Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Jinghai yellow chicken

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3899 KiB  
Article
Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis
by Xuanze Ling, Qifan Wang, Pengfei Wu, Kaizhi Zhou, Jin Zhang and Genxi Zhang
Genes 2023, 14(9), 1764; https://doi.org/10.3390/genes14091764 - 5 Sep 2023
Cited by 1 | Viewed by 1936
Abstract
Broiler skeletal muscle growth is significantly influenced by miRNAs. Our earlier research demonstrated that miR-24-3p significantly suppressed the proliferation of chicken myoblasts while promoting their differentiation. The purpose of this study is to investigate miR-24-3p potential target genes in chickens. We collected myoblasts [...] Read more.
Broiler skeletal muscle growth is significantly influenced by miRNAs. Our earlier research demonstrated that miR-24-3p significantly suppressed the proliferation of chicken myoblasts while promoting their differentiation. The purpose of this study is to investigate miR-24-3p potential target genes in chickens. We collected myoblasts of Jinghai yellow chicken and transfected four samples with mimics of miR-24-3p and another four samples with mimic NC (negative control) for RNA-seq. We obtained 54.34 Gb of raw data in total and 50.79 Gb of clean data remained after filtering. Moreover, 11,635 genes were found to be co-expressed in these two groups. The mimic vs. NC comparison group contained 189 DEGs in total, 119 of which were significantly up-regulated and 70 of which were significantly down-regulated. Important biological process (BP) terminology such as nuclear chromosomal segregation, reproduction, and nuclear division were discovered by GO enrichment analysis for DEGs in the mimic vs. NC comparison group. KEGG pathway analysis showed that focal adhesion, cytokine–cytokine receptor interaction, the TGF-β signaling pathway, and the MAPK signaling pathway were enriched in the top 20. Variation site analysis illustrated the SNP (single nucleotide polymorphisms) and INDEL (insertion–deletion) in the tested samples. By comparing the target genes predicted by miRDB (MicroRNA target prediction database) and TargetScan with the 189 DEGs found by the transcriptome sequencing, we discovered two up-regulated DEGs (NEURL1 and IQSEC3) and two down-regulated DEGs (REEP1 and ST6GAL1). Finally, we carried out qPCR experiments on eight DEGs and discovered that the qPCR results matched the sequencing outcomes. These findings will aid in identifying potential miR-24-3p target genes in chicken skeletal muscle and offer some new directions for upcoming research on broiler breeding. Full article
(This article belongs to the Special Issue Poultry Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2886 KiB  
Article
Prediction of the Effect of Methylation in the Promoter Region of ZP2 Gene on Egg Production in Jinghai Yellow Chickens
by Jin Zhang, Xiang-Qian Zhang, Xuan-Ze Ling, Xiu-Hua Zhao, Kai-Zhi Zhou, Jin-Yu Wang and Gen-Xi Zhang
Vet. Sci. 2022, 9(10), 570; https://doi.org/10.3390/vetsci9100570 - 16 Oct 2022
Cited by 3 | Viewed by 1909
Abstract
Egg production in chickens is a quantitative trait. The aim of this study was to investigate the effect of promoter methylation of the Zona pellucida 2 (ZP2) gene on egg production. Real-time fluorescence quantification showed that the expression of the ZP2 gene in [...] Read more.
Egg production in chickens is a quantitative trait. The aim of this study was to investigate the effect of promoter methylation of the Zona pellucida 2 (ZP2) gene on egg production. Real-time fluorescence quantification showed that the expression of the ZP2 gene in the ovaries of 300-day-old Jinghai yellow chickens in the high-laying group was significantly higher than that in the low-laying group (p < 0.01). A series of deletion fragments of the ZP2 gene promoter in Jinghai yellow chickens had different promoter activities in DF-1 cells, and the core region of the ZP2 gene promoter was found to be between −1552 and −1348. Four CpG islands in the promoter region of the ZP2 gene were detected by software prediction. The overall degree of methylation of the ZP2-1 amplified fragment was negatively correlated with mRNA expression to some extent (R = −0.197); the overall degree of methylation of the ZP2-2 amplified fragment was also negatively correlated with mRNA expression to some extent (R = −0.264), in which the methylation of methylcytosine (mC)-9, mC-20, and mC-21 sites was significantly negatively correlated with mRNA expression (p < 0.05). In addition, the mC-20 and mC-21 sites are located on the Sp1 transcription factor binding site, and it is speculated that these two sites may be the main sites for regulating transcription. In summary, the methylation sites mC-20 and mC-21 of the ZP2 gene may inhibit the binding of Sp1 and DNA, affect the transcription of the ZP2 gene, and then affect the number of eggs produced by the Jinghai yellow chickens. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

12 pages, 2729 KiB  
Article
Study of the Relationship between Polymorphisms in the IL-8 Gene Promoter Region and Coccidiosis Resistance Index in Jinghai Yellow Chickens
by Xiao-Hui Wang, Hai-Liang Yu, Wen-Bin Zou, Chang-Hao Mi, Guo-Jun Dai, Tao Zhang, Gen-Xi Zhang, Kai-Zhou Xie and Jin-Yu Wang
Genes 2020, 11(5), 476; https://doi.org/10.3390/genes11050476 - 27 Apr 2020
Cited by 6 | Viewed by 2769
Abstract
Interleukin 8 (IL-8) participates in the immune response and has the function of inducing neutrophils to release lysosomal enzymes and eliminate pathogens. This study was to investigate the effect of single nucleotide mutations in the IL-8 gene promoter region on the coccidiosis resistance [...] Read more.
