Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Inner Mongolia (IM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3117 KiB  
Communication
Phenotypic and Molecular Characterization of Staphylococcus aureus in Dairy Farms from Henan Province and the Inner Mongolia Autonomous Region, China
by Mingquan Cui, Hejia Wang, Zekun Li, Ningning Han, Jie Li, Wenxiu Peng, Xiuying Zhang, Qi Zhao and Xuan Wang
Microorganisms 2024, 12(11), 2150; https://doi.org/10.3390/microorganisms12112150 - 25 Oct 2024
Cited by 2 | Viewed by 963
Abstract
Staphylococcus aureus, a prevalent pathogen associated with infectious and foodborne diseases, is also a significant cause of intramammary infections in dairy farms. This study aimed to determine the phenotypic and molecular characterization of S. aureus in two different stock sizes of dairy [...] Read more.
Staphylococcus aureus, a prevalent pathogen associated with infectious and foodborne diseases, is also a significant cause of intramammary infections in dairy farms. This study aimed to determine the phenotypic and molecular characterization of S. aureus in two different stock sizes of dairy farms in Henan province (HN) and the Inner Mongolia autonomous region (IM), China, through biofilm formation, antimicrobial resistance, virulence, and molecular type of S. aureus isolates. In HN, 74 S. aureus isolates (60.7%) were recovered from 122 bulk tank milk samples, while in IM, 24 S. aureus isolates (17.4%) were detected from 161 samples soured from various origins. Notably, 25.7% (19/74) of isolates in HN and 20.8% (5/24) in IM exhibited multidrug-resistant (MDR) phenotypes. Molecular typing revealed distinct patterns: ST97 (n = 32) and spa type t189 (n = 20) predominated in HN, whereas ST50 (n = 13) and spa type t518 (n = 11) were prevalent in IM. Additionally, three isolates harbored both tsst-1 and lukF-PV genes, and two MRSA strains displayed a MDR phenotype in raw milk samples from HN. Biofilm formation was observed in 91.8% strains. Phylogenetic analysis identified two subpopulations (lineages 1 and 2). Among them, cluster 6 in lineage 2 comprised S. aureus strains from three sources within a farm, suggesting potential cross contamination during different stages in IM. Remarkably, among 19 MDR isolates in HN, ST398 MSSA strains exhibited a higher multidrug resistance compared to non-ST398 MSSA strains. This study underscores the high prevalence and diverse characteristics of S. aureus in raw milk, necessitating enhanced surveillance and control measures to mitigate associated risk. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

18 pages, 26335 KiB  
Article
Revealing the Eco-Environmental Quality of the Yellow River Basin: Trends and Drivers
by Meiling Zhou, Zhenhong Li, Meiling Gao, Wu Zhu, Shuangcheng Zhang, Jingjing Ma, Liangyu Ta and Guijun Yang
Remote Sens. 2024, 16(11), 2018; https://doi.org/10.3390/rs16112018 - 4 Jun 2024
Cited by 14 | Viewed by 2112
Abstract
The Yellow River Basin (YB) acts as a key barrier to ecological security and is an important experimental region for high-quality development in China. There is a growing demand to assess the ecological status in order to promote the sustainable development of the [...] Read more.
The Yellow River Basin (YB) acts as a key barrier to ecological security and is an important experimental region for high-quality development in China. There is a growing demand to assess the ecological status in order to promote the sustainable development of the YB. The eco-environmental quality (EEQ) of the YB was assessed at both the regional and provincial scales utilizing the remote sensing-based ecological index (RSEI) with Landsat images from 2000 to 2020. Then, the Theil–Sen (T-S) estimator and Mann–Kendall (M-K) test were utilized to evaluate its variation trend. Next, the optimal parameter-based geodetector (OPGD) model was used to examine the drivers influencing the EEQ in the YB. Finally, the geographically weighted regression (GWR) model was utilized to further explore the responses of the drivers to RSEI changes. The results suggest that (1) a lower RSEI value was found in the north, while a higher RSEI value was found in the south of the YB. Sichuan (SC) and Inner Mongolia (IM) had the highest and the lowest EEQ, respectively, among the YB provinces. (2) Throughout the research period, the EEQ of the YB improved, whereas it deteriorated in both Henan (HA) and Shandong (SD) provinces. (3) The soil-available water content (AWC), annual precipitation (PRE), and distance from impervious surfaces (IMD) were the main factors affecting the spatial differentiation of RSEI in the YB. (4) The influence of meteorological factors (PRE and TMP) on RSEI changes was greater than that of IMD, and the influence of IMD on RSEI changes showed a significant increasing trend. The research results provide valuable information for application in local ecological construction and regional development planning. Full article
(This article belongs to the Special Issue Environmental Monitoring Using Satellite Remote Sensing)
Show Figures

