Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Krüppel-like Factor 9

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2961 KiB  
Review
Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis
by Frank A. Simmen, Iad Alhallak and Rosalia C. M. Simmen
Cancers 2023, 15(23), 5667; https://doi.org/10.3390/cancers15235667 - 30 Nov 2023
Cited by 4 | Viewed by 2813
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and [...] Read more.
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments. Full article
(This article belongs to the Special Issue Unique Perspectives in Cancer Signaling)
Show Figures

Figure 1

30 pages, 5173 KiB  
Article
Prdx6 Regulates Nlrp3 Inflammasome Activation-Driven Inflammatory Response in Lens Epithelial Cells
by Bhavana Chhunchha, Rakesh Kumar, Eri Kubo, Priyanka Thakur and Dhirendra P. Singh
Int. J. Mol. Sci. 2023, 24(22), 16276; https://doi.org/10.3390/ijms242216276 - 13 Nov 2023
Cited by 8 | Viewed by 2307
Abstract
The continuum of antioxidant response dysregulation in aging/oxidative stress-driven Nlrp3 inflammasome activation-mediated inflammatory response is associated with age-related diseases. Peroxiredoxin (Prdx) 6 is a key antioxidant that provides cytoprotection by regulating redox homeostasis. Herein, using lens epithelial cells (LECs) derived from the targeted [...] Read more.
The continuum of antioxidant response dysregulation in aging/oxidative stress-driven Nlrp3 inflammasome activation-mediated inflammatory response is associated with age-related diseases. Peroxiredoxin (Prdx) 6 is a key antioxidant that provides cytoprotection by regulating redox homeostasis. Herein, using lens epithelial cells (LECs) derived from the targeted inactivation of Prdx6 gene and aging lenses, we present molecular evidence that Prdx6-deficiency causes oxidative-driven Nlrp3 inflammasome activation, resulting in pyroptosis in aging/redox active cells wherein Prdx6 availability offsets the inflammatory process. We observed that Prdx6−/− and aging LECs harboring accumulated reactive oxygen species (ROS) showed augmented activation of Nlrp3 and bioactive inflammatory components, like Caspase-1, IL-1β, ASC and Gasdermin-D. Similar to lipopolysaccharide treatment, oxidative exposure led to further ROS amplification with increased activation of the Nlrp3 inflammasome pathway. Mechanistically, we found that oxidative stress enhanced Kruppel-like factor 9 (Klf9) expression in aging/Prdx6−/− mLECs, leading to a Klf9-dependent increase in Nlrp3 transcription, while the elimination of ROS by the delivery of Prdx6 or by silencing Klf9 prevented the inflammatory response. Altogether, our data identify the biological significance of Prdx6 as an intrinsic checkpoint for regulating the cellular health of aging or redox active LECs and provide opportunities to develop antioxidant-based therapeutic(s) to prevent oxidative/aging-related diseases linked to aberrant Nlrp3 inflammasome activation. Full article
(This article belongs to the Special Issue The NLRP3-Inflammasome in Health and Disease: 2nd Edition)
Show Figures

Figure 1

17 pages, 5129 KiB  
Article
Overexpression of Krüppel-Like Factor 9 Enhances the Antitumor Properties of Paclitaxel in Malignant Melanoma-Derived Cell Lines
by Mohammed O. Altonsy, George X. Song-Zhao, Mahmoud M. Mostafa and Paule Régine Mydlarski
Pharmaceuticals 2023, 16(4), 557; https://doi.org/10.3390/ph16040557 - 6 Apr 2023
Cited by 1 | Viewed by 2032
Abstract
Over the past decade, the treatment of metastatic melanoma has improved significantly due to the development of innovative therapies, such as drugs that target the BRAF/MAPK kinase pathway and the PD-1 pathway. However, these therapies do not work for all patients, highlighting the [...] Read more.
Over the past decade, the treatment of metastatic melanoma has improved significantly due to the development of innovative therapies, such as drugs that target the BRAF/MAPK kinase pathway and the PD-1 pathway. However, these therapies do not work for all patients, highlighting the need for additional research on the pathophysiology of melanoma. Paclitaxel is a chemotherapeutic agent used when first-line treatments are unsuccessful; however, its efficacy is limited. Since Krüppel-like factor 9 (KLF9) (antioxidant repressor) is downregulated in melanoma, we propose that restoring KLF9 levels may sensitize malignant melanoma to chemotherapeutic agents, such as paclitaxel. We used adenovirus overexpression and siRNA technologies to assess the role of KLF9 in mediating the response of malignant melanoma-derived cell lines RPMI-7951 and A375 to paclitaxel treatment. We found that increasing KLF9 levels potentiates the effectiveness of paclitaxel, as shown by apoptotic parameters such as decreased cell viability, pro-caspase-3 activation, increased number of annexin V-positive cells, and reduction in nuclear proliferation marker (KI67). These results suggest that KLF9 may be a potential target for improving chemotherapeutic response in melanoma. Full article
(This article belongs to the Special Issue Pharmacological Treatments for Melanoma)
Show Figures

Figure 1

16 pages, 4671 KiB  
Article
CRC Therapy Identifies Indian Hedgehog Signaling in Mouse Endometrial Epithelial Cells and Inhibition of Ihh-KLF9 as a Novel Strategy for Treating IUA
by Xinhao Zhou, Yiyi Kang, Yuntzu Chang, Siyu Xia, Ming Wu, Jun Liu, Dirong Dong, Wei Zhang, Hong Chen and Hui Li
Cells 2022, 11(24), 4053; https://doi.org/10.3390/cells11244053 - 15 Dec 2022
Cited by 5 | Viewed by 2557
Abstract
Intrauterine adhesion (IUA) causes menstrual disturbance and infertility. There is no effective treatment available for moderate to severe IUA cases. Stem cell-based therapy has been investigated for treating IUA but is limited in clinical applications due to issues including the precise induction of [...] Read more.
Intrauterine adhesion (IUA) causes menstrual disturbance and infertility. There is no effective treatment available for moderate to severe IUA cases. Stem cell-based therapy has been investigated for treating IUA but is limited in clinical applications due to issues including the precise induction of differentiation, tumorigenesis, and unclear molecular mechanisms. In our recent study, we isolated and expanded the long-term cultures of conditional reprogrammed (CR) mouse endometrial epithelial cells. Treating IUA mice with these CR cells (CRCs) restored the morphology and structure of the endometrium and significantly improved the pregnancy rate. In this study, our data with high-throughput sequencing, CRISPR knockout Ihh−/−CRCs, and transplantation identified for the first time that the Indian hedgehog (Ihh) gene plays a critical role in the regulation of endometrial epithelial cell proliferation. We also found that aberrant activated Ihh-krüppel-like factor 9 (KLF9) signaling contributes to the inhibition of normal progesterone receptor (PR) function in IUA mice. Thus, we hypothesized that inhibition of the Ihh-KLF9 pathway may be a novel strategy to treat IUA. Our data demonstrated that treatment with the hedgehog signaling inhibitor Vismodegib restored the morphology, structure, and microenvironment of the endometrium, and greatly improved the pregnancy rate in IUA mice. This study suggests a promising application of hedgehog inhibitors as a targeted drug in the IUA clinic. Full article
(This article belongs to the Special Issue Reprogrammed Cells in Disease Modeling and Drug Discovery II)
Show Figures

