Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Ifnlr1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2548 KiB  
Article
Integrative Analysis of Plasma Proteomics and Transcriptomics Reveals Potential Therapeutic Targets for Psoriasis
by Hesong Wang, Chenguang Wang, Ruihao Qin, Jia He, Xuan Zhang, Chenjing Ma, Shi Li, Lijun Fan, Liuying Wang and Lei Cao
Biomedicines 2025, 13(6), 1380; https://doi.org/10.3390/biomedicines13061380 - 4 Jun 2025
Viewed by 746
Abstract
Background Psoriasis (PsO): is an immune-mediated inflammatory disease that imposes a significant burden on patients. Many patients experience relapse or inadequate responses, and PsO subtypes also lack effective therapies, highlighting the need for new therapeutic targets. Methods: We performed a proteome-wide Mendelian [...] Read more.
Background Psoriasis (PsO): is an immune-mediated inflammatory disease that imposes a significant burden on patients. Many patients experience relapse or inadequate responses, and PsO subtypes also lack effective therapies, highlighting the need for new therapeutic targets. Methods: We performed a proteome-wide Mendelian randomization (MR) to explore potential therapeutic targets for PsO. Protein quantitative trait loci (pQTLs) data were obtained from the Pharma Proteomics Project (54,219 UK Biobank participants, 2923 proteins), and PsO phenotype and subtype data were sourced from FinnGen (10,312 cases; 397,564 controls) for discovery. Replication MR utilized integrated protein data (Iceland and Norfolk) and phenotype data from multiple databases (UK Biobank and GWAS Catalog). Reverse MR and colocalization were used to support causal relationships. Single-cell RNA-seq analysis revealed distinct expression patterns of protein-coding genes across different cell types in PsO biopsy samples and normal skin tissues. Protein-protein interactions (PPI) and molecular docking were used to evaluate druggability. Results: MR analysis identified 13 proteins significantly associated with PsO risk (p < 2.56×105), including 10 proteins associated with PsO subtypes. Decreased levels of eight proteins (IFNLR1, APOF, TDRKH, DDR1, HLA-E, LTA, MOG, and ICAM3) and increased levels of five proteins (IFNGR2, HCG22, IL12B, BTN3A2, and TRIM40) showed protective effects against PsO progression. Robust colocalization (PPH4 > 0.9) identified IFNLR1, IFNGR2, APOF, and TDRKH as top candidates. Single-cell RNA sequencing analysis revealed that IFNLR1, IFNGR2, LTA, TDRKH, and DDR1 were specifically expressed in T cells of psoriatic biopsy specimens compared to healthy controls. Molecular docking indicated the druggability of IFNLR1 and IFNGR2. Conclusions: We identified several potential therapeutic targets for PsO, with IFNLR1, IFNGR2, APOF, and TDRKH emerging as promising candidates, particularly IFNLR1 and IFNGR2, which are associated with the IFN family. These findings may provide new perspectives on PsO therapy and pathogenesis. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 3061 KiB  
Article
Antiviral Effect of Melatonin on Caco-2 Cell Organoid Culture: Trick or Treat?
by Milda Šeškutė, Dominyka Žukaitė, Goda Laucaitytė, Rūta Inčiūraitė, Mantas Malinauskas and Lina Jankauskaitė
Int. J. Mol. Sci. 2024, 25(22), 11872; https://doi.org/10.3390/ijms252211872 - 5 Nov 2024
Cited by 3 | Viewed by 1740
Abstract
Melatonin is a hormone naturally produced by the body that has recently been found to have antiviral properties. However, its antiviral mechanisms are not entirely understood. Using Caco-2 cells, we developed a gastrointestinal organoid model to investigate the impact of melatonin on cellular [...] Read more.
Melatonin is a hormone naturally produced by the body that has recently been found to have antiviral properties. However, its antiviral mechanisms are not entirely understood. Using Caco-2 cells, we developed a gastrointestinal organoid model to investigate the impact of melatonin on cellular organoid culture response to Poly I:C-induced viral inflammation in the gastrointestinal tract. Melatonin was found to have different effect when applied as a pretreatment before the induction of viral inflammation or as a treatment after it. Melatonin pretreatment after Poly I:C stimulation did not protect organoids from size reduction but enhanced cell proliferation, especially when lower (1 and 10 µM) melatonin concentrations were used. On the other hand, treatment with melatonin after the induction of viral inflammation helped to maintain the size of the organoids while reducing cell proliferation. In pretreated cells, reduced IFNLR1 expression was found, while melatonin treatment increased IFNLR1 expression and reduced the production of viral cytokines, such as IFNλ1 and STAT1-3, but did not prevent from apoptosis. The findings of this study emphasize the importance of type III IFNs in antiviral defense in epithelial gastrointestinal cells and shed more light on the antiviral properties of melatonin as a potential therapeutic substance. Full article
Show Figures