Graphical abstract

17 pages, 4211 KiB  
Article
Decision of Straw Deep Burial and Aluminum Sulfate Drip Irrigation in Soda Saline Soil Based on Grey Relation Analysis and TOPSIS Coupling
by Xi Chen, Shuqing Yang, Xiaoyu Wen, Fuqiang Guo and Shuai Lou
Agronomy 2024, 14(1), 3; https://doi.org/10.3390/agronomy14010003 - 19 Dec 2023
Cited by 4 | Viewed by 1544
Abstract
To investigate the impact of combining aluminum sulfate with straw and irrigation water to enhance soil quality in soda saline–alkali soil, in this study a field experiment was conducted in Tongliao City, Inner Mongolia Autonomous Region, China. With beet IM1162 as the indicator [...] Read more.
To investigate the impact of combining aluminum sulfate with straw and irrigation water to enhance soil quality in soda saline–alkali soil, in this study a field experiment was conducted in Tongliao City, Inner Mongolia Autonomous Region, China. With beet IM1162 as the indicator crop, four levels of aluminum sulfate dosage (30, 60, 90, 120 g m−2) and four levels of drip irrigation water quota (225, 270, 315, 360 m3 ha−1) were set. The study examined the impact of varying levels of aluminum sulfate and irrigation water on soil water salt and crop yield. Next, using a comprehensive evaluation method, the optimal quantities of aluminum sulfate and irrigation water needed for effective soil improvement were determined. The research findings indicate that the most effective treatment (W2S3) involved an aluminum sulfate dosage of 90 g m−2 and an irrigation quota of 270 m3 ha−1. This treatment resulted in significant improvements compared to the control (CK) group. Specifically, in the 0–50 cm soil layer, the following improvements were observed: the water storage capacity (SWS) increased by 51.7%; evapotranspiration (ET) increased by 16.2%; water use efficiency (WUE) increased by 55.0%; and irrigation water use efficiency (IWUE) increased by 98.1% (p < 0.05). These results emphasize the importance of optimizing the combination of aluminum sulfate dosage and irrigation water quota to improve soil conditions and crop performance. It is worth nothing that this study highlights the potential for enhancing water use efficiency and crop yield in agricultural practices, which can contribute to sustainable and efficient farming practices. The study results revealed significant improvements in soil quality and crop yield when compared to the control group (CK). Specifically, in the 0–50 cm soil layer: the soil salt content decreased by 19.8%, soil pH increased by 8.7%, and exchangeable sodium percentage (ESP) decreased by 34.0%. Moreover, the crop yield in the treatment group increased significantly, by 32.1%. These findings indicate the positive impact of the intervention on soil health and agricultural productivity. The study employed the game theory combination weighting method to comprehensively evaluate soil water, salt, and various yield indicators. The results showed that the sustainability weight for crop yield reached 0.116, emphasizing the aim of soil improvement: the sustainable enhancement of crop yield. This approach underscores the importance of balanced soil management practices to ensure long-term agricultural productivity and environmental sustainability. The comprehensive evaluation results of grey relation analysis and the TOPSIS coupling model showed that the soil improvement effect score was the highest when the dosage of aluminum sulfate was 61.7–120.0 g m−2, and the irrigation quota was 250.4–319.4 m3 ha−1, which was the recommended range for the local area. The research findings discussed in the provided sources contribute to the theoretical basis for soil improvement in soda–saline–alkali land. Full article
Show Figures

Figure 1

20 pages, 10767 KiB  
Article
Dynamic Characteristics of Meteorological Drought and Its Impact on Vegetation in an Arid and Semi-Arid Region
by Weijie Zhang, Zipeng Wang, Hexin Lai, Ruyi Men, Fei Wang, Kai Feng, Qingqing Qi, Zezhong Zhang, Qiang Quan and Shengzhi Huang
Water 2023, 15(22), 3882; https://doi.org/10.3390/w15223882 - 7 Nov 2023
Cited by 9 | Viewed by 2670
Abstract
Under the background of global climate warming, meteorological drought disasters have become increasingly frequent. Different vegetation types exhibit varying responses to drought, thus, exploring the heterogeneity of the impact of meteorological drought on vegetation is particularly important. In this study, we focused on [...] Read more.
Under the background of global climate warming, meteorological drought disasters have become increasingly frequent. Different vegetation types exhibit varying responses to drought, thus, exploring the heterogeneity of the impact of meteorological drought on vegetation is particularly important. In this study, we focused on Inner Mongolia (IM) as the research area and employed Standardized Precipitation Evapotranspiration Index (SPEI) and Vegetation Health Index (VHI) as meteorological drought and vegetation indices, respectively. The Breaks for Additive Seasons and Trend algorithm (BFAST) was utilized to reveal the dynamic characteristics of both meteorological drought and vegetation changes. Additionally, the Pixel-Based Trend Identification Method (PTIM) was employed to identify the trends of meteorological drought and vegetation during spring, summer, autumn, and the growing season. Subsequently, we analyzed the correlation between meteorological drought and vegetation growth. Finally, the response of vegetation growth to various climate factors was explored using the standardized multivariate linear regression method. The results indicated that: (1) During the study period, both SPEI and VHI exhibited a type of interrupted decrease. The meteorological drought was aggravated and the vegetation growth was decreased. (2) Deserts and grasslands exhibited higher sensitivity to meteorological drought compared to forests. The strongest correlation between SPEI-3 and VHI was observed in desert and grassland regions. In forest areas, the strongest correlation was found between SPEI-6 and VHI. (3) The r between severity of meteorological drought and status of vegetation growth was 0.898 (p < 0.01). Vegetation exhibits a more pronounced response to short-term meteorological drought events. (4) Evapotranspiration is the primary climatic driving factor in the IM. The findings of this study provide valuable insights for the rational utilization of water resources, the formulation of effective irrigation and replenishment policies, and the mitigation of the adverse impacts of meteorological drought disasters on vegetation growth in the IM. Full article
Show Figures

Figure 1

16 pages, 10299 KiB  
Article
Dynamic Vegetation Responses to Climate and Land Use Changes over the Inner Mongolia Reach of the Yellow River Basin, China
by Tingxiang Liu, Qiang Zhang, Tiantian Li and Kaiwen Zhang
Remote Sens. 2023, 15(14), 3531; https://doi.org/10.3390/rs15143531 - 13 Jul 2023
Cited by 13 | Viewed by 2920
Abstract
Ecological protection and high-quality development of the Yellow River Basin (YRB), China, aroused remarkable concerns from China’s Central Government, and has been a major national strategy. The Inner Mongolia reach of the Yellow River Basin (IM-YRB) is a typical dryland with pervasive vegetation [...] Read more.
Ecological protection and high-quality development of the Yellow River Basin (YRB), China, aroused remarkable concerns from China’s Central Government, and has been a major national strategy. The Inner Mongolia reach of the Yellow River Basin (IM-YRB) is a typical dryland with pervasive vegetation restoration through the actions of the ecological projects that have been conducted in recent years. However, how climate changes and human activities, such as land use and land cover (LULC) changes, jointly impact vegetation variations in this region remains poorly understood. Here, using an explainable machine learning technique, we evaluated linkages between the kernel normalized difference vegetation index (kNDVI) and air temperature, precipitation, soil moisture, and LULC changes, and relevant marginal contributions of these four drivers to the observed vegetation changes. The grassland fraction on a pixel level was selected as the quantitative LULC variable due to its key role in regional LULC. We found that interannual kNDVI changes in most areas of this study region were negatively sensitive to temperature, but positively sensitive to precipitation and soil moisture, with area fractions of 71.74%, 96.93%, and 89.33%, respectively. The area fraction of negative kNDVI sensitivity to LULC was roughly equivalent to that of positive kNDVI sensitivity. The contributions of air temperature, precipitation, soil moisture, and LULC to overall kNDVI changes were 21.54%, 33.32%, 32.19%, and 12.95%, respectively. Moisture conditions also play a critical role in vegetation changes, which was reflected by the fluctuating growth of kNDVI as interannual changes in precipitation. Nonetheless, kNDVI changes are also affected by LULC, and LULC became the dominant factor behind the kNDVI anomalies over the grassland restoration regions from barren over the IM-YRB. This research provides theoretical support for dryland vegetation restoration under the influence of climate change. Full article
Show Figures

Figure 1

17 pages, 8308 KiB  
Article
Analysis of the Variability Characteristics and Applicability of SPEI in Mainland China from 1985 to 2018
by Xiaoliang Shi, Yuanqi Yang, Hao Ding, Fei Chen and Mengqi Shi
Atmosphere 2023, 14(5), 790; https://doi.org/10.3390/atmos14050790 - 26 Apr 2023
Cited by 9 | Viewed by 2085
Abstract
Drought is one of the most destructive natural disasters in China and can cause serious environmental and socio-economic impacts. Based on monthly precipitation and temperature data from 571 meteorological stations, the Standardized Precipitation Evapotranspiration Index (SPEI) was calculated on a 12-month scale (SPEI-12) [...] Read more.
Drought is one of the most destructive natural disasters in China and can cause serious environmental and socio-economic impacts. Based on monthly precipitation and temperature data from 571 meteorological stations, the Standardized Precipitation Evapotranspiration Index (SPEI) was calculated on a 12-month scale (SPEI-12) from 1985 to 2018 in mainland China, and it was compared with the records of the Bulletin of Flood and Drought Disasters in China to verify its drought monitoring accuracy. Then, run theory was used to explore in depth the spatiotemporal distribution of drought characteristics and trends in various climatic sub-regions. The results showed that: (1) the comparison with the Bulletin of Flood and Drought Disasters in China indicated that the results of SPEI-12 monitoring drought had high accuracy and could identify drought events in mainland China. (2) About 70% of the regions in mainland China experienced droughts more than 50 times, and about 43% of the regions had drought durations of between 100 and 110 months. Nearly 11% of the regions had drought severities of more than 130, which were mainly located in the Northwest Desert (NWC), the southern part of Northeast China (NEC), and the western part of North China (NC). (3) In the past 34 years, the droughts in the Northwest Desert (NWC), the western part of Inner Mongolia (IM), and the Qinghai-Tibet Plateau (TP) showed an aridity trend, while the droughts in South China (SC) and eastern Central and South China (CSC) presented a mitigation tendency. (4) Specifically, the droughts in South China (SC) were more influenced by precipitation, while those in the Northwest Desert (NWC) and Northeast China (NEC) were influenced by temperature and potential evapotranspiration, and the evolution of drought in North China (NC) and the Qinghai-Tibet Plateau (TP) was mainly influenced by soil moisture. The study could provide scientific guidance and a reference for drought response and sustainable development in China. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

9 pages, 5482 KiB  
Communication
Biological and Molecular Characterization of Clover Yellow Vein Virus Infecting Trifolium repens in China
by Zhengnan Li, Lei Xu, Pingping Sun, Mo Zhu, Lei Zhang, Bin Zhang and Shuang Song
Agronomy 2023, 13(5), 1193; https://doi.org/10.3390/agronomy13051193 - 24 Apr 2023
Cited by 3 | Viewed by 2640
Abstract
White clover (Trifolium repens L.) is an important perennial legume forage and ornamental plant, and is widely distributed and cultivated in the world. Recently, white clover plants showing symptoms of leaf mosaic and redding were observed in Hohhot, Inner Mongolia of China. [...] Read more.
White clover (Trifolium repens L.) is an important perennial legume forage and ornamental plant, and is widely distributed and cultivated in the world. Recently, white clover plants showing symptoms of leaf mosaic and redding were observed in Hohhot, Inner Mongolia of China. In this work, flexuous filamentous viral particles of about 700 × 13 nm in size were observed in the symptomatic leaf samples. The infection of clover yellow vein virus (ClYVV) was confirmed by small RNA sequencing and RT-PCR validation. Mechanical inoculation assays showed that this ClYVV isolate (ClYVV-IM) can infect a range of herbaceous species, including Nicotiana benthamiana, N. occidentalis, Chenopodium quinoa, C. amaranticolor, Vicia faba, Vigna unguiculata, and Solanum lycopersicum, causing various symptoms. The complete genome sequence of ClYVV-IM consists of 9565 nt and shared sequence identities, ranging from 83.05% to 96.30%, with those of the other ClYVV isolates published in GenBank. Phylogenetic analyses based on the polyprotein nucleotide and amino acid sequences clustered 15 ClYVV isolates into two groups and ClYVV-IM located in Group I. Two potential recombination events located at 914–2970 nt and 5153–5694 nt were detected in the genome of ClYVV-IM. To our knowledge, this is the first report of occurrence and complete genome of ClYVV infecting white clover in China. Full article
(This article belongs to the Special Issue Molecular Evolution of Plant RNA Viruses)
Show Figures

Figure 1

19 pages, 4857 KiB  
Article
Spatiotemporal Change in Livestock Population and Its Correlation with Meteorological Disasters during 2000–2020 across Inner Mongolia
by Hui Bai, Baizhu Wang, Yuanjun Zhu, Semyung Kwon, Xiaohui Yang and Kebin Zhang
ISPRS Int. J. Geo-Inf. 2022, 11(10), 520; https://doi.org/10.3390/ijgi11100520 - 16 Oct 2022
Cited by 6 | Viewed by 2835
Abstract
Inner Mongolia (IM) is one of the five major pastoral areas in China, and animal husbandry is its traditional industry. The population of livestock is an important factor affecting the sustainable development of livestock and grassland. Due to the special geographical location of [...] Read more.
Inner Mongolia (IM) is one of the five major pastoral areas in China, and animal husbandry is its traditional industry. The population of livestock is an important factor affecting the sustainable development of livestock and grassland. Due to the special geographical location of IM, various meteorological disasters occur frequently, which have a significant impact on the local livestock population. In this study, principal component analysis (PCA) and geographically weighted principal component analysis (GWPCA) were used to explore the spatial and temporal patterns of small livestock and large livestock populations in county-level administrative units from 2000 to 2020, and the effects of meteorological disasters on livestock populations were also considered. We found that the cumulative proportion of total variance (CPTV) of the first two principal components of global PCA for small livestock and the first principal component for large livestock reached 94.54% and 91.98%, respectively, while the CPTV of GWPCA was in the range of 93.23–96.45% and 88.47–92.49%, respectively, which showed stronger spatial explanation; the small livestock population was significantly correlated with spring drought, summer drought, spring–summer drought and snow disaster. However, the correlation between large livestock and summer drought and spring–summer drought is greater. We conclude that GWPCA can better explain the spatial change of livestock populations; meteorological disasters have both advantages and disadvantages on the livestock population, and the drought types that have a greater impact on livestock are summer drought and spring–summer drought. There are geographical differences in the impact of meteorological disasters, with drought affecting most of IM and snow disaster mainly affecting the eastern region; large livestock were mainly affected by drought, while small livestock were affected by both drought and snow disaster. Full article
(This article belongs to the Special Issue Geomatics in Forestry and Agriculture: New Advances and Perspectives)
Show Figures

Figure 1

20 pages, 3924 KiB  
Article
Dominant Impacting Factors on Water-Use Efficiency Variation in Inner Mongolia from 2001 to 2018: Vegetation or Climate?
by Hao Luo, Xiaojuan Bie, Guihua Yi, Xiaobing Zhou, Tingbin Zhang, Jingji Li and Pingqing Lai
Remote Sens. 2022, 14(18), 4541; https://doi.org/10.3390/rs14184541 - 11 Sep 2022
Cited by 14 | Viewed by 2595
Abstract
Water-use efficiency (WUE) is not only an important indicator to connect the carbon and water cycles of a terrestrial ecosystem, but also a key parameter for an ecosystem to respond to climate change. It is crucial for understanding the mechanism of regional ecosystem [...] Read more.
Water-use efficiency (WUE) is not only an important indicator to connect the carbon and water cycles of a terrestrial ecosystem, but also a key parameter for an ecosystem to respond to climate change. It is crucial for understanding the mechanism of regional ecosystem response to environmental change by researching the influences of vegetation and climate change on WUE variation and revealing its drivers. Based on trend analysis, grey relational analysis, and ridge-regression analysis, this study analyzed the spatiotemporal variation characteristics of WUE in Inner Mongolia (IM) from 2001 to 2018 and determined the dominant influencing factors of WUE variation. The results showed that the annual mean WUE in IM was 1.39 g C m−2 mm−1 and it generally presented a rising trend, with an increasing rate of 0.0071 g C m−2 mm−1 yr−1. Leaf-area index (LAI) and precipitation were the most important factors influencing WUE in IM, followed by relative humidity and wind speed. Temperature, water vapor pressure and sunshine duration slightly influenced WUE and they were relatively less important. According to the ridge-regression analysis, LAI, precipitation and relative humidity had a positive contribution to WUE variation, while the wind speed had a negative contribution. Regionally, LAI was the dominant cause of WUE variation. The contribution and relative contribution rate of LAI to WUE variation were 0.008 g C m−2 mm−1 yr−1 and 44.57%, which were significantly higher than those of precipitation, relative humidity, and sunshine duration. Thus, vegetation primarily dominated WUE variability during the study period. The relative contribution rate of LAI varied across the different vegetation types and ranged from 25.26% in swamps to 51.29% in meadows. Our results improve the understanding of the effects of driving factors on WUE, which can help policymakers with water resource management and ecological restoration. Full article
Show Figures

Figure 1

19 pages, 3909 KiB  
Article
Metagenome-Assembled Viral Genomes Analysis Reveals Diversity and Infectivity of the RNA Virome of Gerbillinae Species
by Han Du, Lijuan Zhang, Xinqiang Zhang, Fengze Yun, Yuhao Chang, Awaguli Tuersun, Kamila Aisaiti and Zhenghai Ma
Viruses 2022, 14(2), 356; https://doi.org/10.3390/v14020356 - 9 Feb 2022
Cited by 10 | Viewed by 4007
Abstract
Rodents are a known reservoir for extensive zoonotic viruses, and also possess a propensity to roost in human habitation. Therefore, it is necessary to identify and catalogue the potentially emerging zoonotic viruses that are carried by rodents. Here, viral metagenomic sequencing was used [...] Read more.
Rodents are a known reservoir for extensive zoonotic viruses, and also possess a propensity to roost in human habitation. Therefore, it is necessary to identify and catalogue the potentially emerging zoonotic viruses that are carried by rodents. Here, viral metagenomic sequencing was used for zoonotic virus detection and virome characterization on 32 Great gerbils of Rhombomys opimus, Meriones meridianus, and Meiiones Unguiculataus species in Xinjiang, Northwest China. In total, 1848 viral genomes that are potentially pathogenic to rodents and humans, as well as to other wildlife, were identified namely Retro-, Flavi-, Pneumo-, Picobirna-, Nairo-, Arena-, Hepe-, Phenui-, Rhabdo-, Calici-, Reo-, Corona-, Orthomyxo-, Peribunya-, and Picornaviridae families. In addition, a new genotype of rodent Hepacivirus was identified in heart and lung homogenates of seven viscera pools and phylogenetic analysis revealed the closest relationship to rodent Hepacivirus isolate RtMm-HCV/IM2014 that was previously reported to infect rodents from Inner Mongolia, China. Moreover, nine new genotype viral sequences that corresponded to Picobirnaviruses (PBVs), which have a bi-segmented genome and belong to the family Picobirnaviridae, comprising of three segment I and six segment II sequences, were identified in intestines and liver of seven viscera pools. In the two phylogenetic trees that were constructed using ORF1 and ORF2 of segment I, the three segment I sequences were clustered into distinct clades. Additionally, phylogenetic analysis showed that PBV sequences were distributed in the whole tree that was constructed using the RNA-dependent RNA polymerase (RdRp) gene of segment II with high diversity, sharing 68.42–82.67% nucleotide identities with other genogroup I and genogroup II PBV strains based on the partial RdRp gene. By RNA sequencing, we found a high degree of biodiversity of Retro-, Flavi-, Pneumo-, and Picobirnaridae families and other zoonotic viruses in gerbils, indicating that zoonotic viruses are a common presence in gerbils from Xinjiang, China. Therefore, further research is needed to determine the zoonotic potential of these viruses that are carried by other rodent species from different ecosystems and wildlife in general. Full article
Show Figures

Figure 1

16 pages, 5599 KiB  
Article
Comparative Assessment of Grassland Dynamic and Its Response to Drought Based on Multi-Index in the Mongolian Plateau
by Yanzhen Zhang, Zhaoqi Wang, Qian Wang, Yue Yang, Yaojun Bo, Weizhou Xu and Jianlong Li
Plants 2022, 11(3), 310; https://doi.org/10.3390/plants11030310 - 25 Jan 2022
Cited by 5 | Viewed by 3259
Abstract
This study applied grassland related multi-index and assessed the effects of climate change by investigating grassland responses to drought. This process was performed to study grassland vegetation dynamic accurately and evaluate the effect of drought in the Mongolian Plateau (MP). The spatial–temporal characteristics [...] Read more.
This study applied grassland related multi-index and assessed the effects of climate change by investigating grassland responses to drought. This process was performed to study grassland vegetation dynamic accurately and evaluate the effect of drought in the Mongolian Plateau (MP). The spatial–temporal characteristics of grassland dynamic in terms of coverage (Fv), surface bareness (Fb), and net primary production (NPP) from 2000 to 2013 were explored. We implemented the maximum Pearson correlation to analyze the grassland vegetation in response to drought by using self-calibrating Palmer Drought Severity Index (scPDSI). Results show that Fv and NPP present an increasing trend (0.18 vs. 0.43). Fb showed a decreasing trend with a value of −0.16. The grassland Fv and NPP positively correlated with scPDSI, with a value of 0.12 and 0.85, respectively, and Fb was −0.08. The positive correlation between Fv and NPP accounted for 84.08%, and the positive correlation between Fv and scPDSI accounted for 93.88%. On the contrary, the area with a negative correlation between Fb and scPDSI was 57.43%. The grassland in the MP showed a recovery tendency. The increase in grassland caused by positive reaction was mainly distributed in the middle of Mongolia (MG), whereas that caused by counter response was mainly distributed in the east and west MG and northeast Inner Mongolia autonomous region of China (IM). The relevant results may provide useful information for policymakers about mitigation strategies against the inverse effects of drought on grassland and help to ease the losses caused by drought. Full article
(This article belongs to the Special Issue Ecophysiology and Ecology of Grassland)
Show Figures

Figure 1

21 pages, 9889 KiB  
Article
Relative Importance of Climatic and Anthropogenic Drivers on the Dynamics of Aboveground Biomass across Agro-Ecological Zones on the Mongolian Plateau
by Xiang Zhou and Yasushi Yamaguchi
Sustainability 2018, 10(10), 3435; https://doi.org/10.3390/su10103435 - 26 Sep 2018
Cited by 5 | Viewed by 4124
Abstract
The dynamics of aboveground biomass (AGB) are driven by both climate variation and anthropogenic modification, however, few studies have evaluated the relative importance of these two drivers, especially in a heterogeneous landscape. Taking the Mongolian Plateau as a case study and employing the [...] Read more.
The dynamics of aboveground biomass (AGB) are driven by both climate variation and anthropogenic modification, however, few studies have evaluated the relative importance of these two drivers, especially in a heterogeneous landscape. Taking the Mongolian Plateau as a case study and employing the vegetation optical depth retrieval as a proxy of AGB, this study aimed to determine the relative importance of climatic and anthropogenic drivers on the dynamics of AGB in Mongolia (ML) and the Inner Mongolia Autonomous Region (IM), China. Spatial panel data model specific to each agro-ecological zone was employed to fulfill the task. The results revealed that: (1) Since the socio-institutional transition in the early 1990s, AGB declined in most parts of the grazing zone of Mongolia. The reduction of precipitation, the rise of temperature and the intensification of livestock grazing were the major drivers behind it. Ranked by their relative importance, the order in the grazing zone with relatively humid climate was: Precipitation ≈ temperature > livestock grazing; the order in the grazing zone with relatively arid climate was: Precipitation > temperature > livestock grazing; (2) Since the implementation of a series of ecological restoration programs in the early 2000s, AGB increased in most parts of the grazing zone of IM, and the increase of precipitation was the dominant driver behind it; (3) Since the early 2000s, AGB increased in most parts of the grazing-farming zone of IM. The increase of precipitation, the decline of temperature and the intensification of grain production were the major drivers behind it. Ranked by their relative importance, the order was: Precipitation > grain production > temperature; (4) Since the early 2000s, AGB increased in most parts of the farming zone of IM. The increase of precipitation and the intensification of grain production were the major drivers behind it. Ranked by their relative importance, the order was: Grain production > precipitation. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Graphical abstract

Back to TopTop