Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Status Assessment
2.3. DNA Extraction and Genotyping
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balázs, N.; Ajtay, A.; Oberfrank, F.; Bereczki, D.; Kovács, T. Dementia epidemiology in Hungary based on data from neurological and psychiatric specialty services. Sci. Rep. 2021, 11, 10333. [Google Scholar] [CrossRef] [PubMed]
- Wurm, R.; Stögmann, E. Epidemiology of dementia-the epidemic we saw coming. Wien. Med. Wochenschr. (1946) 2021, 171, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Garre-Olmo, J. Epidemiologia de la enfermedad de Alzheimer y otras demencias [Epidemiology of Alzheimer’s disease and other dementias]. Rev. Neurol. 2018, 66, 377–386. [Google Scholar]
- Galvin, J.E.; Sadowsky, C.H. NINCDS-ADRDA Practical guidelines for the recognition and diagnosis of dementia. J. Am. Board Fam. Med. JABFM 2012, 25, 367–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, S.A.; Acar, D.; Daffner, K.R. Dementia. Am. J. Med. 2018, 131, 1161–1169. [Google Scholar] [CrossRef]
- Ball, H.A.; McWhirter, L.; Ballard, C.; Bhome, R.; Blackburn, D.J.; Edwards, M.J.; Fleming, S.M.; Fox, N.C.; Howard, R.; Huntley, J.; et al. Functional cognitive disorder: Dementia’s blind spot. Brain 2020, 143, 2895–2903. [Google Scholar] [CrossRef]
- Canevelli, M.; Lucchini, F.; Quarata, F.; Bruno, G.; Cesari, M. Nutrition and Dementia: Evidence for Preventive Approaches? Nutrients 2016, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Martinez, L.; Maccioni, R.B.; Farías, G.A.; Fuentes, P.; Navarrete, L.P. Biomarkers for Alzheimer’s Disease. Curr. Alzheimer Res. 2019, 16, 518–528. [Google Scholar] [CrossRef] [Green Version]
- Molinuevo, J.L.; Ayton, S.; Batrla, R.; Bednar, M.M.; Bittner, T.; Cummings, J.; Fagan, A.M.; Hampel, H.; Mielke, M.M.; Mikulskis, A.; et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018, 136, 821–853. [Google Scholar] [CrossRef] [Green Version]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar]
- Ridge, P.G.; Hoyt, K.B.; Boehme, K.; Mukherjee, S.; Crane, P.K.; Haines, J.L.; Mayeux, R.; Farrer, L.A.; Pericak-Vance, M.A.; Schellenberg, G.D.; et al. Assessment of the genetic variance of late-onset Alzheimer’s disease. Neurobiol. Aging 2016, 41, 200.e13–200.e20. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.J.; McFall, G.P.; Booth, A.; Dixon, R.A.; Anstey, K.J. Association of Alzheimer’s Disease Genetic Risk Loci with Cognitive Performance and Decline: A Systematic Review. J. Alzheimers Dis. 2019, 69, 1109–1136. [Google Scholar] [CrossRef] [PubMed]
- Karch, C.M.; Cruchaga, C.; Goate, A.M. Alzheimer’s disease genetics: From the bench to the clinic. Neuron 2014, 83, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.; Lam, M.; Harris, S.E.; Trampush, J.W.; Luciano, M.; Hill, W.D.; Hagenaars, S.P.; Ritchie, S.J.; Marioni, R.E.; Fawns-Ritchie, C.; et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 2018, 9, 2098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; de Leeuw, C.A.; Posthuma, D. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 2018, 50, 912–919. [Google Scholar] [CrossRef] [Green Version]
- An, J.H.; Lee, K.E.; Jeon, H.J.; Son, S.J.; Kim, S.Y.; Hong, J.P. Risk of suicide and accidental deaths among elderly patients with cognitive impairment. Alzheimers Res. Ther. 2019, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kułak-Bejda, A.; Bejda, G.; Waszkiewicz, N. Mental Disorders, Cognitive Impairment and the Risk of Suicide in Older Adults. Front. Psychiatry 2021, 12, 695286. [Google Scholar] [CrossRef] [PubMed]
- Szanto, K. Cognitive Deficits: Underappreciated Contributors to Suicide. Am. J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 2017, 25, 630–632. [Google Scholar] [CrossRef]
- Alothman, D.; Card, T.; Lewis, S.; Tyrrell, E.; Fogarty, A.W.; Marshall, C.R. Risk of Suicide After Dementia Diagnosis. JAMA Neurol. 2022, 79, 1148–1154. [Google Scholar] [CrossRef]
- DiBlasi, E.; Kang, J.; Docherty, A.R. Genetic contributions to suicidal thoughts and behaviors. Psychol. Med. 2021, 51, 2148–2155. [Google Scholar] [CrossRef] [PubMed]
- Brent, D.A.; Melhem, N.M.; Oquendo, M.; Burke, A.; Birmaher, B.; Stanley, B.; Biernesser, C.; Keilp, J.; Kolko, D.; Ellis, S.; et al. Familial pathways to early-onset suicide attempt: A 5.6-year prospective study. JAMA Psychiatry 2015, 72, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Voracek, M.; Loibl, L.M. Genetics of suicide: A systematic review of twin studies. Wien. Klin. Wochenschr. 2007, 119, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.L.; Fiske, A. Genetic influences on suicide and nonfatal suicidal behavior: Twin study findings. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2010, 25, 264–267. [Google Scholar] [CrossRef] [Green Version]
- Ruderfer, D.M.; Walsh, C.G.; Aguirre, M.W.; Tanigawa, Y.; Ribeiro, J.D.; Franklin, J.C.; Rivas, M.A. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. Mol. Psychiatry 2020, 25, 2422–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erlangsen, A.; Appadurai, V.; Wang, Y.; Turecki, G.; Mors, O.; Werge, T.; Mortensen, P.B.; Starnawska, A.; Børglum, A.D.; Schork, A.; et al. Genetics of suicide attempts in individuals with and without mental disorders: A population-based genome-wide association study. Mol. Psychiatry 2020, 25, 2410–2421. [Google Scholar] [CrossRef]
- Richard-Devantoy, S.; Turecki, G.; Jollant, F. Neurobiology of Elderly Suicide. Arch. Suicide Res. Off. J. Int. Acad. Suicide Res. 2016, 20, 291–313. [Google Scholar] [CrossRef] [PubMed]
- Mullins, N.; Bigdeli, T.B.; Børglum, A.D.; Coleman, J.; Demontis, D.; Mehta, D.; Power, R.A.; Ripke, S.; Stahl, E.A.; Starnawska, A.; et al. GWAS of Suicide Attempt in Psychiatric Disorders and Association with Major Depression Polygenic Risk Scores. Am. J. Psychiatry 2019, 176, 651–660. [Google Scholar] [CrossRef]
- Kimbrel, N.A.; Garrett, M.E.; Dennis, M.F.; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center Workgroup; Hauser, M.A.; Ashley-Koch, A.E.; Beckham, J.C. A genome-wide association study of suicide attempts and suicidal ideation in U.S. military veterans. Psychiatry Res. 2018, 269, 64–69. [Google Scholar] [CrossRef]
- Perroud, N.; Uher, R.; Ng, M.Y.; Guipponi, M.; Hauser, J.; Henigsberg, N.; Maier, W.; Mors, O.; Gennarelli, M.; Rietschel, M.; et al. Genome-wide association study of increasing suicidal ideation during antidepressant treatment in the GENDEP project. Pharm. J. 2012, 12, 68–77. [Google Scholar] [CrossRef]
- Perlis, R.H.; Huang, J.; Purcell, S.; Fava, M.; Rush, A.J.; Sullivan, P.F.; Hamilton, S.P.; McMahon, F.J.; Schulze, T.G.; Potash, J.B.; et al. Genome-wide association study of suicide attempts in mood disorder patients. Am. J. Psychiatry 2010, 167, 1499–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laje, G.; Allen, A.S.; Akula, N.; Manji, H.; John Rush, A.; McMahon, F.J. Genome-wide association study of suicidal ideation emerging during citalopram treatment of depressed outpatients. Pharm. Genom. 2009, 19, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Lian, G.; Yan, Y.; Jianxiong, L.; Juanjuan, X.; Qing, C.; Guangliang, W.; Li, S. The rs11833579 and rs12425791 polymorphisms and risk of ischemic stroke in an Asian population: A meta-analysis. Thromb. Res. 2012, 130, e95–e102. [Google Scholar] [CrossRef]
- Willour, V.L.; Seifuddin, F.; Mahon, P.B.; Jancic, D.; Pirooznia, M.; Steele, J.; Schweizer, B.; Goes, F.S.; Mondimore, F.M.; Mackinnon, D.F.; et al. A genome-wide association study of attempted suicide. Mol. Psychiatry 2012, 17, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Safa, A.; Omrani, M.D.; Nicknafs, F.; Oskooei, V.K.; Taheri, M.; Ghafouri-Fard, S. Assessment of Association between NINJ2 Polymorphisms and Suicide Attempts in an Iranian Population. J. Mol. Neurosci. MN 2020, 70, 1880–1886. [Google Scholar] [CrossRef]
- Creavin, S.T.; Wisniewski, S.; Noel-Storr, A.H.; Trevelyan, C.M.; Hampton, T.; Rayment, D.; Thom, V.M.; Nash, K.J.; Elhamoui, H.; Milligan, R.; et al. Mini-Mental State Examination (MMSE) for the detection of dementia in clinically unevaluated people aged 65 and over in community and primary care populations. Cochrane Database Syst. Rev. 2016, 2016, CD011145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, L.; Wu, T.; Luo, W.; Zhou, W.; Wu, J. A non-invasive, rapid method to genotype late-onset Alzheimer’s disease-related apolipoprotein E gene polymorphisms. Neural Regen. Res. 2014, 9, 69–75. [Google Scholar] [CrossRef]
- Chu, C.S.; Lu, T.; Tsai, S.J.; Hong, C.J.; Yeh, H.L.; Yang, A.C.; Liu, M.E. APOE ɛ4 polymorphism and cognitive deficit among the very old Chinese veteran men without dementia. Neurosci. Lett. 2014, 576, 17–21. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar]
- Wu, H.; Huang, Q.; Yu, Z.; Wu, H.; Zhong, Z. The SNPs rs429358 and rs7412 of APOE gene are association with cerebral infarction but not SNPs rs2306283 and rs4149056 of SLCO1B1 gene in southern Chinese Hakka population. Lipids Health Dis. 2020, 19, 202. [Google Scholar] [CrossRef]
- Zhen, J.; Huang, X.; Van Halm-Lutterodt, N.; Dong, S.; Ma, W.; Xiao, R.; Yuan, L. ApoE rs429358 and rs7412 Polymorphism and Gender Differences of Serum Lipid Profile and Cognition in Aging Chinese Population. Front. Aging Neurosci. 2017, 9, 248. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [Green Version]
- Bonvicini, C.; Scassellati, C.; Benussi, L.; Di Maria, E.; Maj, C.; Ciani, M.; Fostinelli, S.; Mega, A.; Bocchetta, M.; Lanzi, G.; et al. Next Generation Sequencing Analysis in Early Onset Dementia Patients. J. Alzheimers Dis. 2019, 67, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Bertram, L. Next Generation Sequencing in Alzheimer’s Disease. Methods Mol. Biol. 2016, 1303, 281–297. [Google Scholar] [PubMed]
- Chang, T.J.; Wang, W.C.; Hsiung, C.A.; He, C.T.; Lin, M.W.; Sheu, W.H.; Chang, Y.C.; Quertermous, T.; Chen, Y.I.; Rotter, J.I.; et al. Genetic variation of SORBS1 gene is associated with glucose homeostasis and age at onset of diabetes: A SAPPHIRe Cohort Study. Sci. Rep. 2018, 8, 10574. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, N.; Kitazono, T.; Kamouchi, M.; Kuroda, J.; Ago, T.; Hata, J.; Ninomiya, T.; Ooboshi, H.; Kumai, Y.; Yoshimura, S.; et al. Hisayama study Polymorphism in the sorbin and SH3-domain-containing-1 (SORBS1) gene and the risk of brain infarction in the Japanese population: The Fukuoka Stroke Registry and the Hisayama study. Eur. J. Neurol. 2008, 15, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Frangou, S.; Shirali, M.; Adams, M.J.; Howard, D.M.; Gibson, J.; Hall, L.S.; Smith, B.H.; Padmanabhan, S.; Murray, A.D.; Porteous, D.J.; et al. Insulin resistance: Genetic associations with depression and cognition in population based cohorts. Exp. Neurol. 2019, 316, 20–26. [Google Scholar] [CrossRef]
- Singh, M.K.; Leslie, S.M.; Packer, M.M.; Zaiko, Y.V.; Phillips, O.R.; Weisman, E.F.; Wall, D.M.; Jo, B.; Rasgon, N. Brain and behavioral correlates of insulin resistance in youth with depression and obesity. Horm. Behav. 2019, 108, 73–83. [Google Scholar] [CrossRef]
- Gong, S.; Huo, S.; Luo, Y.; Li, Y.; Ma, Y.; Huang, X.; Hu, M.; Liu, W.; Zhang, R.; Cai, X.; et al. A variation in SORBS1 is associated with type 2 diabetes and high-density lipoprotein cholesterol in Chinese population. Diabetes/Metab. Res. Rev. 2022, 38, e3524. [Google Scholar] [CrossRef]
- Chang, T.J.; Wang, W.C.; Hsiung, C.A.; He, C.T.; Lin, M.W.; Sheu, W.H.; Chang, Y.C.; Quertermous, T.; Chen, I.; Rotter, J.; et al. Genetic Variation in the Human SORBS1 Gene is Associated with Blood Pressure Regulation and Age at Onset of Hypertension: A SAPPHIRe Cohort Study. Medicine 2016, 95, e2970. [Google Scholar] [CrossRef]
- Starnawska, A.; Tan, Q.; McGue, M.; Mors, O.; Børglum, A.D.; Christensen, K.; Nyegaard, M.; Christiansen, L. Epigenome-Wide Association Study of Cognitive Functioning in Middle-Aged Monozygotic Twins. Front. Aging Neurosci. 2017, 9, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazear, H.M.; Daniels, B.P.; Pinto, A.K.; Huang, A.C.; Vick, S.C.; Doyle, S.E.; Gale, M., Jr.; Klein, R.S.; Diamond, M.S. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci. Transl. Med. 2015, 7, 284ra59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menke, A.; Domschke, K.; Czamara, D.; Klengel, T.; Hennings, J.; Lucae, S.; Baune, B.T.; Arolt, V.; Müller-Myhsok, B.; Holsboer, F.; et al. Genome-wide association study of antidepressant treatment-emergent suicidal ideation. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2012, 37, 797–807. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef] [Green Version]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 2016, 233, 1637–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griciuc, A.; Tanzi, R.E. The role of innate immune genes in Alzheimer’s disease. Curr. Opin. Neurol. 2021, 34, 228–236. [Google Scholar] [CrossRef]
- Rasmussen, K.L. Plasma levels of apolipoprotein E, APOE genotype and risk of dementia and ischemic heart disease: A review. Atherosclerosis 2016, 255, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seripa, D.; D’Onofrio, G.; Panza, F.; Cascavilla, L.; Masullo, C.; Pilotto, A. The genetics of the human APOE polymorphism. Rejuvenation Res. 2011, 14, 491–500. [Google Scholar] [CrossRef]
- Tokuda, T.; Calero, M.; Matsubara, E.; Vidal, R.; Kumar, A.; Permanne, B.; Zlokovic, B.; Smith, J.D.; Ladu, M.J.; Rostagno, A.; et al. Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem. J. 2000, 348 Pt 2, 359–365. [Google Scholar] [CrossRef]
SNP | Alleles | Gene | Assay * | Gene Product | Associations with Mental Disorders and Suicidal Behavior | References |
---|---|---|---|---|---|---|
rs429358 | T > C | APOE | C_3084793_20 | Apolipoprotein E (ApoE) | A risk factor for AD and cognitive dysfunction in healthy individuals | [38,39,40,41] |
rs7412 | C > T | APOE | C_904973_10 | |||
rs9475195 | T > C | HCRTR2 | C_30334164_10 | Orexin receptor type 2 (Ox2R) | Suicide attempts in bipolar disorder and schizophrenia | [28] |
rs7982251 | C > T | FLT1 | C_29426110_10 | Vascular endothelial growth factor receptor 1 | Suicide attempts in bipolar disorder | [28] |
rs2834789 | T > C | RUNX1 | C_16074160_10 | α-Subunit of nuclear binding factor | Suicide attempts | [29] |
rs358592 | C > T | KCNIP4 | C_8939728_10 | Proteins that interact with potential-dependent potassium channels. | Suicidal ideation | [30] |
rs4918918 | T > C | SORBS1 | C_3178855_10 | CBL-associated protein that is involved in insulin signaling | Suicide attempts in affective disorders | [31] |
rs3781878 | G > A | NCAM1 | C_2998862_10 | Neural Cell Adhesion Molecule 1 | Suicide attempts in bipolar disorder and depression | [28] |
rs10903034 | C > T | IFNLR1 | C_2979476_10 | Receptor for cytokine ligands IFNL2 and IFNL3 | Suicidal thoughts in depressed patients | [32] |
rs165774 | G > A | COMT | C_2255325_10 | Catechol-O-methyl transferase. Cytosolic enzyme that catalyzes the attachment of a methyl group to various catecholamines | Suicide attempts in bipolar disorder | [28] |
rs16841143 | G > A | PTH2R | C_2098753_10 | Parathyroid hormone receptor type 2 | Suicide attempts | [26] |
rs11833579 | G > A | NINJ2 | C_1665834_10 | Protein belonging to the ninjurin family, inducer of myelination | Ischemic stroke | [33] |
rs10898553 | T > C | PRSS23 | C_1439661_10 | Serine protease 23 | Suicide attempts and suicidal thoughts among U.S. armed forces veterans | [29] |
rs7296262 | T > C | TMEM132C | C_1179719_10 | Transmembrane protein 132C | Suicide attempts | [34] |
rs3806263 | G > A | COQ8A (ADCK3) | C_281882_10 | Coenzyme Q8A is an atypical kinase involved in the biosynthesis of coenzyme Q | Suicide attempts in the Iranian Population | [35] |
rs2462021 | C > T | JCAD | C_202076_10 | Protein functionally bound to cadherin 5 | Suicide attempts in affective disorders | [31] |
Control | Dementia | p-Value | |
---|---|---|---|
Number of participants | 146 (56.6%) | 112 (43.4%) | |
Age, years | 68.1 ± 6.3 | 76.7 ± 9.0 | <0.001 |
Number of children | 1.7 ± 0.6 | 1.4 ± 0.5 | 0.15 |
Education duration | |||
School education, years | 9.8 ± 0.7 | 9.7 ± 0.7 | 0.74 |
Secondary education (including special education), years | 11.2 ± 1.5 | 11.0 ± 1.6 | 0.57 |
Higher education, years | 5.2 ± 1.6 | 4.7 ± 0.5 | 0.07 |
Assessment of cognitive functions | |||
Total MMSE score | 28.9 ± 0.6 | 14.27 ± 6.7 | <0.001 |
SNP | Control | Dementia | Test for Hardy–Weinberg Equilibrium (p-Value) * |
---|---|---|---|
APOE rs429358 (T > C) | |||
T/T | 107 (75.9%) | 65 (59.1%) | 0.52 |
T/C | 33 (23.4%) | 37 (33.6%) | |
C/C | 1 (0.7%) | 8 (7.3%) | |
APOE rs7412 (C > T) | |||
C/C | 121 (84%) | 101 (91.8%) | 1.00 |
C/T | 23 (16%) | 8 (7.3%) | |
T/T | 0 (0%) | 1 (0.9%) | |
HCRTR2 rs9475195 (T > C) | |||
T/T | 40 (41.2%) | 30 (30.9%) | 0.30 |
C/T | 42 (43.3%) | 45 (46.4%) | |
C/C | 15 (15.5%) | 22 (22.7%) | |
FLT1 rs7982251 (C > T) | |||
T/T | 94 (78.3%) | 82 (76.6%) | 0.75 |
C/T | 24 (20%) | 23 (21.5%) | |
C/C | 2 (1.7%) | 2 (1.9%) | |
RUNX1 rs2834789 (T > C) | |||
T/T | 49 (46.2%) | 41 (39.4%) | 0.45 |
C/T | 46 (43.4%) | 45 (43.3%) | |
C/C | 11 (10.4%) | 18 (17.3%) | |
KCNIP4 rs358592 (C > T) | |||
T/T | 47 (43.5%) | 48 (50%) | 0.51 |
C/T | 52 (48.1%) | 40 (41.7%) | |
C/C | 9 (8.3%) | 8 (8.3%) | |
SORBS1 rs4918918 (T > C) | |||
C/C | 42 (40.4%) | 57 (55.9%) | 0.08 |
C/T | 44 (42.3%) | 35 (34.3%) | |
T/T | 18 (17.3%) | 10 (9.8%) | |
NCAM1 rs3781878 (G > A) | |||
G/G | 54 (60%) | 51 (51.5%) | 1.00 |
A/G | 32 (35.6%) | 40 (40.4%) | |
A/A | 4 (4.4%) | 8 (8.1%) | |
IFNLR1 rs10903034 (C > T) | |||
T/T | 46 (43%) | 33 (31.7%) | 0.47 |
C/T | 44 (41.1%) | 52 (50%) | |
C/C | 17 (15.9%) | 19 (18.3%) | |
COMT rs165774 (G > A) | |||
G/G | 57 (54.8%) | 48 (48.5%) | 0.86 |
A/G | 41 (39.4%) | 42 (42.4%) | |
A/A | 6 (5.8%) | 9 (9.1%) | |
PTH2R rs16841143 (G > A) | |||
G/G | 80 (79.2%) | 86 (83.5%) | 0.24 |
A/G | 18 (17.8%) | 16 (15.5%) | |
A/A | 3 (3%) | 1 (1%) | |
NINJ2 rs11833579 (G > A) | |||
G/G | 52 (50%) | 62 (60.2%) | 0.58 |
A/G | 45 (43.3%) | 37 (35.9%) | |
A/A | 7 (6.7%) | 4 (3.9%) | |
PRSS23 rs10898553 (T > C) | |||
C/C | 23 (30.3%) | 22 (23.9%) | 0.88 |
C/T | 39 (51.3%) | 47 (51.1%) | |
T/T | 14 (18.4%) | 23 (25%) | |
TMEM132C rs7296262 (T > C) | |||
T/T | 33 (33.3%) | 34 (32.1%) | 0.89 |
C/T | 49 (49.5%) | 50 (47.2%) | |
C/C | 17 (17.2%) | 22 (20.8%) | |
COQ8A (ADCK3) rs3806263 (G > A) | |||
G/G | 51 (52%) | 54 (52.9%) | 0.86 |
A/G | 40 (40.8%) | 39 (38.2%) | |
A/A | 7 (7.1%) | 9 (8.8%) | |
JCAD rs2462021 (C > T) | |||
T/T | 63 (61.2%) | 50 (51%) | 0.71 |
C/T | 35 (34%) | 39 (39.8%) | |
C/C | 5 (4.8%) | 9 (9.2%) |
Genes | SNP | Association of Allele Frequency with Study Groups | Association of Genotypes with the MMSE Score | ||||
---|---|---|---|---|---|---|---|
The Most Significant Model | p-Value | FDR | The Most Significant Model | p-Value | FDR | ||
APOE | rs429358 | Codominant | 0.001 | 0.02 | Dominant | 0.01 | 0.09 |
APOE | rs7412 | Codominant | 0.02 | 0.16 | Codominant | 0.01 | 0.07 |
HCRTR2 | rs9475195 | Recessive | 0.21 | 0.42 | Recessive | 0.08 | 0.34 |
FLT1 | rs7982251 | Dominant | 0.29 | 0.39 | Recessive | 0.72 | 0.77 |
RUNX1 | rs2834789 | Recessive | 0.21 | 0.37 | Recessive | 0.77 | 0.77 |
KCNIP4 | rs358592 | Dominant | 0.25 | 0.40 | Recessive | 0.32 | 0.51 |
SORBS1 | rs4918918 | Dominant | 0.03 | 0.18 | Dominant | 0.48 | 0.59 |
NCAM1 | rs3781878 | Dominant | 0.08 | 0.30 | Dominant | 0.09 | 0.28 |
IFNLR1 | rs10903034 | Dominant | 0.19 | 0.43 | Dominant | 0.007 | 0.11 |
COMT | rs165774 | Recessive | 0.11 | 0.35 | Recessive | 0.56 | 0.64 |
PTH2R | rs16841143 | Dominant | 0.53 | 0.65 | Recessive | 0.47 | 0.63 |
NINJ2 | rs11833579 | Dominant | 0.16 | 0.43 | Recessive | 0.24 | 0.55 |
PRSS23 | rs10898553 | Recessive | 0.28 | 0.41 | Dominant | 0.24 | 0.48 |
TMEM132C | rs7296262 | Dominant | 0.62 | 0.66 | Dominant | 0.36 | 0.52 |
COQ8A (ADCK3) | rs3806263 | Dominant | 0.75 | 0.75 | Recessive | 0.26 | 0.46 |
JCAD | rs2462021 | Recessive | 0.58 | 0.66 | Recessive | 0.12 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramova, O.; Soloveva, K.; Zorkina, Y.; Gryadunov, D.; Ikonnikova, A.; Fedoseeva, E.; Emelyanova, M.; Ochneva, A.; Andriushchenko, N.; Pavlov, K.; et al. Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults. Genes 2022, 13, 2174. https://doi.org/10.3390/genes13112174
Abramova O, Soloveva K, Zorkina Y, Gryadunov D, Ikonnikova A, Fedoseeva E, Emelyanova M, Ochneva A, Andriushchenko N, Pavlov K, et al. Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults. Genes. 2022; 13(11):2174. https://doi.org/10.3390/genes13112174
Chicago/Turabian StyleAbramova, Olga, Kristina Soloveva, Yana Zorkina, Dmitry Gryadunov, Anna Ikonnikova, Elena Fedoseeva, Marina Emelyanova, Aleksandra Ochneva, Nika Andriushchenko, Konstantin Pavlov, and et al. 2022. "Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults" Genes 13, no. 11: 2174. https://doi.org/10.3390/genes13112174
APA StyleAbramova, O., Soloveva, K., Zorkina, Y., Gryadunov, D., Ikonnikova, A., Fedoseeva, E., Emelyanova, M., Ochneva, A., Andriushchenko, N., Pavlov, K., Pavlova, O., Ushakova, V., Syunyakov, T., Andryushchenko, A., Karpenko, O., Savilov, V., Kurmishev, M., Andreuyk, D., Gurina, O., ... Morozova, A. (2022). Suicide-Related Single Nucleotide Polymorphisms, rs4918918 and rs10903034: Association with Dementia in Older Adults. Genes, 13(11), 2174. https://doi.org/10.3390/genes13112174