome this, tissue engineering and additive manufacturing are being used to explore the potential of [...] Read more.
The current gold standard technique for treatment of anterior cruciate ligament (ACL) injury is reconstruction with autograft. These treatments have a relatively high failure and re-tear rate. To overcome this, tissue engineering and additive manufacturing are being used to explore the potential of 3D scaffolds as autograft substitutes. However, mechanically optimal polymers for this have yet to be identified. Here, we use 3D printing technology and various materials with the aim of fabricating constructs better matching the mechanical properties of the native ACL. A fused deposition modeling (FDM) 3D printer was used to microfabricate dog bone-shaped specimens from six different polymers—PLA, PETG, Lay FOMM 60, NinjaFlex, NinjaFlex-SemiFlex, and FlexiFil—at three different raster angles. The tensile mechanical properties of these polymers were determined from stress–strain curves. Our results indicate that no single material came close enough to successfully match reported mechanical properties of the native ACL. However, PLA and PETG had similar ultimate tensile strengths. Lay FOMM 60 displayed a percentage strain at failure similar to reported values for native ACL. Furthermore, raster angle had a significant impact on some mechanical properties for all of the materials except for FlexiFil. We therefore conclude that while none of these materials alone is optimal for mimicking ACL mechanical properties, there may be potential for creating a 3D-printed composite constructs to match ACL mechanical properties. Further investigations involving co-printing of stiff and elastomeric materials must be explored. Full article
Show Figures

Figure 1

Back to TopTop