Figure 1

15 pages, 4111 KiB  
Article
KLF9 Aggravates Streptozotocin-Induced Diabetic Cardiomyopathy by Inhibiting PPARγ/NRF2 Signalling
by Fangfang Li, Jingfeng Peng, Hui Feng, Yiming Yang, Jianbo Gao, Chunrui Liu, Jie Xu, Yanru Zhao, Siyu Pan, Yixiao Wang, Luhong Xu, Wenhao Qian and Jing Zong
Cells 2022, 11(21), 3393; https://doi.org/10.3390/cells11213393 - 27 Oct 2022
Cited by 22 | Viewed by 3215
Abstract
Aims: Krüppel-like Factor 9 (KLF9) is a transcription factor that regulates multiple disease processes. Studies have focused on the role of KLF9 in the redox system. In this study, we aimed to explore the effect of KLF9 on diabetic cardiomyopathy. Methods and Results: [...] Read more.
Aims: Krüppel-like Factor 9 (KLF9) is a transcription factor that regulates multiple disease processes. Studies have focused on the role of KLF9 in the redox system. In this study, we aimed to explore the effect of KLF9 on diabetic cardiomyopathy. Methods and Results: Cardiac-specific overexpression or silencing of KLF9 in C57BL/6 J mice was induced with an adeno-associated virus 9 (AAV9) delivery system. Mice were also subjected to streptozotocin injection to establish a diabetic cardiomyopathy model. In addition, neonatal rat cardiomyocytes were used to assess the possible role of KLF9 in vitro by incubation with KLF9 adenovirus or small interfering RNA against KLF9. To clarify the involvement of peroxisome proliferator-activated receptors (PPARγ), mice were subjected to GW9662 injection to inhibit PPARγ. KLF9 was upregulated in the hearts of mice with diabetic cardiomyopathy and in cardiomyocytes. In addition, KLF9 overexpression in the heart deteriorated cardiac function and aggravated hypertrophic fibrosis, the inflammatory response and oxidative stress in mice with diabetic cardiomyopathy. Conversely, cardiac-specific silencing of KLF9 ameliorated cardiac dysfunction and alleviated hypertrophy, fibrosis, the cardiac inflammatory response and oxidative stress. In vitro, KLF9 silencing in cardiomyocytes enhanced inflammatory cytokine release and oxidative stress; KLF9 overexpression increased these detrimental responses. Moreover, KLF9 was found to regulate the transcription of PPARγ, which suppressed the expression and nuclear translocation of nuclear Factor E2-related Factor 2 (NRF2). In mice injected with a PPARγ inhibitor, the protective effects of KLF9 knockdown on diabetic cardiomyopathy were counteracted by GW9662 injection. Conclusions: KLF9 aggravates cardiac dysfunction, the inflammatory response and oxidative stress in mice with diabetic cardiomyopathy. KLF9 may become a therapeutic target for diabetic cardiomyopathy. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

24 pages, 5214 KiB  
Article
Krüppel-like Factor 9 (KLF9) Suppresses Hepatocellular Carcinoma (HCC)-Promoting Oxidative Stress and Inflammation in Mice Fed High-Fat Diet
by Adam R. Brown, Iad Alhallak, Rosalia C. M. Simmen, Stepan B. Melnyk, Melissa E. Heard-Lipsmeyer, Maria Theresa E. Montales, Daniel Habenicht, Trang T. Van and Frank A. Simmen
Cancers 2022, 14(7), 1737; https://doi.org/10.3390/cancers14071737 - 29 Mar 2022
Cited by 14 | Viewed by 3335
Abstract
Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat [...] Read more.
Obesity, oxidative stress, and inflammation are risk factors for hepatocellular carcinoma (HCC). We examined, in mice, the effects of Krüppel-like factor 9 (KLF9) knockout on: adiposity, hepatic and systemic oxidative stress, and hepatic expression of pro-inflammatory and NOX/DUOX family genes, in a high-fat diet (HFD) context. Male and female Klf9+/+ (wild type, WT) and Klf9−/− (knockout, KO) mice were fed HFD (beginning at age 35 days) for 12 weeks, after which liver and adipose tissues were obtained, and serum adiponectin and leptin levels, liver fat content, and markers of oxidative stress evaluated. Klf9−/− mice of either sex did not exhibit significant alterations in weight gain, adipocyte size, adipokine levels, or liver fat content when compared to WT counterparts. However, Klf9−/− mice of both sexes had increased liver weight/size (hepatomegaly). This was accompanied by increased hepatic oxidative stress as indicated by decreased GSH/GSSG ratio and increased homocysteine, 3-nitrotyrosine, 3-chlorotyrosine, and 4HNE content. Decreased GSH to GSSG ratio and a trend toward increased homocysteine levels were observed in the corresponding Klf9−/− mouse serum. Gene expression analysis showed a heightened pro-inflammatory state in livers from Klf9−/− mice. KLF9 suppresses hepatic oxidative stress and inflammation, thus identifying potential mechanisms for KLF9 suppression of HCC and perhaps cancers of other tissues. Full article
Show Figures

Figure 1

23 pages, 1795 KiB  
Review
NRF2 Activation and Downstream Effects: Focus on Parkinson’s Disease and Brain Angiotensin
by Juan A. Parga, Ana I. Rodriguez-Perez, Maria Garcia-Garrote, Jannette Rodriguez-Pallares and Jose L. Labandeira-Garcia
Antioxidants 2021, 10(11), 1649; https://doi.org/10.3390/antiox10111649 - 20 Oct 2021
Cited by 36 | Viewed by 8748
Abstract
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson’s disease. NRF2 (Nuclear Factor-Erythroid 2 [...] Read more.
Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson’s disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson’s disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches. Full article
(This article belongs to the Special Issue Transcription Factor Nrf2)
Show Figures

Graphical abstract

26 pages, 2988 KiB  
Review
KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview
by Joanna Sobocińska, Sara Molenda, Marta Machnik and Urszula Oleksiewicz
Int. J. Mol. Sci. 2021, 22(4), 2212; https://doi.org/10.3390/ijms22042212 - 23 Feb 2021
Cited by 57 | Viewed by 6893
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through [...] Read more.
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting. Full article
(This article belongs to the Special Issue Transcription Factors in Cancer)
Show Figures

Figure 1

19 pages, 9174 KiB  
Article
Secoiridoid Glucosides and Anti-Inflammatory Constituents from the Stem Bark of Fraxinus chinensis
by Hao-Chiun Chang, Shih-Wei Wang, Chin-Yen Chen, Tsong-Long Hwang, Ming-Jen Cheng, Ping-Jyun Sung, Kuang-Wen Liao and Jih-Jung Chen
Molecules 2020, 25(24), 5911; https://doi.org/10.3390/molecules25245911 - 14 Dec 2020
Cited by 15 | Viewed by 3855
Abstract
Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2 [...] Read more.
Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), and 3′′,4′′-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (426). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), 3′′,4′′-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 μg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 μg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents. Full article
(This article belongs to the Special Issue Bioactive Molecules and Drug Lead Compounds)
Show Figures

Graphical abstract

19 pages, 6173 KiB  
Article
Benzophenone and Benzoylphloroglucinol Derivatives from Hypericum sampsonii with Anti-Inflammatory Mechanism of Otogirinin A
by Chun-Yi Huang, Tzu-Cheng Chang, Yu-Jing Wu, Yun Chen and Jih-Jung Chen
Molecules 2020, 25(19), 4463; https://doi.org/10.3390/molecules25194463 - 28 Sep 2020
Cited by 20 | Viewed by 4121
Abstract
Three new compounds, 4-geranyloxy-2-hydroxy-6-isoprenyloxybenzophenone (1), hypericumone A (2) and hypericumone B (3), were obtained from the aerial parts of Hypericum sampsonii, along with six known compounds (49). The structures of these compounds [...] Read more.
Three new compounds, 4-geranyloxy-2-hydroxy-6-isoprenyloxybenzophenone (1), hypericumone A (2) and hypericumone B (3), were obtained from the aerial parts of Hypericum sampsonii, along with six known compounds (49). The structures of these compounds were determined through spectroscopic and MS analyses. Hypericumone A (2), sampsonione J (8) and otogirinin A (9) exhibited potent inhibition (IC50 values ≤ 40.32 μM) against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. Otogirinin A (9) possessed the highest inhibitory effect on NO production with IC50 value of 32.87 ± 1.60 μM. The well-known proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α) was also inhibited by otogirinin A (9). Western blot results demonstrated that otogirinin A (9) downregulated the high expression of inducible nitric oxide synthase (iNOS). Further investigations on the mechanism showed that otogirinin A (9) blocked the phosphorylation of MAPK/JNK and IκBα, whereas it showed no effect on the phosphorylation of MAPKs/ERK and p38. In addition, otogirinin A (9) stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that otogirinin A (9) could be considered as potential compound for further development of NO production-targeted anti-inflammatory agent. Full article
(This article belongs to the Special Issue Food and Drug Analysis Ⅱ)
Show Figures

Graphical abstract

8 pages, 1157 KiB  
Communication
tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis
by Linyuan Shen, Zhendong Tan, Mailin Gan, Qiang Li, Lei Chen, Lili Niu, Dongmei Jiang, Ye Zhao, Jinyong Wang, Xuewei Li, Shunhua Zhang and Li Zhu
Biomolecules 2019, 9(7), 274; https://doi.org/10.3390/biom9070274 - 11 Jul 2019
Cited by 43 | Viewed by 7018
Abstract
tRNA-derived fragments (tRFs), a novel type of non-coding RNA derived from tRNAs, play an important part in governing gene expressions at a post-transcriptional level. To date, the regulatory mechanism of tRFs governing fat deposition and adipogenesis is completely unknown. In this study, high [...] Read more.
tRNA-derived fragments (tRFs), a novel type of non-coding RNA derived from tRNAs, play an important part in governing gene expressions at a post-transcriptional level. To date, the regulatory mechanism of tRFs governing fat deposition and adipogenesis is completely unknown. In this study, high fat diet was employed to induce an obese rat model, and tRFs transcriptome sequencing was conducted to identify differentially expressed tRFs that response to obesity. We found out that tRFGluTTC, which promoted preadipocyte proliferation by increasing expressions of cell cycle regulatory factors, had the highest fold change in the 296 differentially expressed tRFs. Moreover, tRFGluTTC also suppressed preadipocyte differentiation by reducing triglyceride content and lipid accumulation, and by decreasing expressions of genes that related to fatty acid synthesis. According to results of luciferase activity analysis, tRFGluTTC directly targeted Kruppel-like factor (KLF) 9, KLF11, and KLF12, thus significantly suppressing mRNA expressions of these target genes. Moreover, tRFGluTTC suppressed adipogenesis, accompanying by suppressing expressions of adipogenic transcription factors (aP2, PPARγ, and C/EBPα). In conclusion, these results imply that tRFGluTTC may act as a novel epigenetic molecule regulating adipogenesis and could provide a new strategy for the intervention treatment of obesity. Full article
(This article belongs to the Special Issue Obesity and Hormones)
Show Figures

Graphical abstract

15 pages, 3966 KiB  
Article
Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules
by Jong-Min Han, Hua Li, Moon-Hee Cho, Seung-Hwa Baek, Chul-Ho Lee, Ho-Yong Park and Tae-Sook Jeong
Int. J. Mol. Sci. 2017, 18(2), 373; https://doi.org/10.3390/ijms18020373 - 10 Feb 2017
Cited by 27 | Viewed by 5178
Abstract
Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells [...] Read more.
Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. Full article
(This article belongs to the Special Issue Nutraceuticals in Human Health and Disease)
Show Figures

Graphical abstract

15 pages, 3000 KiB  
Review
Biological Rhythms in the Skin
by Mary S. Matsui, Edward Pelle, Kelly Dong and Nadine Pernodet
Int. J. Mol. Sci. 2016, 17(6), 801; https://doi.org/10.3390/ijms17060801 - 24 May 2016
Cited by 83 | Viewed by 18701
Abstract
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in [...] Read more.
Circadian rhythms, ≈24 h oscillations in behavior and physiology, are reflected in all cells of the body and function to optimize cellular functions and meet environmental challenges associated with the solar day. This multi-oscillatory network is entrained by the master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which directs an organism’s rhythmic expression of physiological functions and behavior via a hierarchical system. This system has been highly conserved throughout evolution and uses transcriptional–translational autoregulatory loops. This master clock, following environmental cues, regulates an organism’s sleep pattern, body temperature, cardiac activity and blood pressure, hormone secretion, oxygen consumption and metabolic rate. Mammalian peripheral clocks and clock gene expression have recently been discovered and are present in all nucleated cells in our body. Like other essential organ of the body, the skin also has cycles that are informed by this master regulator. In addition, skin cells have peripheral clocks that can function autonomously. First described in 2000 for skin, this review summarizes some important aspects of a rapidly growing body of research in circadian and ultradian (an oscillation that repeats multiple times during a 24 h period) cutaneous rhythms, including clock mechanisms, functional manifestations, and stimuli that entrain or disrupt normal cycling. Some specific relationships between disrupted clock signaling and consequences to skin health are discussed in more depth in the other invited articles in this IJMS issue on Sleep, Circadian Rhythm and Skin. Full article
(This article belongs to the Special Issue Sleep, Circadian Rhythm and Skin)
Show Figures

Graphical abstract

Back to TopTop