
Citation: Zhang, W.; Wang, Z.; Lai,

H.; Men, R.; Wang, F.; Feng, K.; Qi, Q.;

Zhang, Z.; Quan, Q.; Huang, S.

Dynamic Characteristics of

Meteorological Drought and Its

Impact on Vegetation in an Arid and

Semi-Arid Region. Water 2023, 15,

3882. https://doi.org/10.3390/

w15223882

Academic Editor: Luís Filipe

Sanches Fernandes

Received: 26 September 2023

Revised: 31 October 2023

Accepted: 4 November 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Dynamic Characteristics of Meteorological Drought and Its
Impact on Vegetation in an Arid and Semi-Arid Region
Weijie Zhang 1,2, Zipeng Wang 3, Hexin Lai 3, Ruyi Men 3, Fei Wang 1,3,*, Kai Feng 3, Qingqing Qi 3,
Zezhong Zhang 3, Qiang Quan 1,2 and Shengzhi Huang 1,4,*

1 Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water
Resources and Hydropower Research, Beijing 100038, China; zhweijie0501@163.com (W.Z.);
quanqiang@iwhr.com (Q.Q.)

2 Institute of Water Resources of Pastoral Area Ministry of Water Resources, Hohhot 010020, China
3 School of Water Conservancy, North China University of Water Resources and Electric Power,

Zhengzhou 450046, China; wangzp0330@163.com (Z.W.); x201910102868@stu.ncwu.edu.cn (H.L.);
z20231010112@stu.ncwu.edu.cn (R.M.); fengkai@ncwu.edu.cn (K.F.); qiqingqing@ncwu.edu.cn (Q.Q.);
zhangzezhong@ncwu.edu.cn (Z.Z.)

4 State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology,
Xi’an 710048, China

* Correspondence: wangfei@ncwu.edu.cn (F.W.); huangshengzhi7788@126.com (S.H.)

Abstract: Under the background of global climate warming, meteorological drought disasters have
become increasingly frequent. Different vegetation types exhibit varying responses to drought, thus,
exploring the heterogeneity of the impact of meteorological drought on vegetation is particularly
important. In this study, we focused on Inner Mongolia (IM) as the research area and employed
Standardized Precipitation Evapotranspiration Index (SPEI) and Vegetation Health Index (VHI) as
meteorological drought and vegetation indices, respectively. The Breaks for Additive Seasons and
Trend algorithm (BFAST) was utilized to reveal the dynamic characteristics of both meteorological
drought and vegetation changes. Additionally, the Pixel-Based Trend Identification Method (PTIM)
was employed to identify the trends of meteorological drought and vegetation during spring, summer,
autumn, and the growing season. Subsequently, we analyzed the correlation between meteorological
drought and vegetation growth. Finally, the response of vegetation growth to various climate factors
was explored using the standardized multivariate linear regression method. The results indicated
that: (1) During the study period, both SPEI and VHI exhibited a type of interrupted decrease.
The meteorological drought was aggravated and the vegetation growth was decreased. (2) Deserts
and grasslands exhibited higher sensitivity to meteorological drought compared to forests. The
strongest correlation between SPEI-3 and VHI was observed in desert and grassland regions. In forest
areas, the strongest correlation was found between SPEI-6 and VHI. (3) The r between severity of
meteorological drought and status of vegetation growth was 0.898 (p < 0.01). Vegetation exhibits a
more pronounced response to short-term meteorological drought events. (4) Evapotranspiration is
the primary climatic driving factor in the IM. The findings of this study provide valuable insights for
the rational utilization of water resources, the formulation of effective irrigation and replenishment
policies, and the mitigation of the adverse impacts of meteorological drought disasters on vegetation
growth in the IM.

Keywords: Vegetation Health Index (VHI); vegetation types; variation trend; standardized multiple
linear regression; Inner Mongolia (IM)

1. Introduction

With the intensification of global warming, the intensity and frequency of droughts
are increasing. The series of chain disasters triggered by droughts have severe impacts on
terrestrial ecosystems [1–3]. VegetationInner Mongolia, as a key component in the cycling
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of carbon, water, and energy in terrestrial ecosystems, plays a crucial role in maintain-
ing ecosystem functions and protecting biodiversity [4,5]. Its changes are considered as
fingerprints of environmental change. Meteorological drought acts as a limiting factor
for plant transpiration and photosynthesis, and drought determines the distribution and
structure of vegetation to a certain extent [6–8]. The comprehensive response of vegetation
to meteorological drought and its impact is a critical issue in current drought research. Due
to the complexity of the mechanisms behind drought-induced disasters and their extensive
interactions with the external environment, our understanding of the response mechanisms
of different vegetation types to drought is limited. The response of terrestrial vegetation
to drought is of great scientific significance for global drought and ecological research [9].
It should be noted that under the background of climate warming, the regional drought
conditions and vegetation growth exhibit a complex changing pattern [10]. Clearly, there is
a definite link between meteorological drought and vegetation growth. Therefore, gain-
ing in-depth understanding of the dynamic characteristics of meteorological drought and
vegetation is of significant importance in improving the understanding of the coordinated
relationship between regional vegetation and drought conditions, as well as in developing
effective strategies for ecological conservation [11,12].

It is well known that meteorological drought has a significant impact on vegetation
growth [13,14]. Numerous scholars have focused on this issue and have gained valuable
scientific insights [15–17]. Under extreme drought conditions at a global scale, vegeta-
tion with poor drought resistance experiences inhibited survival and reproduction [6].
Additionally, different stages of plant growth exhibit varying responses to drought [12].
Li et al. determined, based on meteorological drought indices and different carbon flux
datasets, that seasonal droughts in 2009–2010 led to a substantial decrease in the total gross
primary productivity (GPP) in southwestern China, with forests and shrubs exhibiting
stronger drought resistance compared to cultivated land and grassland [18]. Some meteo-
rological drought indices, such as the Standardized Precipitation Index (SPI) and the Crop
Moisture Index (CMI), have been widely used for drought assessment across various time
periods [19]. However, these indices have certain limitations as they are more suitable for
dry weather conditions and become ineffective when weather data are unavailable [20].
Mupepi and Matsa compared three methods, i.e., VCI, SPI, and visual observations, for
monitoring moderate and extreme droughts and found that vegetation indices were the
most effective for drought monitoring [21]. Weng et al. pointed out that compared to other
drought indices, remote sensing vegetation indices have advantages such as continuous
and real-time data acquisition and wide coverage, making them important tools for ef-
fectively monitoring vegetation dynamics [11]. Bento et al. used the Vegetation Health
Index (VHI) to characterize severe drought events in global arid regions, and the results
demonstrated that VHI is effective in monitoring drought in terrestrial systems [22]. Based
on the findings of the aforementioned studies, it has been determined that forests can
obtain a more abundant supply of groundwater through their root system advantage, while
agricultural land can alleviate the negative impacts of drought through irrigation. However,
for natural vegetation in arid and semi-arid regions, precipitation serves as its sole source
of replenishment. Therefore, the occurrence of meteorological drought has profound effects
on vegetation [23].

Vegetation plays an important role in global terrestrial ecosystems and is the most
sensitive component in response to climate change, serving as an indicator of climate
change [4,24]. Moreover, studies have indicated that vegetation is not only influenced by
concurrent drought conditions but is also affected by accumulated and lagged impacts
of early-stage drought [25,26]. Ecological vegetation exhibits a certain resistance to me-
teorological drought induced by previous precipitation deficits, manifested as a lagged
response of vegetation to drought. Furthermore, during the growing season, vegetation has
high water demand and may rely heavily on changes in water availability [27]. However,
the vegetation–precipitation correlation decreases during non-growing seasons. Current
research predominantly focuses on the response of individual vegetation types to drought,
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and the cumulative and lag effects of drought on different vegetation types remain unclear.
Given the significant differences in the responses of vegetation to precipitation changes
during different phenological periods, it is necessary to determine the vegetation’s lagged
response time during each season within a year [28,29]. Satellite remote sensing data, with
its advantages of temporal and spatial continuity, have become an important data source in
vegetation–climate research [30,31]. Due to its ease of data acquisition and broad coverage,
remote sensing technology fills the gaps in site observation data and has been widely
applied in monitoring vegetation dynamics.

Inner Mongolia (IM) is located in the transitional zone from the humid region to the
arid and semi-arid region in northern China. The vegetation types in the IM transition from
forests in the northeast to grasslands and deserts in the west, making it a globally sensitive
area to climate change [32]. The ecological environment in the IM is extremely fragile, and
changes in regional vegetation also have a significant impact on climate change. Therefore,
it is an ideal area to study the response of vegetation changes to drought. Additionally, the
IM has the largest desert grassland area in China, where the growth of grassland vegetation
is significantly inhibited by arid climate conditions [33]. Since the 21st century, with the
increase in temperature, the trend of precipitation increase has slowed down, which may
lead to a continuous increase in the level of drought in the IM. Based on soil moisture data,
Cai et al. explored the characteristics of agricultural drought variations in the IM from
1981 to 2019 and found that long-term gridded soil moisture has the potential to accurately
monitor agricultural drought [34]. Kang et al. investigated compound heatwave events and
their relationship with atmospheric circulation factors in the IM, and the results showed an
upward trend in heatwaves over the past 40 years [35]. Wang et al. proposed a variable
time scale grassland drought monitoring index and analyzed the evolution characteristics
of grassland drought in the IM. They found that drought had a 17-year cycle and showed a
slight attenuation trend after 2017 [23]. Although the above studies have explored drought
in the IM from different perspectives, they rarely discuss the important role of drought
in vegetation growth. Currently, there is limited research on the impact of drought on
different vegetation types in pastoral areas and its spatial heterogeneity. In addition, as a
strong signal of climate change, climate factors are important driving factors for drought
occurrence and vegetation changes. However, the research on the cumulative effects of
different climate factors on vegetation is relatively lacking.

In view of this, this study focuses on the area of the IM, using the Standardized
Precipitation Evapotranspiration Index (SPEI) and VHI as meteorological indicator and
status of vegetation growth (SVG), respectively, to study the meteorological drought and
SVG in different vegetation zones. Based on the analysis of meteorological drought and
vegetation dynamics, the driving role of meteorological drought in SVG changes is clarified,
and the impacts of various climate factors on vegetation dynamics are revealed. The results
can provide scientific guidance for drought resistance planning, vegetation restoration and
protection, and reduction of ecological and economic losses in the area of the IM.

2. Materials and Methods
2.1. Study Region

The IM is located in the north of China, spanning across Northeast, North China, and
Northwest. The topography of the IM is characterized by a west-high and east-low terrain,
with higher elevations in the south and lower elevations in the north. The region falls within
the temperate continental zone, featuring unfavorable water and heat conditions along
with scarce precipitation. The IM lies in the transition zone of monsoonal circulation, with
precipitation decreasing from southeast to northwest. The temperature gradually increases
from the Greater Khingan Mountains towards the southeast and southwest directions. The
main precipitation occurs in July and August, with an annual average precipitation ranging
from 50 to 450 mm, and an average annual temperature ranging from −4 ◦C to 9.2 ◦C [21].
Furthermore, the IM is home to the largest desert and grassland area in China, characterized
by high ecological vulnerability. Drought has greatly constrained local socio-economic
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development. Based on different vegetation types, this study divides the IM into three
parts: Desert Vegetation zone (DV), Grassland Vegetation zone (GV), and Forest Vegetation
zone (FV), as shown in Figure 1.
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2.2. Datasets

Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) is
one of the important datasets in Earth system modeling, which plays a significant role in
climate change and drought research. As a global high-resolution dataset based on land
surface information system outputs, FLDAS is crucial in evaluating the occurrence and
development of extreme weather events such as climate-related droughts and floods [36].
In this study, the monthly FLDAS dataset (1982–2020) is used to calculate the meteoro-
logical drought index SPEI, with a spatial resolution of 0.1◦ × 0.1◦. Additionally, the
STAR dataset contains various hydro-meteorological information related to the atmosphere,
cryosphere, and land surface on Earth, and it has been widely employed in fields such as
ecology, vegetation, and soil [37]. Furthermore, we have selected the monthly VHI data
(4 km × 4 km) from 1982 to 2020 to characterize SVG. Prior to analysis, we performed
preprocessing of the raw data using ArcGIS software 10.2, generating monthly, seasonal,
and annual scale VHI datasets for the study area. Importantly, we employed several resam-
pling methods to ensure that VHI and FLDAS have the same resolution. The vegetation
type data is sourced from the China Vegetation Classification Dataset, which provides a
complete and continuous spatial representation. By considering different vegetation types,
we can demonstrate the regional variation of vegetation characteristics and help identify
the regularity of vegetation distribution in relation to the environment.

2.3. Methods
2.3.1. Meteorological Drought Index

Meteorological drought is the source of hydrological, agricultural, and socioeconomic
drought. The SPEI offers simplicity in calculation and advantages for spatial comparisons,
making it a reliable measure for evaluating meteorological drought characteristics. Further-
more, SPEI comprehensively considers the impacts of both precipitation and evaporation,
enabling the reflection of cumulative effects arising from imbalances between precipitation
and atmospheric water demand (potential evapotranspiration) [38]. In this study, we
employed various scales of SPEI, namely SPEI-1, SPEI-3, SPEI-6, and SPEI-12, to represent
distinct temporal extents of meteorological drought. To evaluate seasonal meteorological
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drought, we specifically used SPEI-3 values for May, August, and November, denoting
spring, summer, and autumn drought conditions, respectively. Given that the vegetation
growing season in the IM primarily occurs from April to September, we utilized SPEI-6
value for September to characterize meteorological drought during the growing season [39].

2.3.2. Vegetation Index

Based on the spectral characteristics of vegetation, various vegetation indices have
been constructed by combining satellite visible and near-infrared wavelengths. The VHI is
commonly employed for qualitative and quantitative assessments of vegetation coverage
and growth vigor, providing an effective indication of SVG [40]. It encapsulates both the
greenness and temperature properties of vegetation canopies, making it suitable for identi-
fying vegetation and measuring its health and vitality. Additionally, VHI is highly sensitive
to SVG and productivity, often used to describe vegetation physiological conditions and
estimate parameters such as total green biomass and vegetation productivity. Therefore,
we selected VHI to characterize SVG in the IM.

2.3.3. Breaks for Additive Seasons and Trend Algorithm

Remote sensing data records surface dynamics in a time series manner. By studying
these changes, disturbances on the Earth’s surface can be detected in both temporal and
spatial dimensions, allowing the investigation of the natural environment and the evolution
of ecosystems. The Breaks for Additive Seasons and Trend algorithm (BFAST) can relatively
reduce detection errors and enhance the ability to detect continuous surface changes
by utilizing high-frequency temporal data, enabling more accurate and near-real-time
detection of surface disturbances [37,41]. Therefore, BFAST has advantages in remote
sensing time series change analysis. In this study, we applied the BFAST algorithm to detect
trends in SPEI and VHI. It identifies the most influential change point in the sequence,
dividing the entire trend into two segments instead of multiple smaller segments. Through
BFAST analysis, the time series can be decomposed into seasonal components, trend
components, and residuals. The specific calculation formulas are as follows:

Yt = Tt + St + ett = 1, . . . ,n (1)

Tt = ai + bit3τi−1 ≤ t < τii = 1, . . . ,m (2)

St = ∑k
j=1 γjsin

(
2π jt

f
+ δj

)
j = 1, . . . ,k (3)

where Yt is the observed value at time t. Tt, St, and et are the trend component, seasonal
component, and residual component, respectively. And ai and bi are the coefficient of trend
term. γj and f are the amplitude and frequency, respectively.

2.3.4. Pixel-Based Trend Identification Method (PTIM)

As a non-parametric statistical test, the improved Pixel-based Trend Identification
Method (PTIM) eliminates autocorrelation in time series data, thereby possessing unique
advantages in trend analysis of climate-related variables [42]. The PTIM was employed
to reveal trends in meteorological drought and vegetation changes at the grid scale. The
specific procedure of this method is as follows:

First, calculate the mean of the time series XT and divide each data point in the
sequence by this mean, resulting in a new set of time series Xt with a mean of 1. The
rank-based trend estimator β of Xt is computed using the following equation:

β = median
[(

xi − xj
)
/(i− j)

]
1 ≤ i < j ≤ n (4)

where β > 0 represents an increasing trend in Xt and β < 0 represents a decreasing trend in Xt.
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Assuming that the trend term of Xt is linear Tt, removing the trend term within Xt
yields a stationary sequence Yt:

Yt = Xt − Tt = Xt − β× t (5)

Find the rank sequence corresponding to Yt and calculate its autocorrelation coeffi-
cient ri:

ri =
∑n−i

k=1

(
Rk − R

)(
Rk+i − R

)
∑n

k=1
(

Rk − R
)2 (6)

Calculate the variance var*(S) of the trend statistic S of the autocorrelation sequence
based on ri:

η = 1 +
2

n(n− 1)(n− 2)
×∑n−1

i=1 (n− i)(n− i− 1)(n− i− 2)ri (7)

var∗(S) = η × n(n− 1)(2n + 5)
18

(8)

The statistics S > 0, S < 0, and S = 0 are:

Z∗ =


S−1√
var∗(S)

S > 0

0 S = 0
S+1√
var∗(S)

S < 0
(9)

2.3.5. Run Theory

Drought, unlike floods, is often difficult to precisely define in terms of its onset and end
time or even characterize its features. Typically, the duration, severity, intensity, and spatial
extent are considered as characteristic variables of a drought event. Run theory provides an
effective approach for defining drought events by examining their temporal patterns [43].
Based on run theory, information such as the duration and intensity of drought can be
extracted from the time series of drought indices, thereby revealing several fundamental
attributes of drought. In this study, we employed run theory to identify meteorological
drought events in the IM from 1982 to 2020. Additionally, the severity of meteorological
drought (SMD) and peak severity of meteorological drought (PSMD) were adopted to
represent the magnitude of meteorological drought, where larger values of SMD and PSMD
indicate more serious drought events.

Furthermore, we defined the SVG to represent the status of vegetation growth during
each meteorological drought event. Higher SVG values indicate poorer vegetation growth
status. The specific methodology is as follows:

SMD =
n

∑
i=1
|SPEIi| i= 1, . . . ,n (10)

PSMD = max|SPEIi| i= 1, . . . ,n (11)

SVG =
n

∑
i=1

(1−VHI) i= 1, . . . ,n (12)

where SMD is the severity of each meteorological drought event, PSMD is the peak sever-
ity of meteorological drought, SVG is the status of vegetation growth in the period of
meteorological drought events, and n is the duration of meteorological events.
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2.3.6. Standardized Multiple Linear Regression

In practical situations, phenomena are often related to multiple factors. By considering
the optimal combination of multiple independent variables, better prediction or estima-
tion of the dependent variable can be achieved. Therefore, multiple linear regression is
widely used. Moreover, since the units of the various factors are not necessarily the same,
standardization in multiple linear regression eliminates the dimensional differences and
allows for comparability among different variables [44]. In this study, at the raster scale, we
employed the standardized multiple linear regression approach to investigate the driving
effects of different climate factors on vegetation and reveal the climate factors with the
highest contribution rates. The specific methodology is as follows:

All climate factors and VHI were standardized as follows:

Zij =
(
xij − xi

)
/si (13)

where Zij is the standardized variable values. xij, xi and si are the original value, expected
value, and standard deviation of variable values, respectively.

A standardized multiple linear regression equation was constructed using the stan-
dardized independent variables and dependent variable.

ZVHI = β jzj + B + ε (14)

where ZVHI is the standardized VHI, zj is the standardized climate factors and βj, B and ε
are the regression coefficient, constant term, and residual term, respectively.

Finally, the contribution rates of each climate factor to VHI were calculated:

Cj = |β j|/
(
∑ |β j|

)
× 100% (15)

where Cj is the contribution rates of climate factors, %.

3. Results
3.1. The Changing Characteristics of Meteorological Drought

Based on the BFAST algorithm, we identified the segmented trends and mutations
of SPEI series to elucidate the changing characteristics of meteorological drought in the
IM and its subdivisions from 1982 to 2020. The results of the identification are shown in
Figure 2. Obviously, the SPEI changes in the IM belonged to a type of interrupted decrease
changes, indicating an overall downward trend in SPEI during the study period and an
exacerbation of meteorological drought (Table 1). It was worth noting that in August
2010, an interrupted positive change occurred in SPEI, with insignificant decreasing trend
observed before or after the mutation, with slopes of −0.0001 and −0.0013, respectively.
Among the subdivisions, SPEI trend in the GV subdivision was consistent with that of the
IM, both displaying a type of interrupted decrease changes. The slopes of the two segments
were −0.0005 and −0.0007, respectively, with an insignificant trend. The DV subdivision
exhibited an insignificant change type from increase to decrease, with a negative mutation
occurring in March 1992, and the slopes before and after the mutation were 0.0012 and
−0.0004, respectively. The FV subdivision displayed a change type from decrease to
increase, with a negative mutation occurring in November 2016, and the slopes before and
after the mutation were −0.0001 and 0.0021, respectively, both insignificant. It can be found
that during the study period, the meteorological drought in the IM and each sub region
showed an insignificant worsening trend.
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GV, respectively.

Table 1. BFAST-based segment trend and mutation point of SPEI in each region.

Region Segment 1 Segment 2 Mutation Point Trend Type

IM − − + Interrupted decrease
DV + − − Increase to decrease
FV − + − Decrease to increase
GV − − + Interrupted decrease

We further evaluated the spatiotemporal trends of meteorological drought at the grid
scale in the IM using the PTIM. Figure 3 displays the temporal variations of SPEI during
spring, summer, autumn, and the growing season. Overall, from 1982 to 2020, there was an
insignificant downward trend in SPEI for all periods in the IM (p > 0.05). The average Z-
values for spring, summer, autumn, and the growing season were −0.099, −0.265, −0.184,
and −0.629, respectively, indicating a non-significant worsening trend in meteorological
drought. When examining different vegetation types, the absolute Z-values for DV, FV,
and GV in each season did not exceed 1.96, indicating non-significant changes in drought.
However, SPEI showed a non-significant increasing trend during summer (Z = 0.607) and
the growing season (Z = 0.002) in DV, during spring (Z = 0.044) in GV, and during autumn
(Z = 1.759) in FV, suggesting a slight alleviation of meteorological drought. In addition,
SPEI in other seasons for DV, FV, and GV exhibited non-significant decreasing trends,
consistent with the overall trend in the IM. This indicated that there was no significant
change in meteorological drought in the IM during the study period (p > 0.05), which was
consistent with the results obtained using the BFAST algorithm.
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3.2. Dynamic Variations in Vegetation

Based on the BFAST algorithm, the trend types and mutations detected in VHI se-
quences for the IM and its sub-regions are shown in Figure 4. Both the IM and the sub-
regions exhibited an interrupted decrease trend type, indicating a weakening of vegetation
growth in the study period (Table 2). Specifically, the mutation for VHI in the IM occurred
in October 1997. The slopes before and after the mutation were approximately −0.0003,
and both segment changes were significant (p < 0.05). For the DV sub-region, the mutation
for VHI occurred in March 1991, and the slopes before and after the mutation were −0.0019
and −0.0003, respectively, with both segment changes being significant (p < 0.05). In the
FV sub-region, the mutation for VHI occurred around April 1997, and the slopes before
and after the mutation were −0.0006 and −0.0004, respectively. As for the GV sub-region,
the mutation for VHI occurred around September 1998, and the slopes before and after the
mutation were approximately −0.0002. Only the second segment change was significant
(p < 0.05). Overall, except for the first segment of VHI in the GV sub-region, which showed
a non-significant downward trend, VHI segment changes in the other zones showed signifi-
cant downward trend (p < 0.05). This indicated a certain degree of weakening in vegetation
growth in the IM from 1982 to 2020.
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Figure 4. Segmented trend and mutation identification of VHI sequence in the IM and its subre-
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Table 2. Bfast-based segment trend and mutation point of VHI in each region.

Region Segment 1 Segment 2 Mutation Point Trend Type

IM − − + Interrupted decrease
DV − − + Interrupted decrease
FV − − + Interrupted decrease
GV − − + Interrupted decrease

As shown in Figure 5, we analyzed the variations in vegetation cover in the IM during
spring, summer, autumn, and growing seasons from 1982 to 2020. The results revealed
an overall declining trend in VHI, with mean Z of −0.808, −0.366, −0.661, and −0.585 for
spring, summer, autumn, and growing seasons, respectively. These findings suggested
that the vegetation conditions in the IM did not improve over time. Furthermore, the
percentage of pixels exhibiting a declining trend in VHI for the entire region during spring,
summer, autumn, and growing seasons were found to be 73.08%, 62.35%, 72.59%, and
67.17%, respectively. The declining trend was consistent with the observed overall trend in
the IM. With respect to different vegetation types, except for FV during spring (Z = 0.564)
and summer (Z = 0.097), which showed an upward trend, the remaining regions showed
a downward trend in all seasons. Comparing the trends of meteorological droughts and
vegetation in the IM, we found that meteorological drought had worsened over time,
as evidenced by an increase in frequency, and the vegetation growth had also shown a
declining trend. These results indicated a potential correlation between meteorological
drought and vegetation growth trends and suggested that the meteorological drought in
the IM had not improved, which may lead to a trend of deteriorating vegetation growth.
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3.3. The Correlation between Vegetation Change and Meteorological Drought

Based on the temporal and spatial variations of SPEI and VHI, we further investigated
the correlation between SPEI and VHI during different periods using correlation analysis
(Figure 6), to clarify the relationship between vegetation growth and meteorological drought
in the IM during this period. Overall, there was a positive correlation between SPEI and
VHI in the IM, indicating that vegetation growth deteriorated with the aggravation of
meteorological drought. We calculated the mean values of SPEI and VHI for each season
in the IM and different regions and found spatial variations in the relationship between
vegetation growth and meteorological drought across different regions. For the entire IM,
the correlation between SPEI and VHI was strongest in summer, with average r of 0.487,
while it was weakest in autumn, with average r of 0.339. Among different regions, the
correlation between SPEI and VHI was strongest in DV during spring (r = 0.509), FV during
summer (r = 0.402), and GV during summer (r = 0.516), while it was weakest in DV during
autumn (r = 0.357), FV during autumn (r = 0.296), and GV during spring (r = 0.257). The
analysis confirmed that there was a certain correlation between meteorological drought
and vegetation growth, but the response relationship varied between different vegetation
types and meteorological drought.
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Through the above research, we found that different vegetation types may exhibit
varying sensitivities to meteorological drought. Therefore, we separately calculated the
correlation between SPEI and VHI at 1, 3, 6, and 12-month scales (Figure 7), to analyze the
impact of meteorological drought at different temporal scales on vegetation. Overall, in
the IM, the average r values between SPEI and VHI at 1, 3, 6, and 12-month scales were
0.329, 0.420, 0.374, and 0.362, respectively. Thus, the strongest correlation was observed at
the 3-month scale, suggesting a lag effect of VHI in response to SPEI. When considering
different vegetation types, in the DV region, the average r between SPEI and VHI at 1, 3,
6, and 12-month scales were 0.308, 0.406, 0.314, and 0.382, respectively, with the strongest
correlation also observed at the 3-month scale, consistent with the IM. This region was
mainly characterized by sparse vegetation composed of xerophytic or ultra-xerophytic
trees, shrubs, semi-shrubs, and succulent plants. In the GV region, the strongest correlation
between SPEI and VHI occurred at the 3-month scale, with average r of 0.435. In the
FV region, the strongest correlation was observed at the 6-month scale, with average r
of 0.455. Therefore, we inferred that desert and grassland exhibited higher sensitivity to
meteorological drought compared to forests.
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3.4. The Impact of Meteorological Drought Events on Vegetation Change

As the correlation between SPEI and VHI was highest at the 3-month scale, we used
SPEI-3 from 1982 to 2020 to identify meteorological drought events in the IM. During the
study period, a total of 38 drought events were identified, with 16 and 22 events occurring
around 2000, respectively. The average SMD was 1.690, and the average PSMD 0.682.
Table 3 shows the top 10 meteorological drought events ranked by severity. The event with
the highest severity in the IM between 1982 and 2020 was No. M16, with a drought severity
of 5.869. This event was also the longest-lasting drought event in the IM during the study
period, lasting from May to December 1999 for a duration of 8 months. In addition, event
No. M22 had the highest PSMD of 1.259. This drought lasted for 7 months (from July 2005
to January 2006), and its severity was 5.646.

Based on the identification of meteorological drought events in the IM during this
period, we analyzed the vegetation growth variations within each drought event, as shown
in Figure 8. As depicted in Figure 8a, in 38 meteorological drought events, SMD and
SVG exhibited similar patterns of change. Additionally, their values show minimal differ-
ences in each event. The SMD and SVG exhibited a high level of consistency, with an r of
0.898 (p < 0.01). This result strongly demonstrated the correlation between meteorologi-
cal drought and vegetation growth, suggesting that meteorological drought events may
directly impact vegetation growth. To further investigate the influence of meteorological
drought events on vegetation growth, we categorized them into three types: short-term
(lasting 1–3 months), medium-term (lasting 4–6 months), and long-term (lasting more than
6 months), and analyzed the distribution of SMD and SVG under different types of mete-
orological drought events (Figure 8b). The SVG responded more intensely to short-term
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meteorological drought events, with a slope of 0.7687. As the duration of meteorological
drought events increased, the response of SVG gradually leveled off. For medium-term
and long-term meteorological drought events, the slopes obtained from the fitting of SVG
with SMD were 0.3870 and 0.1030, respectively.

Table 3. Top 10 meteorological drought events by severity.

Event Number Date DD SMD PSMD

M16 1999.05–1999.12 8 5.869 0.958
M22 2005.07–2006.01 7 5.646 1.259
M1 1982.07–1982.12 6 3.584 0.710
M9 1991.08–1992.01 6 3.377 0.704

M20 2004.03–2004.09 7 3.339 0.633
M17 2000.07–2000.12 6 3.098 0.673
M19 2002.08–2003.01 6 3.016 0.784
M26 2010.07–2010.11 5 2.728 0.900
M25 2009.04–2009.08 5 2.448 0.794
M15 1997.04–1997.07 4 2.052 0.859
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in the SMD and the SVG. (b) Represents the distribution of SMD and SVG under different types of
meteorological drought events.

3.5. The Driving Role of Climate Factors

Vegetation growth is influenced by multiple factors, and different climatic factors
may have varying impacts on vegetation growth. Therefore, we employed a standardized
multiple linear regression method to calculate the contribution rates of various climate
factors to VHI, including air humidity (AH), air temperature (AT), evapotranspiration (ET),
precipitation (P), soil moisture (SM), and soil temperature (ST) (Figure 9). For the entire IM
region, the average contribution rates of AH, AT, ET, P, SM, and ST to VHI were 16.96%,
18.84%, 20.34%, 9.67%, 15.34%, and 18.86%, respectively, indicating that ET had the largest
impact on vegetation growth. Moreover, the range of maximum contribution rates was
0–76.12%, with a mean of 33.73%. Among these climate factors, the percentage area of
driving influence was 16.18%, 24.27%, 24.40%, 2.90%, 10.93%, and 21.32%, respectively.
Clearly, the percentage area of the key driving factor, ET, also reached its maximum value
at 24.40%. Therefore, ET was the most significant climatic driving factor in the IM region.
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Undoubtedly, climate factors play a key role in the process of vegetation growth and
serve as significant determinants. The response of VHI to climatic factors varies among
different vegetation types, including desert, forest, and grassland (Figure 10). In terms of
different zones, within the DV, ST had the greatest impact on vegetation growth with a
contribution rate of 21.29%. In the FV, AH exerted the most significant effect on vegetation
growth, with a contribution rate of 21.23%. Within the GV, ET had the highest impact on
vegetation growth, with a contribution rate of 23.23%. Additionally, within the DV, FV, and
GV zones, the climate factors ST (26.31%), AH (31.76%), and ET (31.56%) accounted for the
largest percentage of area coverage. Therefore, it can be inferred that different vegetation
types may exhibit varied responses to climate factors.
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4. Discussion

As a natural link between water, atmosphere, and soil interactions, vegetation is a
key component of terrestrial ecosystems [25,27]. Currently, most studies use remotely-
sensed vegetation indices to identify drought phenomena in terrestrial systems. Vegetation
changes and their dynamic responses to meteorological drought are the focus of drought
research [11,12]. Therefore, accurately identifying meteorological drought and its impact
on vegetation growth is crucial for rational water resource utilization and the development
of effective irrigation policies. In this study, VHI, which combines the advantages of the
TCI and VCI, was used to measure changes in vegetation growth caused by differences in
meteorology. The VHI is closely related to plant transpiration, solar radiation interception,
and photosynthesis, and is a primary indicator for monitoring large-scale vegetation growth
and vegetation cover [8,22,40]. Since 2000, the number of global droughts has increased by
29% [44]. This study identified meteorological drought and vegetation changes in the IM
from 1982 to 2020 based on meteorological and vegetation index data. The findings revealed
a decreasing trend in both the SPEI and VHI, indicating the meteorological drought was
aggravated and the vegetation growth was decreased. It can be seen that the drought
changes in IM are consistent with the global trend. This result is consistent with the
previous by Wang et al. [45] and Javed et al. [46]. Importantly, when resampling VHI
dataset, the mean of the results obtained from various resampling methods was used to
reduce data uncertainty [20,47]. Furthermore, the study results indicated that among all
meteorological factors, ET had the most significant impact on vegetation growth in the
IM (Figure 9). ET serves as a link in the global water-carbon-energy coupling cycle and
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plays a crucial role in quantifying vegetation response to hydrological cycles [48]. ET serves
as the basis for the ecosystem water balance in the IM and is one of the key parameters
for vegetation during the growing season [34]. Therefore, revealing changes in ET and its
feedback on vegetation contributes to the assessment of freshwater resource sustainability,
the formulation of agricultural irrigation systems, and ecosystem monitoring.

Furthermore, the magnitude of the correlation between drought indices and vegetation
indices effectively reflects the sensitivity of vegetation to drought [49]. In most regions of
the IM, vegetation changes are positively correlated with meteorological drought indices,
indicating that vegetation activity is strongly limited by water availability (Figure 6).
Vegetation has self-regulatory capabilities and is closely related not only to the degree of
drought and water scarcity during the same period but also to the cumulative and lag
effects of previous droughts [25,26,50]. The research on the response of different types
of vegetation to these cumulative and lag effects is relatively scarce. In this study, we
investigated the sensitivity of vegetation to drought in different regions and found that the
response duration of vegetation to meteorological drought was approximately three months
in the IM (Figure 7). Additionally, different types of vegetation have varying capacities
to obtain water from the soil. In the IM, different vegetation types show differences in
sensitivity to meteorological drought. In Section 3.3, it was found that grasslands are more
sensitive to meteorological drought compared to forests. Under the SM stress caused by
drought, grasslands only absorb surface SM to satisfy their growth conditions, making
them more sensitive to drought [22,33]. Forests can tap into deep SM, resulting in a weaker
response sensitivity to drought stress [51].

Vegetation growth is a complex process influenced by climate factors, as well as other
factors such as human activities [5,52]. In the IM, grazing intensity is also an important fac-
tor influencing vegetation changes. However, this study did not account for the important
influence of extreme weather events and climate change caused by human activities on
vegetation changes. In the future, with the emergence of higher-resolution and longer time
series remote sensing data, it will help us understand the relationship between vegetation
physiological activity and meteorological drought in different ecosystems [53]. In addition
to meteorological drought, the coupling impact of soil drought and groundwater drought
on vegetation is also worth studying [54]. Furthermore, the resistance and resilience of
natural vegetation to drought events are areas that need further in-depth research [55].

5. Conclusions

This study evaluates the dynamic changes and correlations between meteorological
drought and vegetation growth from 1982 to 2020 in the IM and examines the response of
vegetation growth to different climate factors. The main findings are as follows:

(1) Based on the results from BFAST analysis, both SPEI and VHI exhibited an in-
terrupted decrease trend in the study area. Meteorological drought has been aggravated
to some extent, resulting in a decline in vegetation growth. Meanwhile, the trends of
meteorological drought and vegetation growth are consistent.

(2) There are variations in the responses between different vegetation types and
meteorological drought. In the DV and GV, SPEI-3 showed the strongest correlation with
VHI, with average r of 0.406 and 0.435, respectively. In the FT, SPEI-6 exhibited the strongest
correlation with VHI, with average r of 0.455. Compared to forests, deserts and grasslands
are more sensitive to meteorological drought.

(3) Meteorological drought events may have a more direct impact on vegetation
growth. During the study period, r between SMD and SVG was 0.898 (p < 0.01). In spe-
cific, vegetation growth shows a more pronounced response to short-term meteorological
drought events.

(4) The ET is the primary climatic driving factor in the IM. Additionally, different
vegetation types exhibit varying responses to climate factors. In the DV, FV, and GV,
the climate factor with the greatest influence on vegetation growth is ST, AH, and ET,
respectively, with contribution rates of 21.29%, 21.23%, and 23.23%.
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