Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = KLK10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10651 KiB  
Article
Impact of Amelogenesis Imperfecta on Junctional Epithelium Structure and Function
by Kevin Lin, Jake Ngu, Susu Uyen Le and Yan Zhang
Biology 2025, 14(7), 853; https://doi.org/10.3390/biology14070853 - 14 Jul 2025
Viewed by 297
Abstract
The junctional epithelium, which lines the inner gingival surface, seals the gingival sulcus to block the infiltration of food debris and pathogens. The junctional epithelium is derived from the reduced enamel epithelium, consisting of late developmental stage ameloblasts and accessory cells. No prior [...] Read more.
The junctional epithelium, which lines the inner gingival surface, seals the gingival sulcus to block the infiltration of food debris and pathogens. The junctional epithelium is derived from the reduced enamel epithelium, consisting of late developmental stage ameloblasts and accessory cells. No prior studies have investigated whether defective ameloblast differentiation or enamel matrix formation affects junctional epithelium anatomy or function. Here, we examined the junctional epithelium in mice exhibiting amelogenesis imperfecta due to loss-of-function mutations in the major enamel matrix protein amelogenin (Amelx−/−) or the critical enamel matrix protease KLK4 (Klk4−/−). Histological analyses demonstrated altered morphology and cell layer thickness of the junctional epithelium in Amelx−/− and Klk4−/− mice as compared to wt. Immunohistochemistry revealed reduced ODAM, laminin 5, and integrin α6, all of which are critical for the adhesion of the junctional epithelium to the enamel in Amelx−/− and Klk4−/− mice. Furthermore, we observed altered cell–cell adhesion and increased permeability of Dextran-GFP through the mutants’ junctional epithelium, indicating defective barrier function. Reduced β-catenin and Ki67 at the base of the junctional epithelium in mutants suggest impaired mitotic activity and reduced capacity to replenish continuously desquamated epithelium. These findings highlight the essential role of normal amelogenesis in maintaining junctional epithelium homeostasis. Full article
(This article belongs to the Special Issue Understanding the Molecular Basis of Genetic Dental Diseases)
Show Figures

Figure 1

19 pages, 4255 KiB  
Article
Investigating the Genetic Links Between Immune Cell Profiles and Bladder Cancer: A Multidisciplinary Bioinformatics Approach
by Jin Zhang, Zhongji Jiang, Jiali Jin, Gaohaer Kadeerhan, Hong Guo and Dongwen Wang
Biomedicines 2025, 13(5), 1203; https://doi.org/10.3390/biomedicines13051203 - 15 May 2025
Viewed by 622
Abstract
Background: Bladder cancer (BC) is a common malignancy in the urinary system, with an increasing incidence rate. Immune cell infiltration within the tumor microenvironment (TME) plays a crucial role in BC progression and treatment response. However, the immune cell composition of the [...] Read more.
Background: Bladder cancer (BC) is a common malignancy in the urinary system, with an increasing incidence rate. Immune cell infiltration within the tumor microenvironment (TME) plays a crucial role in BC progression and treatment response. However, the immune cell composition of the TME presents a significant challenge to the effectiveness of current therapeutic strategies. Methods: We performed bidirectional Mendelian randomization (MR) analysis to investigate the impact of immune cells on BC risk. Single nucleotide polymorphisms (SNPs) related to immune cells were annotated, and candidate genes associated with BC risk were identified. Differential expression analysis identified immune-related differentially expressed genes (iDEGs), and a protein–protein interaction (PPI) network along with functional enrichment analysis were conducted to explore their roles in tumor development. Machine learning-based feature selection was applied to identify potential biomarkers and therapeutic targets. Results: MR analysis revealed eight immune cell subtypes significantly associated with BC. Using SNPs linked to these immune cells, 129 candidate genes were identified through the SNPense tool and cross-referenced with differentially expressed genes in BC, resulting in identification of 28 iDEGs. Machine learning identified five potential diagnostic biomarkers (COLEC12, TMCC1, CEP55, KLK3, COL4A1) with an AUC of 0.903, which are implicated in immune modulation and cancer progression. Conclusions: This study provides new insights into immune mechanisms in BC and identifies promising biomarkers for early diagnosis and therapeutic intervention. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

22 pages, 7330 KiB  
Article
Relevance of Cellular Homeostasis-Related Gene Expression Signatures in Distinct Molecular Subtypes of Breast Cancer
by Sharda P. Singh, Chathurika S. Dhanasekara, Michael W. Melkus, Chhanda Bose, Sonia Y. Khan, Flavia Sardela de Miranda, Maria F. Mahecha, Prrishti J. Gukhool, Sahil S. Tonk, Se-Ran Jun, Sahra Uygun and Rakhshanda Layeequr Rahman
Biomedicines 2025, 13(5), 1058; https://doi.org/10.3390/biomedicines13051058 - 28 Apr 2025
Viewed by 782
Abstract
Background: Breast cancer is a complex and heterogeneous disease characterized by distinct molecular subtypes with varying prognoses and treatment responses. Multiple factors influence breast cancer outcomes including tumor biology, patient characteristics, and treatment modalities. Demographic factors such as age, race/ethnicity, menopausal status, and [...] Read more.
Background: Breast cancer is a complex and heterogeneous disease characterized by distinct molecular subtypes with varying prognoses and treatment responses. Multiple factors influence breast cancer outcomes including tumor biology, patient characteristics, and treatment modalities. Demographic factors such as age, race/ethnicity, menopausal status, and body mass index have been correlated with variations in incidence, mortality, and survival rates. Over the past decade, comprehensive genomic profiling has been widely used to identify molecular biomarkers and signatures to develop novel therapeutic strategies for patients. For instance, the FLEX registry (NCT03053193) enrolled stage I–III breast cancer patients across 90 institutions in the United States and stratified risk groups based on a 70-gene signature (MammaPrint®-MP) and molecular subtype based on an 80-gene signature (BluePrint®-BP). This study aimed to identify the gene expression patterns and biomarkers associated with breast cancer risk and progression by integrating transcriptomic and clinical data. Methods: Targeted 111 unique gene expression and clinical data points from 978 breast cancer samples, representing each BP subtype (26% Luminal A, 26% Luminal B, 25% Basal, 23% HER2), obtained from Agendia Inc. These genes were selected based on their involvement in the mercapturic acid pathway, white and brown adipose tissue markers, inflammation markers, tumor-associated genes, apoptosis, autophagy, and ER stress markers. All statistical analyses, including principal component analysis (PCA), were performed using R version [4.4.0]. Prognostic values and genetic alterations were investigated using various web-based programs as described in the Methods section. Results: PCA of gene expression data revealed distinct clustering patterns associated with risk categories and molecular subtypes, particularly with principal component 4 (PC4). Genes related to oxidative stress, autophagy, apoptosis, and histone modification showed altered expression across risk categories and molecular subtypes. Key differentially expressed genes included SOD2, KLK5, KLK7, IL8, GSTM1/2, GLI1, CBS, and IGF1. Pathway analysis highlighted the enrichment of processes related to autophagy, cellular stress response, apoptosis, glutathione metabolism, deacetylation, and oxidative stress in high-risk and basal-like tumors compared with Ultralow and Luminal A tumors, respectively. Conclusions: This study identified gene expression signatures associated with breast cancer risk and molecular subtypes. These findings provide insights into the biological processes that may drive breast cancer progression and could inform the development of prognostic biomarkers and personalized therapeutic strategies. Full article
Show Figures

Figure 1

25 pages, 28238 KiB  
Article
Analysis of Kallikrein 6, Acetyl-α-Tubulin, and Aquaporin 1 and 2 Expression Patterns During Normal Human Nephrogenesis and in Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)
by Nela Kelam, Marin Ogorevc, Ivona Gotovac, Ivana Kuzmić Prusac, Katarina Vukojević, Mirna Saraga-Babić and Snježana Mardešić
Genes 2025, 16(5), 499; https://doi.org/10.3390/genes16050499 - 27 Apr 2025
Viewed by 493
Abstract
Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane [...] Read more.
Background/Objectives: The human kallikrein-related peptidase 6 (KLK6), a serine protease with trypsin-like properties, belongs to the 15-member kallikrein (KLK) gene family and is predominantly recognized for its role in oncogenesis, neurodegenerative disorders, and skin conditions. Aquaporins (AQPs) are integral membrane proteins that facilitate water transport across cell membranes. AQP1 is constitutively active in the kidneys and plays a crucial role in reabsorbing filtered water, while AQP2 is regulated by vasopressin and is essential for maintaining body fluid homeostasis. The primary objective of the present study is to investigate the spatio-temporal expression patterns of KLK6, AQP1, and AQP2 throughout normal human nephrogenesis and congenital kidney and urinary tract (CAKUT) abnormalities: duplex kidneys, horseshoe kidneys, and dysplastic kidneys. Methods: An immunofluorescence analysis of KLK6, AQP1, and AQP2 was performed on 37 paraffin-embedded fetal kidney samples. The area percentage of KLK6 in the kidney cortex was calculated in normal developing samples during developmental phases 2, 3, and 4 and compared with CAKUT samples. Results: KLK6 exhibits distinct spatiotemporal expression patterns during human kidney development, with consistent localization in proximal tubules. Its subcellular positioning shifts from the basolateral cytoplasm in early phases to the apical cytoplasm in later stages, which may be strategically positioned to act on its substrate in either the peritubular space or the tubular fluid. KLK6 expression followed a quadratic trajectory, peaking at Ph4. This marked increase in the final developmental phase aligns with its strong expression in mature kidneys, suggesting a potential role in proximal tubule differentiation and functional maturation through facilitating extracellular matrix remodeling and activating proteinase-activated receptors, modulating the signaling pathways that are essential for tubular development. In duplex kidneys, structural abnormalities such as ureteral obstruction and hydronephrosis may upregulate KLK6 as part of a reparative response, while its downregulation could impair epithelial remodeling and cytoskeletal integrity, exacerbating dysplastic phenotypes. Conclusions: These findings highlight the potential of KLK6 involvement in normal kidney development and the pathology of CAKUT. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 788 KiB  
Review
Omega-3 Fatty Acids and Exercise in Obesity Management: Independent and Synergistic Benefits in Metabolism and Knowledge Gaps
by Viviana Sandoval, Álvaro Vergara-Nieto, Amanda Bentes, Saulo Silva, Carolina Núñez and Sergio Martínez-Huenchullán
Biology 2025, 14(5), 463; https://doi.org/10.3390/biology14050463 - 24 Apr 2025
Viewed by 3426
Abstract
Obesity is a significant global health issue, profoundly affecting metabolic and cardiovascular health and other related chronic conditions. In Chile, the prevalence of obesity is among the highest within the Organisation for Economic Cooperation and Development (OECD) countries, highlighting a critical public health [...] Read more.
Obesity is a significant global health issue, profoundly affecting metabolic and cardiovascular health and other related chronic conditions. In Chile, the prevalence of obesity is among the highest within the Organisation for Economic Cooperation and Development (OECD) countries, highlighting a critical public health challenge. This narrative review examines current evidence on the independent and potential synergistic roles of omega-3 fatty acids and exercise in managing obesity-related metabolic dysfunction. Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA), have been shown to lower triglyceride levels, enhance lipid metabolism, and modulate inflammation via pathways involving peroxisome proliferator-activated receptors (PPARs) and sterol regulatory element-binding protein-1c (SREBP-1c). Exercise interventions, such as moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT), provide distinct yet complementary metabolic benefits. Specifically, MICT improves body fat distribution and mitochondrial efficiency, whereas HIIT has notable effects on metabolic adaptability and insulin signaling. Additionally, emerging evidence points toward a potential role of the kinin-kallikrein system, particularly kallikrein 7 (KLK7), in obesity-associated insulin resistance. Despite these promising findings, several knowledge gaps persist regarding optimal dosing, intervention timing, population-specific effects, and the exact mechanisms behind the potential synergistic interactions between omega-3 supplementation and structured exercise. This review emphasizes the importance of conducting further research, particularly controlled clinical trials, to clarify these combined interventions’ effectiveness and establish targeted therapeutic strategies tailored to individual metabolic profiles. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

24 pages, 3618 KiB  
Article
Proteomic Profiling of Pre- and Post-Surgery Saliva of Glioblastoma Patients: A Pilot Investigation
by Alexandra Muntiu, Fabiana Moresi, Federica Vincenzoni, Diana Valeria Rossetti, Federica Iavarone, Irene Messana, Massimo Castagnola, Giuseppe La Rocca, Edoardo Mazzucchi, Alessandro Olivi, Andrea Urbani, Giovanni Sabatino and Claudia Desiderio
Int. J. Mol. Sci. 2024, 25(23), 12984; https://doi.org/10.3390/ijms252312984 - 3 Dec 2024
Cited by 2 | Viewed by 1526
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the [...] Read more.
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor characterized by a high infiltration capability and recurrence rate. Early diagnosis is crucial to improve the prognosis and to personalize the therapeutic approach. This research explored, by LC-MS proteomic analysis after proteolytic digestion, the molecular profile of pre- and post-operative saliva pools from newly diagnosed (ND) GBM patients by comparing different times of collection and tumor recurrence (R). CYCS, PRDX2, RAB1C, PSMB1, KLK6, TMOD3, PAI2, PLBD1, CAST, and AHNAK, all involved in processes of tumor invasiveness and chemo- and radio-resistance, were found to depict the pre-surgery saliva of both ND and R GBM. PADI4 and CRYAB proteins, identified among the most abundant proteins exclusive of ND GBM pre-surgery saliva and classified as proteins elevated in glioma, could have a potential role as disease biomarkers. Selected panels of S100 proteins were found to potentially differentiate ND from R GBM patient saliva. TPD52 and IGKV3, exclusively identified in R GBM saliva, could be additionally distinctive of tumor relapse. Among the proteins identified in all pools, label-free relative quantitation showed statistically significant different levels of TXN, SERPINB5, FABP5, and S100A11 proteins between the pools. All of these proteins showed higher levels in both ND_ and R_T0 pre-surgery saliva with respect to CTRL and different modulation after surgery or chemo-radiotherapy combined treatment, suggesting a role as a potential panel of GBM predictive and prognostic biomarkers. These results highlight and confirm that saliva, a biofluid featured for an easily accessible and low invasiveness collection, is a promising source of GBM biomarkers, showing new potential opportunities for the development of targeted therapies and diagnostic tools. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

26 pages, 8277 KiB  
Article
Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene
by Teodora G. Georgieva, Dalila Darmoul, Hwudaurw Chen, Haiyan Cui, Photini F. S. Rice, Jennifer K. Barton, David G. Besselsen and Natalia A. Ignatenko
Cancers 2024, 16(22), 3842; https://doi.org/10.3390/cancers16223842 - 15 Nov 2024
Viewed by 1387
Abstract
Background/Objectives: The objective of this study was to assess the role of a secreted serine protease, kallikrein-related peptidase 6 (KLK6), during colorectal tumorigenesis driven by a mutant Adenomatous polyposis coli (APC) tumor suppressor gene. A first analysis of KLK6 expression in the intestinal [...] Read more.
Background/Objectives: The objective of this study was to assess the role of a secreted serine protease, kallikrein-related peptidase 6 (KLK6), during colorectal tumorigenesis driven by a mutant Adenomatous polyposis coli (APC) tumor suppressor gene. A first analysis of KLK6 expression in the intestinal tract of Apc-mutant multiple intestinal neoplasia (ApcMin/+) mice revealed up to four-fold induction of Klk6 mRNA levels in adenomas relative to its level in the adjacent mucosa. Methods and Results: The presence of KLK6 protein in the adenomatous areas was confirmed by immunohistochemistry and optical coherence tomography/laser-induced fluorescence (OCT/LIF) imaging. To assess the contribution of the KLK6 expression on the Apc-mutant intestinal and colon tumorigenesis, we engineered a mouse with floxed alleles of the Klk6 gene (Klk6lox/lox) and crossed it with a mouse expressing the truncated APC protein under control of the intestinal tract-specific human CDX2P9.5-NLS Cre transgene (CPC;Apcfl/fl;Klk6+/+). We found that CPC;Apcfl/fl mice with disrupted Klk6 gene expression (CPC;Apcfl/fl;Klk6fl/fl) had a significantly smaller average size of the small intestinal and colon crypts (p < 0.001 and p = 0.04, respectively) and developed a significantly fewer adenomas (p = 0.01). Moreover, a decrease in high-grade adenomas (p = 0.03) and adenomas with a diameter above 2 mm (p < 0.0001) was noted in CPC;Apcfl/fl;Klk6fl/fl mice. Further molecular analysis showed that Klk6 gene inactivation in the small intestine and colon tissues of CPC;Apcfl/fl;Klk6fl/fl mice resulted in a significant suppression of transforming growth factor β2 (TGF-β2) protein (p ≤ 0.02) and mitogen-activated protein kinase (MAPK) phosphorylation (p ≤ 0.01). Conclusions: These findings demonstrate the oncogenic role of KLK6 in the mutant Apc-mediated intestinal tumorigenesis and suggest the utility of KLK6 for early diagnosis of colorectal tumors. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

22 pages, 4365 KiB  
Article
Extracellular RNAs from Whole Urine to Distinguish Prostate Cancer from Benign Prostatic Hyperplasia
by Michele Stella, Giorgio Ivan Russo, Rosario Leonardi, Daniela Carcò, Giuseppe Gattuso, Luca Falzone, Carmen Ferrara, Angela Caponnetto, Rosalia Battaglia, Massimo Libra, Davide Barbagallo, Cinzia Di Pietro, Salvatore Pernagallo, Cristina Barbagallo and Marco Ragusa
Int. J. Mol. Sci. 2024, 25(18), 10079; https://doi.org/10.3390/ijms251810079 - 19 Sep 2024
Cited by 7 | Viewed by 2102
Abstract
RNAs, especially non-coding RNAs (ncRNAs), are crucial players in regulating cellular mechanisms due to their ability to interact with and regulate other molecules. Altered expression patterns of ncRNAs have been observed in prostate cancer (PCa), contributing to the disease’s initiation, progression, and treatment [...] Read more.
RNAs, especially non-coding RNAs (ncRNAs), are crucial players in regulating cellular mechanisms due to their ability to interact with and regulate other molecules. Altered expression patterns of ncRNAs have been observed in prostate cancer (PCa), contributing to the disease’s initiation, progression, and treatment response. This study aimed to evaluate the ability of a specific set of RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and mRNAs, to discriminate between PCa and the non-neoplastic condition benign prostatic hyperplasia (BPH). After selecting by literature mining the most relevant RNAs differentially expressed in biofluids from PCa patients, we evaluated their discriminatory power in samples of unfiltered urine from 50 PCa and 50 BPH patients using both real-time PCR and droplet digital PCR (ddPCR). Additionally, we also optimized a protocol for urine sample manipulation and RNA extraction. This two-way validation study allowed us to establish that miRNAs (i.e., miR-27b-3p, miR-574-3p, miR-30a-5p, and miR-125b-5p) are more efficient biomarkers for PCa compared to long RNAs (mRNAs and lncRNAs) (e.g., PCA3, PCAT18, and KLK3), as their dysregulation was consistently reported in the whole urine of patients with PCa compared to those with BPH in a statistically significant manner regardless of the quantification methodology performed. Moreover, a significant increase in diagnostic performance was observed when molecular signatures composed of different miRNAs were considered. Hence, the abovementioned circulating ncRNAs represent excellent potential non-invasive biomarkers in urine capable of effectively distinguishing individuals with PCa from those with BPH, potentially reducing cancer overdiagnosis. Full article
(This article belongs to the Special Issue Roles and Mechanisms of Non-Coding RNAs in Human Health and Disease)
Show Figures

Figure 1

20 pages, 3630 KiB  
Article
Tissue Kallikrein-1 Suppresses Type I Interferon Responses and Reduces Depressive-Like Behavior in the MRL/lpr Lupus-Prone Mouse Model
by Priyanka S. Bhoj, Cassandra Nocito, Namdev S. Togre, Malika Winfield, Cody Lubinsky, Sabeeya Khan, Nikhita Mogadala, Alecia Seliga, Ellen M. Unterwald, Yuri Persidsky and Uma Sriram
Int. J. Mol. Sci. 2024, 25(18), 10080; https://doi.org/10.3390/ijms251810080 - 19 Sep 2024
Cited by 1 | Viewed by 2082
Abstract
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause [...] Read more.
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause depressive symptoms. We have shown that the kallikrein–kinin system (KKS) [comprised of kallikreins (Klks) and bradykinins] and angiotensin-converting enzyme inhibitors suppressed Type I IFN responses in dendritic cells from lupus-prone mice and human peripheral blood mononuclear cells. Tissue Klk genes are decreased in patients with lupus, and giving exogenous Klk1 ameliorated kidney pathology in mice. We retro-orbitally administered mouse klk1 gene-carrying adenovirus in the Murphy Roths Large lymphoproliferative (MRL/lpr) lupus-prone mice at early disease onset and analyzed immune responses and depressive-like behavior. Klk1 improved depressive-like behavior, suppressed interferon-responsive genes and neuroinflammation, and reduced plasma IFNα levels and proinflammatory cytokines. Klk1 also reduced IFNAR1 and JAK1 protein expression, important upstream molecules in Type I IFN signaling. Klk1 reduced bradykinin B1 receptor expression, which is known to induce proinflammatory response. Together, these findings suggest that Klk1 may be a potential therapeutic candidate to control IFNα production/responses and other inflammatory responses in SLE and NPSLE. Full article
(This article belongs to the Topic Inflammation: The Cause of all Diseases 2.0)
Show Figures