Figure 1

10 pages, 680 KiB  
Article
Interferon Lambda Signaling Restrains Experimental Autoimmune Encephalomyelitis
by Mohammad Asif Sherwani, Samuel J. Duesman, Zdenek Hel, Chander Raman and Nabiha Yusuf
Biomedicines 2024, 12(3), 526; https://doi.org/10.3390/biomedicines12030526 - 26 Feb 2024
Cited by 1 | Viewed by 1964
Abstract
IFN-λ is a type III interferon (IFN) with pleiotropic functions in modulating immune responses. To address its function in autoimmune neuroinflammation, we evaluated the development and progression of experimental autoimmune encephalitis (EAE) in IFNLR1 KO (Ifnlr1−/−) and C57Bl/6 (WT) mice following [...] Read more.
IFN-λ is a type III interferon (IFN) with pleiotropic functions in modulating immune responses. To address its function in autoimmune neuroinflammation, we evaluated the development and progression of experimental autoimmune encephalitis (EAE) in IFNLR1 KO (Ifnlr1−/−) and C57Bl/6 (WT) mice following immunization with MOG35–55 peptide. The results show that Ifnlr1−/− mice developed significantly more severe EAE than WT littermates with a similar day of onset, suggesting the potential of IFN-λ in reducing disease severity. We next interrogated whether IFN-λ differentially modulates EAE induced by encephalitogenic Th1 cells or Th17 cells. Encephalitogenic Th1 or Th17 generated from WT donors were transferred into WT or Ifnlr1−/− recipient mice. Whereas encephalitogenic Th1 cells induced more severe EAE in Ifnlr1−/− than WT recipients, the disease severity induced by encephalitogenic Th17 cells was similar. Additionally, in vitro experiments showed that Ifnlr1−/− macrophages promoted the expansion of myelin peptide-reactive Th17 cells but not Th1 cells. Early in the disease, the spinal cords of EAE mice displayed a significantly greater proportion of Ly6C-Ly6G+ cells with CXCR2+CD62Llo phenotype, indicating activated neutrophils. These findings suggest that IFN-λ signaling restrains activation and migration of neutrophils to the CNS, potentially attenuating neutrophil-mediated disease progression in autoimmune neuroinflammation. Recombinant IFN-λ can be used as a potential therapeutic target for treatment of patients with multiple sclerosis as it has fewer side effects due to the restricted expression of its receptor. Full article
Show Figures

Figure 1

15 pages, 3986 KiB  
Article
Antiviral Functions of Type I and Type III Interferons in the Olfactory Epithelium
by Ahmad Zedan, Ashley D. Winters, Wei Yu, Shuangyan Wang, Ying Ren, Ashley Takeshita and Qizhi Gong
Biomolecules 2023, 13(12), 1762; https://doi.org/10.3390/biom13121762 - 8 Dec 2023
Cited by 2 | Viewed by 1771
Abstract
The olfactory neuroepithelium (OE) is one of the few neuronal tissues where environmental pathogens can gain direct access. Despite this vulnerable arrangement, little is known about the protective mechanisms in the OE to prevent viral infection and its antiviral responses. We systematically investigated [...] Read more.
The olfactory neuroepithelium (OE) is one of the few neuronal tissues where environmental pathogens can gain direct access. Despite this vulnerable arrangement, little is known about the protective mechanisms in the OE to prevent viral infection and its antiviral responses. We systematically investigated acute responses in the olfactory mucosa upon exposure to vesicular stomatitis virus (VSV) via RNA-seq. VSVs were nasally inoculated into C57BL/6 mice. Olfactory mucosae were dissected for gene expression analysis at different time points after viral inoculation. Interferon functions were determined by comparing the viral load in interferon receptor knockout (Ifnar1−/− and Ifnlr1−/−) with wildtype OE. Antiviral responses were observed as early as 24 h after viral exposure in the olfactory mucosa. The rapidly upregulated transcripts observed included specific type I as well as type III interferons (Ifn) and interferon-stimulated genes. Genetic analyses demonstrated that both type I and type III IFN signaling are required for the suppression of viral replication in the olfactory mucosa. Exogenous IFN application effectively blocks viral replication in the OE. These findings reveal that the OE possesses an innate ability to suppress viral infection. Type I and type III IFNs have prominent roles in OE antiviral functions. Full article
(This article belongs to the Special Issue Molecular Virology: Mechanisms of Viral Entry and Antivirals)
Show Figures

Figure 1

18 pages, 4745 KiB  
Communication
Structural Analysis of Janus Tyrosine Kinase Variants in Hematological Malignancies: Implications for Drug Development and Opportunities for Novel Therapeutic Strategies
by Omar J. Rodriguez Moncivais, Stephanie A. Chavez, Victor H. Estrada Jimenez, Shengjie Sun, Lin Li, Robert A. Kirken and Georgialina Rodriguez
Int. J. Mol. Sci. 2023, 24(19), 14573; https://doi.org/10.3390/ijms241914573 - 26 Sep 2023
Cited by 5 | Viewed by 2281
Abstract
Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type [...] Read more.
Janus tyrosine kinase (JAK) variants are known drivers for hematological disorders. With the full-length structure of mouse JAK1 being recently resolved, new observations on the localization of variants within closed, open, and dimerized JAK structures are possible. Full-length homology models of human wild-type JAK family members were developed using the Glassman et al. reported mouse JAK1 containing the V658F structure as a template. Many mutational sites related to proliferative hematological disorders reside in the JH2 pseudokinase domains facing the region important in dimerization of JAKs in both closed and open states. More than half of all JAK gain of function (GoF) variants are changes in polarity, while only 1.2% are associated with a change in charge. Within a JAK1-JAK3 homodimer model, IFNLR1 (PDB ID7T6F) and the IL-2 common gamma chain subunit (IL2Rγc) were aligned with the respective dimer implementing SWISS-MODEL coupled with ChimeraX. JAK3 variants were observed to encircle the catalytic site of the kinase domain, while mutations in the pseudokinase domain align along the JAK-JAK dimerization axis. FERM domains of JAK1 and JAK3 are identified as a hot spot for hematologic malignancies. Herein, we propose new allosteric surfaces for targeting hyperactive JAK dimers. Full article
(This article belongs to the Special Issue Recent Developments and Updates in Acute Lymphoblastic Leukemia)
Show Figures

Figure 1

18 pages, 3601 KiB  
Article
Influence of Canonical and Non-Canonical IFNLR1 Isoform Expression on Interferon Lambda Signaling
by John Grayson Evans, Laura A. Novotny and Eric G. Meissner
Viruses 2023, 15(3), 632; https://doi.org/10.3390/v15030632 - 25 Feb 2023
Cited by 6 | Viewed by 2611
Abstract
Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms [...] Read more.
Interferon lambdas (IFNLs) are innate immune cytokines that induce antiviral cellular responses by signaling through a heterodimer composed of IL10RB and the interferon lambda receptor 1 (IFNLR1). Multiple IFNLR1 transcriptional variants are expressed in vivo and are predicted to encode distinct protein isoforms whose function is not fully established. IFNLR1 isoform 1 has the highest relative transcriptional expression and encodes the full-length functional form that supports canonical IFNL signaling. IFNLR1 isoforms 2 and 3 have lower relative expression and are predicted to encode signaling-defective proteins. To gain insight into IFNLR1 function and regulation, we explored how altering relative expression of IFNLR1 isoforms influenced the cellular response to IFNLs. To achieve this, we generated and functionally characterized stable HEK293T clones expressing doxycycline-inducible FLAG-tagged IFNLR1 isoforms. Minimal FLAG-IFNLR1 isoform 1 overexpression markedly increased IFNL3-dependent expression of antiviral and pro-inflammatory genes, a phenotype that could not be further augmented by expressing higher levels of FLAG-IFNLR1 isoform 1. Expression of low levels of FLAG-IFNLR1 isoform 2 led to partial induction of antiviral genes, but not pro-inflammatory genes, after IFNL3 treatment, a phenotype that was largely abrogated at higher FLAG-IFNLR1 isoform 2 expression levels. Expression of FLAG-IFNLR1 isoform 3 partially augmented antiviral gene expression after IFNL3 treatment. In addition, FLAG-IFNLR1 isoform 1 significantly reduced cellular sensitivity to the type-I IFN IFNA2 when overexpressed. These results identify a unique influence of canonical and non-canonical IFNLR1 isoforms on mediating the cellular response to interferons and provide insight into possible pathway regulation in vivo. Full article
(This article belongs to the Special Issue Interferons in Viral Infections)
Show Figures

Figure 1

12 pages, 301 KiB  
Article
Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults
by Olga Abramova, Kristina Soloveva, Yana Zorkina, Dmitry Gryadunov, Anna Ikonnikova, Elena Fedoseeva, Marina Emelyanova, Aleksandra Ochneva, Nika Andriushchenko, Konstantin Pavlov, Olga Pavlova, Valeriya Ushakova, Timur Syunyakov, Alisa Andryushchenko, Olga Karpenko, Victor Savilov, Marat Kurmishev, Denis Andreuyk, Olga Gurina, Vladimir Chekhonin, Georgy Kostyuk and Anna Morozovaadd Show full author list remove Hide full author list
Genes 2022, 13(11), 2174; https://doi.org/10.3390/genes13112174 - 21 Nov 2022
Cited by 3 | Viewed by 2575
Abstract
Dementia has enormous implications for patients and the health care system. Genetic markers are promising for detecting the risk of cognitive impairment. We hypothesized that genetic variants associated with suicide risk might significantly increase the risk of cognitive decline because suicide in older [...] Read more.
Dementia has enormous implications for patients and the health care system. Genetic markers are promising for detecting the risk of cognitive impairment. We hypothesized that genetic variants associated with suicide risk might significantly increase the risk of cognitive decline because suicide in older adults is often a consequence of cognitive impairment. We investigated several single-nucleotide polymorphisms that were initially associated with suicide risk in dementia older adults and identified the APOE gene alleles. The study was performed with subjects over the age of 65: 112 patients with dementia and 146 healthy volunteers. The MMSE score was used to assess cognitive functions. Study participants were genotyped using real-time PCR (APOE: rs429358, rs7412; genes associated with suicide: rs9475195, rs7982251, rs2834789, rs358592, rs4918918, rs3781878, rs10903034, rs165774, rs16841143, rs11833579 rs10898553, rs7296262, rs3806263, and rs2462021). Genotype analysis revealed the significance of APOEε4, APOEε2, and rs4918918 (SORBS1) when comparing dementia and healthy control groups. The association of APOEε4, APOEε2, and rs10903034 (IFNLR1) with the overall MMSE score was indicated. The study found an association with dementia of rs4918918 (SORBS1) and rs10903034 (IFNLR1) previously associated with suicide and confirmed the association of APOEε4 and APOEε2 with dementia. Full article
(This article belongs to the Special Issue Genetic Architecture in Complex Traits)
13 pages, 1341 KiB  
Article
Common Microbial Genital Infections and Their Impact on the Innate Immune Response to HPV in Cervical Cells
by Matteo Fracella, Giuseppe Oliveto, Leonardo Sorrentino, Piergiorgio Roberto, Lilia Cinti, Agnese Viscido, Federica Maria Di Lella, Federica Giuffrè, Massimo Gentile, Valeria Pietropaolo, Carla Prezioso, Ettore Palma, Nadia Recine, Innocenza Palaia, Carolina Scagnolari, Guido Antonelli and Alessandra Pierangeli
Pathogens 2022, 11(11), 1361; https://doi.org/10.3390/pathogens11111361 - 16 Nov 2022
Cited by 9 | Viewed by 2688
Abstract
The persistence of high-risk (HR) human papillomavirus (HPV) genotypes is a prerequisite of cervical cancer. It is not clear whether and how bacterial vaginosis (BV) and sexually transmitted infections (STIs) cause higher rates of persistent HPV infection. This study aimed to characterize mucosal [...] Read more.
The persistence of high-risk (HR) human papillomavirus (HPV) genotypes is a prerequisite of cervical cancer. It is not clear whether and how bacterial vaginosis (BV) and sexually transmitted infections (STIs) cause higher rates of persistent HPV infection. This study aimed to characterize mucosal innate immunity to HPV, comparing different conditions. Specifically, expression levels of genes coding for Toll-like receptors (TLR)7 and 9, several type III Interferon-related genes (IFNL1, 2, 3, their specific receptor subunit IFNLR1, and the IFN-stimulated gene ISG15). Chemokines CCL5 and CCL20 were measured in cervical cells positive, or not, for HPV, BV, and STIs. HPV DNA was detected in 51/120 (42.5%) enrolled women, two/third were HR-HPV genotypes. More than 50% of samples were BV- and/or STI-positive. HPV-positive women had BV, but not other STIs, more frequently than the HPV-negative. TLR9 and IFNL1 mRNAs were expressed in the LR, but much less in the HR HPV infection. Enhanced levels of TLR9, TLR7, IFNL2, and IFNLR1 were observed in HPV-positive women with BV and STI. TLR9-increased expression was associated with HPV persistence in previous studies; hence, bacterial coinfections may enhance this risk. Prospective measurements of type III IFNs and IFNLR1 are warranted to evaluate whether this response may act as a double-edged sword in infected epithelia. Full article
(This article belongs to the Special Issue Cell Intrinsic Innate Responses to Viral Infections)
Show Figures

Figure 1

14 pages, 3746 KiB  
Article
Interferon Signaling-Dependent Contribution of Glycolysis to Rubella Virus Infection
by Erik Schilling, Maria Elisabeth Wald, Juliane Schulz, Lina Emilia Werner and Claudia Claus
Pathogens 2022, 11(5), 537; https://doi.org/10.3390/pathogens11050537 - 3 May 2022
Cited by 2 | Viewed by 2632
Abstract
Interferons (IFNs) are an essential part of innate immunity and contribute to adaptive immune responses. Here, we employed a loss-of-function analysis with human A549 respiratory epithelial cells with a knockout (KO) of the type I IFN receptor (IFNAR KO), either solely or together [...] Read more.
Interferons (IFNs) are an essential part of innate immunity and contribute to adaptive immune responses. Here, we employed a loss-of-function analysis with human A549 respiratory epithelial cells with a knockout (KO) of the type I IFN receptor (IFNAR KO), either solely or together with the receptor of type III IFN (IFNAR/IFNLR1 KO). The course of rubella virus (RuV) infection on the IFNAR KO A549 cells was comparable to the control A549. However, on the IFNAR/IFNLR1 KO A549 cells, both genome replication and the synthesis of viral proteins were significantly enhanced. The generation of IFN β during RuV infection was influenced by type III IFN signaling. In contrast to IFNAR KO A549, extracellular IFN β was not detected on IFNAR/IFNLR1 KO A549. The bioenergetic profile of RuV-infected IFNAR/IFNLR1 KO A549 cells generated by extracellular flux analysis revealed a significant increase in glycolysis, whereas mitochondrial respiration was comparable between all three cell types. Moreover, the application of the glucose analogue 2-deoxy-D-glucose (2-DG) significantly increased viral protein synthesis in control A549 cells, while no effect was noted on IFNAR/IFNLR KO A549. In conclusion, we identified a positive signaling circuit of type III IFN signaling on the generation of IFN β during RuV infection and an IFN signaling-dependent contribution of glycolysis to RuV infection. This study on epithelial A549 cells emphasizes the interaction between glycolysis and antiviral IFN signaling and notably, the antiviral activity of type III IFNs against RuV infection, especially in the absence of both type I and III IFN signaling, the RuV replication cycle was enhanced. Full article
(This article belongs to the Special Issue Rubella Virus Pathogenesis)
Show Figures

Figure 1

17 pages, 2773 KiB  
Article
Interferon Lambda Regulates Cellular and Humoral Immunity in Pristane-Induced Lupus
by Tom Aschman, Sandra Schaffer, Stylianos Iason Biniaris Georgallis, Antigoni Triantafyllopoulou, Peter Staeheli and Reinhard E. Voll
Int. J. Mol. Sci. 2021, 22(21), 11747; https://doi.org/10.3390/ijms222111747 - 29 Oct 2021
Cited by 7 | Viewed by 3747
Abstract
A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests [...] Read more.
A pivotal role of type I interferons in systemic lupus erythematosus (SLE) is widely accepted. Type III interferons (IFN-λ) however, the most recently discovered cytokines grouped within the interferon family, have not been extensively studied in lupus disease models yet. Growing evidence suggests a role for IFN-λ in regulating both innate and adaptive immune responses, and increased serum concentrations have been described in multiple autoimmune diseases including SLE. Using the pristane-induced lupus model, we found that mice with defective IFN-λ receptors (Ifnlr1−/−) showed increased survival rates, decreased lipogranuloma formation and reduced anti-dsDNA autoantibody titers in the early phase of autoimmunity development compared to pristane-treated wild-type mice. Moreover, Ifnlr1−/− mice treated with pristane had reduced numbers of inflammatory mononuclear phagocytes and cNK cells in their kidneys, resembling untreated control mice. Systemically, circulating B cells and monocytes (CD115+Ly6C+) were reduced in pristane-treated Ifnlr1−/− mice. The present study supports a significant role for type III interferons in the pathogenesis of pristane-induced murine autoimmunity as well as in systemic and renal inflammation. Although the absence of type III interferon receptors does not completely prevent the development of autoantibodies, type III interferon signaling accelerates the development of autoimmunity and promotes a pro-inflammatory environment in autoimmune-prone hosts. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 4091 KiB  
Article
Expression of Interferons Lambda 3 and 4 Induces Identical Response in Human Liver Cell Lines Depending Exclusively on Canonical Signaling
by Mariia Lunova, Jan Kubovciak, Barbora Smolková, Mariia Uzhytchak, Kyra Michalova, Alexandr Dejneka, Pavel Strnad, Oleg Lunov and Milan Jirsa
Int. J. Mol. Sci. 2021, 22(5), 2560; https://doi.org/10.3390/ijms22052560 - 4 Mar 2021
Cited by 6 | Viewed by 4063
Abstract
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain [...] Read more.
Lambda interferons mediate antiviral immunity by inducing interferon-stimulated genes (ISGs) in epithelial tissues. A common variant rs368234815TT/∆G creating functional gene from an IFNL4 pseudogene is associated with the expression of major ISGs in the liver but impaired clearance of hepatitis C. To explain this, we compared Halo-tagged and non-tagged IFNL3 and IFNL4 signaling in liver-derived cell lines. Transfection with non-tagged IFNL3, non-tagged IFNL4 and Halo-tagged IFNL4 led to a similar degree of JAK-STAT activation and ISG induction; however, the response to transfection with Halo-tagged IFNL3 was lower and delayed. Transfection with non-tagged IFNL3 or IFNL4 induced no transcriptome change in the cells lacking either IL10R2 or IFNLR1 receptor subunits. Cytosolic overexpression of signal peptide-lacking IFNL3 or IFNL4 in wild type cells did not interfere with JAK-STAT signaling triggered by interferons in the medium. Finally, expression profile changes induced by transfection with non-tagged IFNL3 and IFNL4 were highly similar. These data do not support the hypothesis about IFNL4-specific non-canonical signaling and point out that functional studies conducted with tagged interferons should be interpreted with caution. Full article
(This article belongs to the Special Issue Pathophysiology of Chronic Liver Disease Development)
Show Figures

Figure 1

18 pages, 11509 KiB  
Article
IFN-λ Decreases Murid Herpesvirus-4 Infection of the Olfactory Epithelium but Fails to Prevent Virus Reactivation in the Vaginal Mucosa
by Sophie Jacobs, Caroline Zeippen, Fanny Wavreil, Laurent Gillet and Thomas Michiels
Viruses 2019, 11(8), 757; https://doi.org/10.3390/v11080757 - 16 Aug 2019
Cited by 10 | Viewed by 4179
Abstract
Murid herpesvirus-4 (MuHV-4), a natural gammaherpesvirus of rodents, can infect the mouse through the nasal mucosa, where it targets sustentacular cells and olfactory neurons in the olfactory epithelium before it propagates to myeloid cells and then to B cells in lymphoid tissues. After [...] Read more.
Murid herpesvirus-4 (MuHV-4), a natural gammaherpesvirus of rodents, can infect the mouse through the nasal mucosa, where it targets sustentacular cells and olfactory neurons in the olfactory epithelium before it propagates to myeloid cells and then to B cells in lymphoid tissues. After establishment of latency in B cells, viral reactivation occurs in the genital tract in 80% of female mice, which can lead to spontaneous sexual transmission to co-housed males. Interferon-lambda (IFN-λ) is a key player of the innate immune response at mucosal surfaces and is believed to limit the transmission of numerous viruses by acting on epithelial cells. We used in vivo plasmid-mediated IFN-λ expression to assess whether IFN-λ could prophylactically limit MuHV-4 infection in the olfactory and vaginal mucosae. In vitro, IFN-λ decreased MuHV-4 infection in cells that overexpressed IFN-λ receptor 1 (IFNLR1). In vivo, prophylactic IFN-λ expression decreased infection of the olfactory epithelium but did not prevent virus propagation to downstream organs, such as the spleen where the virus establishes latency. In the olfactory epithelium, sustentacular cells readily responded to IFN-λ. In contrast, olfactory neurons did not respond to IFN-λ, thus, likely allowing viral entry. In the female genital tract, columnar epithelial cells strongly responded to IFN-λ, as did most vaginal epithelial cells, although with some variation from mouse to mouse. IFN-λ expression, however, failed to prevent virus reactivation in the vaginal mucosa. In conclusion, IFN-λ decreased MuHV-4 replication in the upper respiratory epithelium, likely by protecting the sustentacular epithelial cells, but it did not protect olfactory neurons and failed to block virus reactivation in the genital mucosa. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop