Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = ISO/IEC 25010

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2264 KB  
Article
Hybrid Fuzzy–Rough MCDM Framework and Decision Support Application for Sustainable Evaluation of Virtualization Technologies
by Seren Başaran
Appl. Syst. Innov. 2026, 9(2), 34; https://doi.org/10.3390/asi9020034 - 30 Jan 2026
Abstract
Sustainable virtualization is essential for enterprises seeking to reduce energy use, increase resource efficiency, and connect IT operations with global sustainability goals. This study describes a hybrid decision-support framework that uses the ISO/IEC 25010 quality characteristics and sustainability factors to evaluate virtualization technologies [...] Read more.
Sustainable virtualization is essential for enterprises seeking to reduce energy use, increase resource efficiency, and connect IT operations with global sustainability goals. This study describes a hybrid decision-support framework that uses the ISO/IEC 25010 quality characteristics and sustainability factors to evaluate virtualization technologies using FAHP, RST, and TOPSIS. To obtain robust FAHP weights in uncertain situations, expert linguistic assessments are converted into fuzzy pairwise comparisons. RST is then used to determine the most important sustainability criteria, thereby improving interpretability while minimizing model complexity. TOPSIS compares virtualization platforms to the best sustainability solution. Empirical validation involved five domain experts, eight criteria, and four virtualization platforms. Performance efficiency, reliability, and security are the main criteria, with lightweight, resource-efficient hypervisors scoring highest in sustainability factors. To implement the framework, a lightweight web-based decision-support dashboard was developed. The dashboard allows real-time FAHP computation, RST reduct extraction, TOPSIS ranking visualization, and automatic sustainability reporting. The proposed technique provides a clear, replicable, and functional tool for sustainability-focused virtualization decisions. It helps IT administrators link digital infrastructure planning with the SDG-driven green IT objectives. Full article
(This article belongs to the Topic Collection Series on Applied System Innovation)
Show Figures

Figure 1

29 pages, 7553 KB  
Article
Optimization of Emergency Notification Processes in University Campuses Through Multiplatform Mobile Applications: A Case Study
by Steven Alejandro Salazar Cazco, Christian Alejandro Dávila Fuentes, Nelly Margarita Padilla Padilla, Rosa Belén Ramos Jiménez and Johanna Gabriela Del Pozo Naranjo
Computers 2025, 14(11), 453; https://doi.org/10.3390/computers14110453 - 22 Oct 2025
Viewed by 1228
Abstract
Universities face continuous challenges in ensuring rapid and efficient communication during emergencies due to outdated, fragmented, and manual notification systems. This research presents the design, development, and implementation of a multiplatform mobile application to optimize emergency notifications at the Escuela Superior Politécnica de [...] Read more.
Universities face continuous challenges in ensuring rapid and efficient communication during emergencies due to outdated, fragmented, and manual notification systems. This research presents the design, development, and implementation of a multiplatform mobile application to optimize emergency notifications at the Escuela Superior Politécnica de Chimborazo (ESPOCH). The application, developed using the Flutter framework, offers real-time alert dispatch, geolocation services, and seamless integration with ESPOCH’s Security Unit through Application Programming Interfaces (APIs). A descriptive and applied research methodology was adopted, analyzing existing notification workflows and evaluating agile development methodologies. MOBILE-D was selected for its rapid iteration capabilities and alignment with small development teams. The application’s architecture incorporates a Node.js backend, Firebase Realtime Database, Google Maps API, and the ESPOCH Digital ID API for robust and scalable performance. Efficiency metrics were evaluated using ISO/IEC 25010 standards, focusing on temporal behavior. The results demonstrated a 53.92% reduction in response times compared to traditional notification processes, enhancing operational readiness and safety across the campus. This study underscores the importance of leveraging mobile technologies to streamline emergency communication and provides a scalable model for educational institutions seeking to modernize their security protocols. Full article
(This article belongs to the Section Human–Computer Interactions)
Show Figures

Figure 1

23 pages, 8324 KB  
Article
EmotiCloud: Cloud System to Monitor Patients Using AI Facial Emotion Recognition
by Ana-María López-Echeverry, Sebastián López-Flórez, Jovany Bedoya-Guapacha and Fernando De-La-Prieta
Systems 2025, 13(9), 750; https://doi.org/10.3390/systems13090750 - 29 Aug 2025
Viewed by 1078
Abstract
Comprehensive healthcare seeks to uphold the right to health by providing patient-centred care in both personal and work environments. However, the unequal distribution of healthcare services significantly restricts access in remote or underserved areas—a challenge that is particularly critical in mental health care [...] Read more.
Comprehensive healthcare seeks to uphold the right to health by providing patient-centred care in both personal and work environments. However, the unequal distribution of healthcare services significantly restricts access in remote or underserved areas—a challenge that is particularly critical in mental health care within low-income countries. On average, there is only one psychiatrist for every 200,000 people, which severely limits early diagnosis and continuous monitoring in patients’ daily environments. In response to these challenges, this research explores the feasibility of implementing an information system that integrates cloud computing with an intelligent Facial Expression Recognition (FER) module to enable psychologists to remotely and periodically monitor patients’ emotional states. This approach enhances comprehensive clinical assessments, supporting early detection, ongoing management, and personalised treatment in mental health care. This applied research follows a descriptive and developmental approach, aiming to design, implement, and evaluate an intelligent cloud-based solution that enables remote monitoring of patients’ emotional states through Facial Expression Recognition (FER). The methodology integrates principles of user-centred design, software engineering best practices, and machine learning model development, ensuring a robust and scalable solution aligned with clinical and technological requirements. The development process followed the Software Development Life Cycle (SDLC) and included functional, performance, and integration testing. To assess overall system quality, we defined an evaluation framework based on ISO/IEC 25010 quality characteristics: functional suitability, performance efficiency, usability, and security. The intelligent FER model achieved strong validation results, with a loss of 0.1378 and an accuracy of 96%, as confirmed by the confusion matrix and associated performance metrics. Full article
(This article belongs to the Section Artificial Intelligence and Digital Systems Engineering)
Show Figures

Figure 1

25 pages, 3204 KB  
Article
Assessing Spatial Digital Twins for Oil and Gas Projects: An Informed Argument Approach Using ISO/IEC 25010 Model
by Sijan Bhandari and Dev Raj Paudyal
ISPRS Int. J. Geo-Inf. 2025, 14(8), 294; https://doi.org/10.3390/ijgi14080294 - 28 Jul 2025
Viewed by 2155
Abstract
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development [...] Read more.
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development of spatial digital twins to build digital mining models. Existing studies commonly adopt surveys and case studies as their evaluation approach to validate the feasibility of spatial digital twins and related technologies. However, this approach requires high costs and resources. To address this gap, this study explores the feasibility of the informed argument method within the design science framework. A land survey data model (LSDM)-based digital twin prototype for O & G field design, along with 3D spatial datasets located in Lot 2 on RP108045 at petroleum lease 229 under the Department of Resources, Queensland Government, Australia, was selected as a case for this study. The ISO/IEC 25010 model was adopted as a methodology for this study to evaluate the prototype and Digital Twin Victoria (DTV). It encompasses eight metrics, such as functional suitability, performance efficiency, compatibility, usability, security, reliability, maintainability, and portability. The results generated from this study indicate that the prototype encompasses a standard level of all parameters in the ISO/IEC 25010 model. The key significance of the study is its methodological contribution to evaluating the spatial digital twin models through cost-effective means, particularly under circumstances with strict regulatory requirements and low information accessibility. Full article
Show Figures

Figure 1

13 pages, 431 KB  
Article
Using Behavior-Driven Development (BDD) for Non-Functional Requirements
by Shexmo Santos, Tacyanne Pimentel, Fabio Gomes Rocha and Michel S. Soares
Software 2024, 3(3), 271-283; https://doi.org/10.3390/software3030014 - 18 Jul 2024
Cited by 3 | Viewed by 5001
Abstract
In software engineering, there must be clarity in communication among interested parties to elicit the requirements aimed at software development through frameworks to achieve the behaviors expected by the software. Problem: A lack of clarity in the requirement-elicitation stage can impact subsequent [...] Read more.
In software engineering, there must be clarity in communication among interested parties to elicit the requirements aimed at software development through frameworks to achieve the behaviors expected by the software. Problem: A lack of clarity in the requirement-elicitation stage can impact subsequent stages of software development. Solution: We proposed a case study focusing on the performance efficiency characteristic expressed in the ISO/IEC/IEEE 25010 standard using Behavior-Driven Development (BDD). Method: The case study was performed with professionals who use BDD to elicit the non-functional requirements of a company that develops software. Summary of Results: The result obtained was the validation related to the elicitation of non-functional requirements aimed at the performance efficiency characteristic of the ISO/IEC/IEEE 25010 Standard using the BDD framework through a real case study in a software development company. Contributions and impact: The article’s main contribution is to demonstrate the effectiveness of using BDD to elicit non-functional requirements about the performance efficiency characteristic of the ISO/IEC/IEEE 25010 standard. Full article
Show Figures

Figure 1

24 pages, 2304 KB  
Review
A Systematic Literature Review of the Design Approach and Usability Evaluation of the Pain Management Mobile Applications
by Umm e Mariya Shah and Thiam Kian Chiew
Symmetry 2019, 11(3), 400; https://doi.org/10.3390/sym11030400 - 19 Mar 2019
Cited by 25 | Viewed by 9397
Abstract
The increasing popularity of mHealth is a promising opportunity for pain self-management. Mobile apps can be easily developed, but understanding the design and usability will result in apps that can retain more users. This research aims at identifying, analyzing, and synthesizing the current [...] Read more.
The increasing popularity of mHealth is a promising opportunity for pain self-management. Mobile apps can be easily developed, but understanding the design and usability will result in apps that can retain more users. This research aims at identifying, analyzing, and synthesizing the current state-of-the-art of: (a) the design approach and (b) usability assessment of pain management mobile applications. A systematic literature review was conducted on 27 studies retrieved from Medline, PubMed, EMBASE, Web of Science, and Scopus. The review revealed that most of the apps were for chronic pain. No app was specifically for men or for the elderly. None of the studies involved expert-based system inspection methods. Only one study used two different approaches of automated and empirical evaluation. We mapped the identified usability issues to ISO 9241-11 and ISO/IEC 25010, and aggregated the recommendations for improvement. Moreover, we also identified certain issues that are solely concerned with the patient’s behavior. We organized the issues into taxonomies of design considerations for building usable pain self-management mobile applications. As pain is prevalent among the elderly, pain management will be much needed while moving toward an aging society. However, we found that the involvement of the elderly in the development of pain management mobile apps is very minimal, which may affect the utility and usability of the apps. Full article
(This article belongs to the Special Issue Information Technology and Its Applications 2021)
Show Figures

Figure 1

Back to TopTop