Figure 1

18 pages, 1058 KiB  
Review
Developmental Therapeutics in Metastatic Prostate Cancer: New Targets and New Strategies
by Jingsong Zhang and Juskaran S. Chadha
Cancers 2024, 16(17), 3098; https://doi.org/10.3390/cancers16173098 - 6 Sep 2024
Cited by 3 | Viewed by 4001
Abstract
There is an unmet need to develop new treatments for metastatic prostate cancer. With the development of targeted radioligand therapies, bispecific T cell engagers, antibody–drug conjugates and chimeric antigen receptor T cell (CAR T) therapies, tumor-associated cell surface antigens have emerged as new [...] Read more.
There is an unmet need to develop new treatments for metastatic prostate cancer. With the development of targeted radioligand therapies, bispecific T cell engagers, antibody–drug conjugates and chimeric antigen receptor T cell (CAR T) therapies, tumor-associated cell surface antigens have emerged as new therapeutic targets in metastatic prostate cancer. Ongoing and completed clinical trials targeting prostate-specific membrane antigen (PSMA), six transmembrane epithelial antigens of the prostate 1 (STEAP1), kallikrein-related peptidase 2 (KLK2), prostate stem cell antigen (PSCA), and delta-like protein 3 (DLL3) in metastatic prostate cancer were reviewed. Strategies for sequential or combinational therapy were discussed. Full article
(This article belongs to the Special Issue New Insights into Urologic Oncology)
Show Figures

Figure 1

11 pages, 1379 KiB  
Communication
Salivary Molecular Spectroscopy with Machine Learning Algorithms for a Diagnostic Triage for Amelogenesis Imperfecta
by Felipe Morando Avelar, Célia Regina Moreira Lanza, Sttephany Silva Bernardino, Marcelo Augusto Garcia-Junior, Mario Machado Martins, Murillo Guimarães Carneiro, Vasco Ariston Carvalho de Azevedo and Robinson Sabino-Silva
Int. J. Mol. Sci. 2024, 25(17), 9464; https://doi.org/10.3390/ijms25179464 - 30 Aug 2024
Cited by 2 | Viewed by 1389
Abstract
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. [...] Read more.
Amelogenesis imperfecta (AI) is a genetic disease characterized by poor formation of tooth enamel. AI occurs due to mutations, especially in AMEL, ENAM, KLK4, MMP20, and FAM83H, associated with changes in matrix proteins, matrix proteases, cell-matrix adhesion proteins, and transport proteins of enamel. Due to the wide variety of phenotypes, the diagnosis of AI is complex, requiring a genetic test to characterize it better. Thus, there is a demand for developing low-cost, noninvasive, and accurate platforms for AI diagnostics. This case-control pilot study aimed to test salivary vibrational modes obtained in attenuated total reflection fourier-transformed infrared (ATR-FTIR) together with machine learning algorithms: linear discriminant analysis (LDA), random forest, and support vector machine (SVM) could be used to discriminate AI from control subjects due to changes in salivary components. The best-performing SVM algorithm discriminates AI better than matched-control subjects with a sensitivity of 100%, specificity of 79%, and accuracy of 88%. The five main vibrational modes with higher feature importance in the Shapley Additive Explanations (SHAP) were 1010 cm−1, 1013 cm−1, 1002 cm−1, 1004 cm−1, and 1011 cm−1 in these best-performing SVM algorithms, suggesting these vibrational modes as a pre-validated salivary infrared spectral area as a potential biomarker for AI screening. In summary, ATR-FTIR spectroscopy and machine learning algorithms can be used on saliva samples to discriminate AI and are further explored as a screening tool. Full article
(This article belongs to the Special Issue Omics Sciences for Salivary Diagnostics—2nd Edition)
Show Figures

Figure 1

12 pages, 3745 KiB  
Article
Placental Transcriptome Analysis in Connection with Low Litter Birth Weight Phenotype (LBWP) Sows
by Julia Linck Moroni, Stephen Tsoi, Irene I. Wenger, Graham S. Plastow and Michael K. Dyck
Genes 2024, 15(6), 703; https://doi.org/10.3390/genes15060703 - 28 May 2024
Viewed by 1475
Abstract
It is possible to identify sub-populations of sows in every pig herd that consistently give birth to low birth weight (BW) piglets, irrespective of the litter size. A previous study from our group demonstrated that placental development is a main factor affecting the [...] Read more.
It is possible to identify sub-populations of sows in every pig herd that consistently give birth to low birth weight (BW) piglets, irrespective of the litter size. A previous study from our group demonstrated that placental development is a main factor affecting the litter birth weight phenotype (LBWP) in sows, thereby impacting the BW of entire litters, but the biological and molecular pathways behind this phenomenon are largely unknown. The aim of this study was to investigate the differential gene expression in placental tissues at day 30 of gestation between low LBWP (LLBWP) vs. high LBWP (HLBWP) sows from a purebred Large White maternal line. Using mRNA sequencing, we found 45 differentially expressed genes (DEGs) in placental tissues of LLBWP and HLBWP sows. Furthermore, (GO) enrichment of upregulated DEGs predicted that there were two biological processes significantly related to cornification and regulation of cell population proliferation. To better understand the molecular interaction between cell proliferation and cornification, we conducted transcriptional factor binding site (TFBS) prediction analysis. The results indicated that a highly significant TFBS was located at the 5′ upstream of all four upregulated genes (CDSN, DSG3, KLK14, KRT17), recognized by transcription factors EGR4 and FOSL1. Our findings provide novel insight into how transcriptional regulation of two different biological processes interact in placental tissues of LLBWP sows. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

14 pages, 9810 KiB  
Article
Unveiling the Genomic Landscape of Intraductal Carcinoma of the Prostate Using Spatial Gene Expression Analysis
by Ryuta Watanabe, Noriyoshi Miura, Mie Kurata, Riko Kitazawa, Tadahiko Kikugawa and Takashi Saika
Int. J. Mol. Sci. 2024, 25(9), 4818; https://doi.org/10.3390/ijms25094818 - 28 Apr 2024
Cited by 6 | Viewed by 2225
Abstract
Intraductal carcinoma of the prostate (IDCP) has recently attracted increasing interest owing to its unfavorable prognoses. To effectively identify the IDCP-specific gene expression profile, we took a novel approach of characterizing a typical IDCP case using spatial gene expression analysis. A formalin-fixed, paraffin-embedded [...] Read more.
Intraductal carcinoma of the prostate (IDCP) has recently attracted increasing interest owing to its unfavorable prognoses. To effectively identify the IDCP-specific gene expression profile, we took a novel approach of characterizing a typical IDCP case using spatial gene expression analysis. A formalin-fixed, paraffin-embedded sample was subjected to Visium CytAssist Spatial Gene Expression analysis. IDCP within invasive prostate cancer sites was recognized as a distinct cluster separate from other invasive cancer clusters. Highly expressed genes defining the IDCP cluster, such as MUC6, MYO16, NPY, and KLK12, reflected the aggressive nature of high-grade prostate cancer. IDCP sites also showed increased hypoxia markers HIF1A, BNIP3L, PDK1, and POGLUT1; decreased fibroblast markers COL1A2, DCN, and LUM; and decreased immune cell markers CCR5 and FCGR3A. Overall, these findings indicate that the hypoxic tumor microenvironment and reduced recruitment of fibroblasts and immune cells, which reflect morphological features of IDCP, may influence the aggressiveness of high-grade prostate cancer. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying the Progression of Prostate Cancer)
Show Figures

Figure 1

14 pages, 3564 KiB  
Article
Genomic and Immunologic Correlates in Prostate Cancer with High Expression of KLK2
by Lucía Paniagua-Herranz, Irene Moreno, Cristina Nieto-Jiménez, Esther Garcia-Lorenzo, Cristina Díaz-Tejeiro, Adrián Sanvicente, Bernard Doger, Manuel Pedregal, Jorge Ramón, Jorge Bartolomé, Arancha Manzano, Balázs Gyorffy, Álvaro Gutierrez-Uzquiza, Pedro Pérez Segura, Emiliano Calvo, Víctor Moreno and Alberto Ocana
Int. J. Mol. Sci. 2024, 25(4), 2222; https://doi.org/10.3390/ijms25042222 - 13 Feb 2024
Cited by 2 | Viewed by 3308
Abstract
The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, [...] Read more.
The identification of surfaceome proteins is a main goal in cancer research to design antibody-based therapeutic strategies. T cell engagers based on KLK2, a kallikrein specifically expressed in prostate cancer (PRAD), are currently in early clinical development. Using genomic information from different sources, we evaluated the immune microenvironment and genomic profile of prostate tumors with high expression of KLK2. KLK2 was specifically expressed in PRAD but it was not significant associated with Gleason score. Additionally, KLK2 expression did not associate with the presence of any immune cell population and T cell activating markers. A mild correlation between the high expression of KLK2 and the deletion of TMPRSS2 was identified. KLK2 expression associated with high levels of surface proteins linked with a detrimental response to immune checkpoint inhibitors (ICIs) including CHRNA2, FAM174B, OR51E2, TSPAN1, PTPRN2, and the non-surface protein TRPM4. However, no association of these genes with an outcome in PRAD was observed. Finally, the expression of these genes in PRAD did not associate with an outcome in PRAD and any immune populations. We describe the immunologic microenvironment on PRAD tumors with a high expression of KLK2, including a gene signature linked with an inert immune microenvironment, that predicts the response to ICIs in other tumor types. Strategies targeting KLK2 with T cell engagers or antibody–drug conjugates will define whether T cell mobilization or antigen release and stimulation of immune cell death are sufficient effects to induce clinical activity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 5678 KiB  
Article
Molecular Evidence for Relaxed Selection on the Enamel Genes of Toothed Whales (Odontoceti) with Degenerative Enamel Phenotypes
by Jason G. Randall, John Gatesy, Michael R. McGowen and Mark S. Springer
Genes 2024, 15(2), 228; https://doi.org/10.3390/genes15020228 - 10 Feb 2024
Cited by 2 | Viewed by 2446
Abstract
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with [...] Read more.
Different species of toothed whales (Odontoceti) exhibit a variety of tooth forms and enamel types. Some odontocetes have highly prismatic enamel with Hunter-Schreger bands, whereas enamel is vestigial or entirely lacking in other species. Different tooth forms and enamel types are associated with alternate feeding strategies that range from biting and grasping prey with teeth in most oceanic and river dolphins to the suction feeding of softer prey items without the use of teeth in many beaked whales. At the molecular level, previous studies have documented inactivating mutations in the enamel-specific genes of some odontocete species that lack complex enamel. At a broader scale, however, it is unclear whether enamel complexity across the full diversity of extant Odontoceti correlates with the relative strength of purifying selection on enamel-specific genes. Here, we employ sequence alignments for seven enamel-specific genes (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) in 62 odontocete species that are representative of all extant families. The sequences for 33 odontocete species were obtained from databases, and sequences for the remaining 29 species were newly generated for this study. We screened these alignments for inactivating mutations (e.g., frameshift indels) and provide a comprehensive catalog of these mutations in species with one or more inactivated enamel genes. Inactivating mutations are rare in Delphinidae (oceanic dolphins) and Platanistidae/Inioidea (river dolphins) that have higher enamel complexity scores. By contrast, mutations are much more numerous in clades such as Monodontidae (narwhal, beluga), Ziphiidae (beaked whales), Physeteroidea (sperm whales), and Phocoenidae (porpoises) that are characterized by simpler enamel or even enamelless teeth. Further, several higher-level taxa (e.g., Hyperoodon, Kogiidae, Monodontidae) possess shared inactivating mutations in one or more enamel genes, which suggests loss of function of these genes in the common ancestor of each clade. We also performed selection (dN/dS) analyses on a concatenation of these genes and used linear regression and Spearman’s rank-order correlation to test for correlations between enamel complexity and two different measures of selection intensity (# of inactivating mutations per million years, dN/dS values). Selection analyses revealed that relaxed purifying selection is especially prominent in physeteroids, monodontids, and phocoenids. Linear regressions and correlation analyses revealed a strong negative correlation between selective pressure (dN/dS values) and enamel complexity. Stronger purifying selection (low dN/dS) is found on branches with more complex enamel and weaker purifying selection (higher dN/dS) occurs on branches with less complex enamel or enamelless teeth. As odontocetes diversified into a variety of feeding modes, in particular, the suction capture of prey, a reduced reliance on the dentition for prey capture resulted in the relaxed selection of genes that are critical to enamel development. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop