Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = JNp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 8085 KiB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 390
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

22 pages, 2615 KiB  
Article
Degradation of 1,4-Dioxane by Au/TiO2 Janus Nanoparticles Under Ultraviolet Light: Experiments and Modeling
by Yangyuan Ji, Matthew J. Tao, Lamar O. Mair, Amit Kumar Singh, Yuhang Fang, Sathish Rajendran, Thomas E. Beechem, David M. Warsinger and Jeffrey L. Moran
Water 2025, 17(11), 1708; https://doi.org/10.3390/w17111708 - 4 Jun 2025
Viewed by 655
Abstract
Advanced oxidation processes (AOPs) show significant promise to degrade recalcitrant water contaminants, such as 1,4-dioxane, but slow degradation kinetics limit the energy efficiency of this technology. We realized substantial enhancements in the degradation of 1,4-dioxane (a suspected carcinogen) using gold-coated titanium dioxide (Au/TiO [...] Read more.
Advanced oxidation processes (AOPs) show significant promise to degrade recalcitrant water contaminants, such as 1,4-dioxane, but slow degradation kinetics limit the energy efficiency of this technology. We realized substantial enhancements in the degradation of 1,4-dioxane (a suspected carcinogen) using gold-coated titanium dioxide (Au/TiO2) Janus nanoparticles (JNPs) irradiated with above-bandgap ultraviolet (UV) light (peak wavelength, 254 nm). To explain this result, we combined experimental measurements quantifying 1,4-dioxane degradation at varying UV wavelengths with finite-element simulations that provided explanatory insight into the light–matter interactions at play. The enhanced photocatalytic activity at the optimal condition (254 nm light, high intensity, Au/TiO2) resulted from a larger quantity of photogenerated holes in the TiO2 capable of reacting with water to form hydroxyl radicals that degrade 1,4-dioxane. This increased production of holes resulted from two sources: (1) more viable electron–hole pairs were created under 254 nm light owing to increased light absorption by the TiO2 that was localized near the surface; (2) the metal sequestered photogenerated electrons from the TiO2, which prevented electron–hole pairs from recombining, leaving more holes available to react with water. Our results motivate the exploration of different metal coatings (especially non-precious metals) and suggest a path toward broader implementation of TiO2-based photocatalytic AOPs, which can effectively remove many water pollutants that survive conventional treatment techniques. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants, 2nd Edition)
Show Figures

Graphical abstract

14 pages, 3760 KiB  
Article
Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy
by Yuguang Lu, Yuling Wu, Zhe Tang, Yike Hou, Mingyue Cui, Shuqi Huang, Binghua Long, Zhangsen Yu, Muhammad Zubair Iqbal and Xiangdong Kong
Sensors 2023, 23(21), 8930; https://doi.org/10.3390/s23218930 - 2 Nov 2023
Cited by 4 | Viewed by 2118
Abstract
The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise [...] Read more.
The global burden of cancer is increasing rapidly, and nanomedicine offers promising prospects for enhancing the life expectancy of cancer patients. Janus nanoparticles (JNPs) have garnered considerable attention due to their asymmetric geometry, enabling multifunctionality in drug delivery and theranostics. However, achieving precise control over the self-assembly of JNPs in solution at the nanoscale level poses significant challenges. Herein, a low-temperature reversed-phase microemulsion system was used to obtain homogenous Mn3O4-Ag2S JNPs, which showed significant potential in cancer theranostics. Structural characterization revealed that the Ag2S (5–10 nm) part was uniformly deposited on a specific surface of Mn3O4 to form a Mn3O4-Ag2S Janus morphology. Compared to the single-component Mn3O4 and Ag2S particles, the fabricated Mn3O4-Ag2S JNPs exhibited satisfactory biocompatibility and therapeutic performance. Novel diagnostic and therapeutic nanoplatforms can be guided using the magnetic component in JNPs, which is revealed as an excellent T1 contrast enhancement agent in magnetic resonance imaging (MRI) with multiple functions, such as photo-induced regulation of the tumor microenvironment via producing reactive oxygen species and second near-infrared region (NIR-II) photothermal excitation for in vitro tumor-killing effects. The prime antibacterial and promising theranostics results demonstrate the extensive potential of the designed photo-responsive Mn3O4-Ag2S JNPs for biomedical applications. Full article
(This article belongs to the Special Issue Advances in Functional Nanocomposite Materials for Bioapplications)
Show Figures

Figure 1

10 pages, 3695 KiB  
Article
Innate Immune Response Analysis in Meniscus Xenotransplantation Using Normal and Triple Knockout Jeju Native Pigs
by Seungwon Yoon, Yunhui Min, Chungyu Park, Dahye Kim, Yunji Heo, Mangeun Kim, Eugene Son, Mrinmoy Ghosh, Young-Ok Son and Chang-Gi Hur
Int. J. Mol. Sci. 2022, 23(18), 10416; https://doi.org/10.3390/ijms231810416 - 8 Sep 2022
Cited by 5 | Viewed by 2586
Abstract
Although allogenic meniscus grafting can be immunologically safe, it causes immune rejection due to an imbalanced tissue supply between donor and recipient. Pigs are anatomically and physiologically similar to adult humans and are, therefore, considered to be advantageous xenotransplantation models. However, immune rejection [...] Read more.
Although allogenic meniscus grafting can be immunologically safe, it causes immune rejection due to an imbalanced tissue supply between donor and recipient. Pigs are anatomically and physiologically similar to adult humans and are, therefore, considered to be advantageous xenotransplantation models. However, immune rejection caused by genetic difference damages the donor tissue and can sometimes cause sudden death. Immune rejection is caused by genes; porcine GGTA1, CMAH, and B4GLANT2 are the most common. In this study, we evaluated immune cells infiltrating the pig meniscus transplanted subcutaneously into BALB/c mice bred for three weeks. We compared the biocompatibility of normal Jeju native black pig (JNP) meniscus with that of triple knockout (TKO) JNP meniscus (α-gal epitope, N-glycolylneuraminic acid (Neu5Gc), and Sd (a) epitope knockout using CRISPR-Cas 9). Mast cells, eosinophils, neutrophils, and macrophages were found to have infiltrated the transplant boundary in the sham (without transplantation), normal (normal JNP), and test (TKO JNP) samples after immunohistochemical analysis. When compared to normal and sham groups, TKO was lower. Cytokine levels did not differ significantly between normal and test groups. Because chronic rejection can occur after meniscus transplantation associated with immune cell infiltration, we propose studies with multiple genetic editing to prevent immune rejection. Full article
(This article belongs to the Special Issue Allograft Rejection: Emerging Molecular Mechanisms and Biomarkers)
Show Figures

Figure 1

13 pages, 4939 KiB  
Article
An Efficacious Transgenic Strategy for Triple Knockout of Xeno-Reactive Antigen Genes GGTA1, CMAH, and B4GALNT2 from Jeju Native Pigs
by Seungwon Yoon, Seulgi Lee, Chungyu Park, Hyunyong Choi, Minwoo Yoo, Sang Chul Lee, Cheol-Ho Hyun, Nameun Kim, Taeyoung Kang, Eugene Son, Mrinmoy Ghosh, Young-Ok Son and Chang-Gi Hur
Vaccines 2022, 10(9), 1503; https://doi.org/10.3390/vaccines10091503 - 8 Sep 2022
Cited by 11 | Viewed by 3345
Abstract
Pigs are promising donors of biological materials for xenotransplantation; however, cell surface carbohydrate antigens, including galactose-alpha-1,3-galactose (α-Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd blood group antigens, play a significant role in porcine xenograft rejection. Inactivating swine endogenous genes, including GGTA1, CMAH, and [...] Read more.
Pigs are promising donors of biological materials for xenotransplantation; however, cell surface carbohydrate antigens, including galactose-alpha-1,3-galactose (α-Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd blood group antigens, play a significant role in porcine xenograft rejection. Inactivating swine endogenous genes, including GGTA1, CMAH, and B4GALNT2, decreases the binding ratio of human IgG/IgM in peripheral blood mononuclear cells and erythrocytes and impedes the effectiveness of α-Gal, Neu5Gc, and Sd, thereby successfully preventing hyperacute rejection. Therefore, in this study, an effective transgenic system was developed to target GGTA1, CMAH, and B4GALNT2 using CRISPR-CAS9 and develop triple-knockout pigs. The findings revealed that all three antigens (α-Gal, Neu5Gc, and Sd) were not expressed in the heart, lungs, or liver of the triple-knockout Jeju Native Pigs (JNPs), and poor expression of α-Gal and Neu5G was confirmed in the kidneys. Compared with the kidney, heart, and lung tissues from wild-type JNPs, those from GGTA1/CMAH/ B4GALNT2 knockout-recipient JNPs exhibited reduced human IgM and IgG binding and expression of each immunological rejection component. Hence, reducing the expression of swine xenogeneic antigens identifiable by human immunoglobulins can lessen the immunological rejection against xenotransplantation. The findings support the possibility of employing knockout JNP organs for xenogeneic transplantation to minimize or completely eradicate rejection using multiple gene-editing methods. Full article
(This article belongs to the Section Vaccines, Clinical Advancement, and Associated Immunology)
Show Figures

Figure 1

15 pages, 1637 KiB  
Article
Detection of Postural Control in Young and Elderly Adults Using Deep and Machine Learning Methods with Joint–Node Plots
by Posen Lee, Tai-Been Chen, Chi-Yuan Wang, Shih-Yen Hsu and Chin-Hsuan Liu
Sensors 2021, 21(9), 3212; https://doi.org/10.3390/s21093212 - 5 May 2021
Cited by 7 | Viewed by 3028
Abstract
Postural control decreases with aging. Thus, an efficient and accurate method of detecting postural control is needed. We enrolled 35 elderly adults (aged 82.06 ± 8.74 years) and 20 healthy young adults (aged 21.60 ± 0.60 years) who performed standing tasks for 40 [...] Read more.
Postural control decreases with aging. Thus, an efficient and accurate method of detecting postural control is needed. We enrolled 35 elderly adults (aged 82.06 ± 8.74 years) and 20 healthy young adults (aged 21.60 ± 0.60 years) who performed standing tasks for 40 s, performed six times. The coordinates of 15 joint nodes were captured using a Kinect device (30 Hz). We plotted joint positions into a single 2D figure (named a joint–node plot, JNP) once per second for up to 40 s. A total of 15 methods combining deep and machine learning for postural control classification were investigated. The accuracy, sensitivity, specificity, positive predicted value (PPV), negative predicted value (NPV), and kappa values of the selected methods were assessed. The highest PPV, NPV, accuracy, sensitivity, specificity, and kappa values were higher than 0.9 in validation testing. The presented method using JNPs demonstrated strong performance in detecting the postural control ability of young and elderly adults. Full article
(This article belongs to the Special Issue Advances and Application of Human Movement Sensors)
Show Figures

Figure 1

15 pages, 3624 KiB  
Article
Janus Nanostructures from ABC/B Triblock Terpolymer Blends
by Andrea Steinhaus, Deepika Srivastva, Arash Nikoubashman and André H. Gröschel
Polymers 2019, 11(7), 1107; https://doi.org/10.3390/polym11071107 - 30 Jun 2019
Cited by 12 | Viewed by 7243
Abstract
Lamella-forming ABC triblock terpolymers are convenient building blocks for the synthesis of soft Janus nanoparticles (JNPs) by crosslinking the B domain that is “sandwiched” between A and C lamellae. Despite thorough synthetic variation of the B fraction to control the geometry of the [...] Read more.
Lamella-forming ABC triblock terpolymers are convenient building blocks for the synthesis of soft Janus nanoparticles (JNPs) by crosslinking the B domain that is “sandwiched” between A and C lamellae. Despite thorough synthetic variation of the B fraction to control the geometry of the sandwiched microphase, so far only Janus spheres, cylinders, and sheets have been obtained. In this combined theoretical and experimental work, we show that the blending of polybutadiene homopolymer (hPB) into lamella morphologies of polystyrene-block-polybutadiene-block-polymethylmethacrylate (SBM) triblock terpolymers allows the continuous tuning of the polybutadiene (PB) microphase. We systematically vary the volume fraction of hPB in the system, and we find in both experiments and simulations morphological transitions from PB-cylinders to perforated PB-lamellae and further to continuous PB-lamellae. Our simulations show that the hPB is distributed homogeneously in the PB microdomains. Through crosslinking of the PB domain and redispersion in a common solvent for all blocks, we separate the bulk morphologies into Janus cylinders, perforated Janus sheets, and Janus sheets. These studies suggest that more complex Janus nanostructures could be generated from ABC triblock terpolymers than previously expected. Full article
(This article belongs to the Special Issue Self-assembly of Block Copolymers)
Show Figures

Figure 1

Back to TopTop