Interleukin 8 (IL-8) participates in the immune response and has the function of inducing neutrophils to release lysosomal enzymes and eliminate pathogens. This study was to investigate the effect of single nucleotide mutations in the IL-8 gene promoter region on the coccidiosis resistance index. In this study, 180 infected Eimeria tenella (E. tenella) Jinghai yellow chickens were used as experimental samples. DNA sequencing technology was used to detect single nucleotide polymorphisms (SNPs) in the IL-8 gene promoter region. The association between these SNPs and coccidiosis resistance indexes (including superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX), catalase (CAT), nitric oxide (NO), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), IL-8, and interferon-γ (IFN-γ)) were analyzed. Three SNPs (T-550C, G-398T, and T-360C) were detected. Significant associations were found between each genotype at the T-550C site with NO (p-value = 0.006) and IL-8 (p-value = 0.034) indexes. Significant associations were found between each genotype at the G-398T site with SOD (p-value = 0.042), CAT (p-value = 0.049), NO (p-value = 0.008), and IL-2 (p-value = 0.044) indexes. Significant associations were found between each genotype at the T-360C site with SOD (p-value = 0.007), NO (p-value = 0.046), IL-2 (p-value = 0.041), IL-8 (p-value = 0.039), and IFN-γ (p-value = 0.042) indexes. Haplotype analysis showed that multiple indexes of the H1H3 haplotype combination were significantly higher than other haplotype combinations. Therefore, mutation of the IL-8 gene promoter region has a significant regulatory effect on the coccidiosis resistance index, with a change in transcription factor binding potentially altering IL-8 gene expression, thereby further affecting the IL-8 level in plasma. However, the specific mechanism needs further study. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

10 pages, 450 KiB  
Article
Establishing a Model for Evaluating Chicken Coccidiosis Resistance Based on Principal Component Analysis
by Wenbin Zou, Hailiang Yu, Xiaohui Wang, Guojun Dai, Mingming Sun, Genxi Zhang, Tao Zhang, Huiqiang Shi, Kaizhou Xie and Jinyu Wang
Animals 2019, 9(11), 926; https://doi.org/10.3390/ani9110926 - 6 Nov 2019
Cited by 5 | Viewed by 2912
Abstract
To establish a coccidiosis resistance evaluation model for chicken selection, the different parameters were compared between infected and control Jinghai yellow chickens. Validation parameters were selected for principal component analysis (PCA), and an optimal comprehensive evaluation model was selected based on the significance [...] Read more.
To establish a coccidiosis resistance evaluation model for chicken selection, the different parameters were compared between infected and control Jinghai yellow chickens. Validation parameters were selected for principal component analysis (PCA), and an optimal comprehensive evaluation model was selected based on the significance of a correlation coefficient between coccidiosis resistance parameters and principal component functions. The following six different parameters were identified: body weight gain 3–5 days post infection and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and γ-interferon (IFN-γ) concentrations on the eight day post inoculation. Six principal components and one accumulated contribution of up to 80% of the evaluation models were established by PCA. The results showed that the first model was significantly or highly significantly related to nine resistance parameters (p < 0.01 or p < 0.05), especially to cecal lesions (p < 0.01). The remaining models were related to only 2–3 parameters (p < 0.01 or p < 0.05) and not to cecal lesions (p > 0.05). The values calculated by the optimal model (first model) were significantly negatively correlated with cecal lesion performance; the larger the value, the more resistant to coccidiosis. The model fi1 = −0.636 zxi1 + 0.311 zxi2 + 0.801 zxi3 − 0.046 zxi4 − 0.076 zxi5 + 0.588 zxi6 might be the best comprehensive selection index model for chicken coccidiosis resistance selection. Full article
(This article belongs to the Special Issue Poultry Microbiology and Immunology)
Show Figures

Figure 1

11 pages, 756 KiB  
Article
Association Analysis of Single Nucleotide Polymorphisms in the 5′ Regulatory Region of the IL-6 Gene with Eimeria tenella Resistance in Jinghai Yellow Chickens
by Hailiang Yu, Wenbin Zou, Shijie Xin, Xiaohui Wang, Changhao Mi, Guojun Dai, Tao Zhang, Genxi Zhang, Kaizhou Xie, Jinyu Wang and Cong Qiu
Genes 2019, 10(11), 890; https://doi.org/10.3390/genes10110890 - 5 Nov 2019
Cited by 7 | Viewed by 2541
Abstract
Interleukin 6 (IL-6) is an immunoregulatory cytokine involved in various inflammatory and immune responses. To investigate the effects of single nucleotide polymorphisms (SNPs) and haplotypes of IL-6 on resistance to Eimeria tenella (E. tenella), SNPs in the 5′ [...] Read more.
Interleukin 6 (IL-6) is an immunoregulatory cytokine involved in various inflammatory and immune responses. To investigate the effects of single nucleotide polymorphisms (SNPs) and haplotypes of IL-6 on resistance to Eimeria tenella (E. tenella), SNPs in the 5′ regulatory region of IL-6 were detected with direct sequencing, and the effects of SNPs and haplotypes on resistance to E. tenella were analyzed by the least square model in Jinghai yellow chickens. Nineteen SNPs were identified in the 5′ regulation region of IL-6, among which three SNPs were newly discovered. The SNP association analysis results showed that nine of the SNPs were significantly associated with E. tenella resistance indexes; the A-483G locus was significantly associated with the GSH-Px, IL-2, and IL-17 indexes (p < 0.05); the C-447G locus was significantly associated with the SOD, GSH-Px, IL-17, and IL-2 indexes (p < 0.05); and the G-357A locus had significant effects on the CAT and IL-16 indexes (p < 0.05). Haplotype analysis showed that H2H3 and H2H5 were favorable haplotype combinations with good coccidium resistance. Furthermore, we used qRT-PCR and observed that the expression of IL-6 in the infection group was higher than that in the control group in the liver, proventriculus, small intestine, thymus, kidney, and bursa of Fabricius and extremely significantly different than that in the cecum especially (p < 0.01). In summary, SNPs and haplotypes in the 5′ regulatory region of IL-6 have important effects on E. tenella resistance, and the results will provide a reference for molecular marker selection of E. tenella resistance in Jinghai yellow chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 4794 KiB  
Article
Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken
by Fuxiang Chen, Pengfei Wu, Manman Shen, Mingliang He, Lan Chen, Cong Qiu, Huiqiang Shi, Tao Zhang, Jiahong Wang, Kaizhou Xie, Guojun Dai, Jinyu Wang and Genxi Zhang
Genes 2019, 10(7), 539; https://doi.org/10.3390/genes10070539 - 17 Jul 2019
Cited by 25 | Viewed by 5602
Abstract
The growth traits are important traits in chickens. Compared to white feather broiler breeds, Chinese local broiler breeds have a slow growth rate. The main genes affecting the growth traits of local chickens in China are still unclear and need to be further [...] Read more.
The growth traits are important traits in chickens. Compared to white feather broiler breeds, Chinese local broiler breeds have a slow growth rate. The main genes affecting the growth traits of local chickens in China are still unclear and need to be further explored. This experiment used fast-growth and slow-growth groups of the Jinghai Yellow chicken as the research objects. Three males and three females with similar body weights were selected from the two groups at four weeks old and eight weeks old, respectively, with a total of 24 individuals selected. After slaughter, their chest muscles were taken for transcriptome sequencing. In the differentially expressed genes screening, all of the genes obtained were screened by fold change ≥ 2 and false discovery rate (FDR) < 0.05. For four-week-old chickens, a total of 172 differentially expressed genes were screened in males, where there were 68 upregulated genes and 104 downregulated genes in the fast-growth group when compared with the slow-growth group. A total of 31 differentially expressed genes were screened in females, where there were 11 upregulated genes and 20 downregulated genes in the fast-growth group when compared with the slow-growth group. For eight-week-old chickens, a total of 37 differentially expressed genes were screened in males. The fast-growth group had 28 upregulated genes and 9 downregulated genes when compared with the slow-growth group. A total of 44 differentially expressed genes were screened in females. The fast-growth group had 13 upregulated genes and 31 downregulated genes when compared with the slow-growth group. Through gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, many genes were found to be related to cell proliferation and differentiation, muscle growth, and cell division such as SNCG, MCL1, ARNTL, PLPPR4, VAMP1, etc. Real-time PCR results were consistent with the RNA-Seq data and validated the findings. The results of this study will help to understand the regulation mechanism of the growth and development of Jinghai Yellow chicken and provide a theoretical basis for improving the growth rate of Chinese local chicken breeds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 888 KiB  
Article
RNA Sequencing Analysis of Chicken Cecum Tissues Following Eimeria tenella Infection in Vivo
by Xiaohui Wang, Wenbin Zou, Hailiang Yu, Yuxin Lin, Guojun Dai, Tao Zhang, Genxi Zhang, Kaizhou Xie, Jinyu Wang and Huiqiang Shi
Genes 2019, 10(6), 420; https://doi.org/10.3390/genes10060420 - 31 May 2019
Cited by 23 | Viewed by 4535
Abstract
Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in [...] Read more.
Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in the cecal tissue of Jinghai yellow chickens infected with E. tenella, the molecular response process, and the immune response mechanism during coccidial infection, RNA-seq was used to analyze the cecal tissues of an E. tenella infection group (JS) and an uninfected group (JC) on the seventh day post-infection. The DEGs were screened by functional and pathway enrichment analyses. The results indicated that there were 5477 DEGs (p-value < 0.05) between the JS and the JC groups, of which 2942 were upregulated, and 2535 were downregulated. GO analysis indicated that the top 30 significantly enriched GO terms mainly involved signal transduction, angiogenesis, inflammatory response, and blood vessel development. KEGG analysis revealed that the top significantly enriched signaling pathways included focal adhesion, extracellular matrix–receptor interaction, and peroxisome proliferator-activated receptor. The key DEGs in these pathways included ANGPTL4, ACSL5, VEGFC, MAPK10, and CD44. These genes play an important role in the infection of E. tenella. This study further enhances our understanding of the molecular mechanism of E. tenella infection in chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

12 pages, 722 KiB  
Article
Bioinformatics Analysis of SNPs in IL-6 Gene Promoter of Jinghai Yellow Chickens
by Shijie Xin, Xiaohui Wang, Guojun Dai, Jingjing Zhang, Tingting An, Wenbin Zou, Genxi Zhang, Kaizhou Xie and Jinyu Wang
Genes 2018, 9(9), 446; https://doi.org/10.3390/genes9090446 - 6 Sep 2018
Cited by 6 | Viewed by 4341
Abstract
The proinflammatory cytokine, interleukin-6 (IL-6), plays a critical role in many chronic inflammatory diseases, particularly inflammatory bowel disease. To investigate the regulation of IL-6 gene expression at the molecular level, genomic DNA sequencing of Jinghai yellow chickens (Gallus gallus) was performed [...] Read more.
The proinflammatory cytokine, interleukin-6 (IL-6), plays a critical role in many chronic inflammatory diseases, particularly inflammatory bowel disease. To investigate the regulation of IL-6 gene expression at the molecular level, genomic DNA sequencing of Jinghai yellow chickens (Gallus gallus) was performed to detect single-nucleotide polymorphisms (SNPs) in the region −2200 base pairs (bp) upstream to 500 bp downstream of IL-6. Transcription factor binding sites and CpG islands in the IL-6 promoter region were predicted using bioinformatics software. Twenty-eight SNP sites were identified in IL-6. Four of these 28 SNPs, three [−357 (G > A), −447 (C > G), and −663 (A > G)] in the 5′ regulatory region and one in the 3′ non-coding region [3177 (C > T)] are not labelled in GenBank. Bioinformatics analysis revealed 11 SNPs within the promoter region that altered putative transcription factor binding sites. Furthermore, the C-939G mutation in the promoter region may change the number of CpG islands, and SNPs in the 5′ regulatory region may influence IL-6 gene expression by altering transcription factor binding or CpG methylation status. Genetic diversity analysis revealed that the newly discovered A-663G site significantly deviated from Hardy-Weinberg equilibrium. These results provide a basis for further exploration of the promoter function of the IL-6 gene and the relationships of these SNPs to intestinal inflammation resistance in chickens. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop