Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = IR-cut filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3368 KB  
Article
Charge-Domain Type 2.2 µm BSI Global Shutter Pixel with Dual-Depth DTI Produced by Thick-Film Epitaxial Process
by Toshifumi Yokoyama, Masafumi Tsutsui, Yoshiaki Nishi, Yoshihiro Noguchi, Masahiko Takeuchi, Masahiro Oda and Fenigstein Amos
Sensors 2025, 25(22), 6997; https://doi.org/10.3390/s25226997 - 16 Nov 2025
Viewed by 770
Abstract
We developed a 2.2 µm backside-illuminated (BSI) global shutter (GS) pixel featuring true charge-domain-correlated double sampling (CDS). To enhance the inverse parasitic light sensitivity (1/PLS), we implemented a thick-film epitaxial process incorporating a dual-depth deep trench isolation (DTI) structure. The thickness of the [...] Read more.
We developed a 2.2 µm backside-illuminated (BSI) global shutter (GS) pixel featuring true charge-domain-correlated double sampling (CDS). To enhance the inverse parasitic light sensitivity (1/PLS), we implemented a thick-film epitaxial process incorporating a dual-depth deep trench isolation (DTI) structure. The thickness of the epitaxial substrate was 8.5 µm. This structure was designed using optical simulation. By using a thick epitaxial substrate, it is possible to reduce the amount of light that reaches the memory node. The dual-depth DTI design, with a shallower trench on the readout side, enables efficient signal transfer from the photodiode (PD) to the memory node. To achieve this structure, we developed a process for thick epitaxial substrate, and the dual-depth DTI can be fabricated with a single mask. This pixel represents the smallest charge-domain GS pixel developed to date. Despite its compact size, it achieves a high quantum efficiency (QE) of 83% (monochrome sample: wavelength = 560 nm) and a 1/PLS exceeding 10,000 (white halogen lamp with IR-cut filter). The pixel retains 80% of its peak QE at ±15° incident angles and maintains stable 1/PLS performance even under low F-number (F#) conditions. Full article
Show Figures

Figure 1

16 pages, 9563 KB  
Article
Detecting Volcano Thermal Activity in Night Images Using Machine Learning and Computer Vision
by Sergey Korolev, Igor Urmanov, Aleksei Sorokin and Olga Girina
Remote Sens. 2023, 15(19), 4815; https://doi.org/10.3390/rs15194815 - 3 Oct 2023
Cited by 5 | Viewed by 3389
Abstract
One of the most important tasks when studying volcanic activity is to monitor their thermal radiation. To fix and assess the evolution of thermal anomalies in areas of volcanoes, specialized hardware-thermal imagers are usually used, as well as specialized instruments of modern satellite [...] Read more.
One of the most important tasks when studying volcanic activity is to monitor their thermal radiation. To fix and assess the evolution of thermal anomalies in areas of volcanoes, specialized hardware-thermal imagers are usually used, as well as specialized instruments of modern satellite systems. The data obtained with their help contain information that makes it relatively easy to track changes in temperature and the size of a thermal anomaly. At the same time, due to the high cost of such complexes and other limitations, thermal imagers sometimes cannot be used to solve scientific problems related to the study of volcanoes. In the current paper, day/night video cameras with an infrared-cut filter are considered as an alternative to specialized tools for monitoring volcanoes’ thermal activity. In the daytime, a camera operated in the visible range, and at night the filter was removed, increasing the camera’s light sensitivity by allowing near-infrared light to hit the sensor. In that mode, a visible thermal anomaly could be registered on images, as well as other bright glows, flares, and other artifacts. The purpose of this study is to detect thermal anomalies on night images, separate them from other bright areas, and find their characteristics, which could be used for volcano activity monitoring. Using the image archive of the Sheveluch volcano as an example, this article presents the results of developing a computer algorithm that makes it possible to find and classify thermal anomalies on video frames with an accuracy of 98%. The test results are presented, along with their validation based on thermal activity data obtained from satellite systems. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

13 pages, 4111 KB  
Article
Novel Hyperspectral Analysis of Thin-Layer Chromatographic Plates—An Application to Fingerprinting of 70 Polish Grasses
by Joanna Wróbel-Szkolak, Anna Cwener and Łukasz Komsta
Molecules 2023, 28(9), 3745; https://doi.org/10.3390/molecules28093745 - 26 Apr 2023
Cited by 2 | Viewed by 2117
Abstract
The advantages of hyperspectral imaging in videodensitometry are presented and discussed with the example of extracts from 70 Polish grasses. An inexpensive microscope camera was modified to cover the infrared spectrum range, and then 11 combinations of illumination (254 nm, 366 nm, white [...] Read more.
The advantages of hyperspectral imaging in videodensitometry are presented and discussed with the example of extracts from 70 Polish grasses. An inexpensive microscope camera was modified to cover the infrared spectrum range, and then 11 combinations of illumination (254 nm, 366 nm, white light), together with various filters (no filter, IRCut, UV, cobalt glass, IR pass), were used to register RGB HDR images of the same plate. It was revealed that the resulting 33 channels of information could be compressed into 5–6 principal components and then visualized separately as grayscale images. We also propose a new approach called principal component artificial coloring of images (PCACI). It allows easy classification of chromatographic spots by presenting three PC components as RGB channels, providing vivid spots with artificial colors and visualizing six principal components on two color images. The infrared region brings additional information to the registered data, orthogonal to the other channels and not redundant with photos in the visible region. This is the first published attempt to use a hyperspectral camera in TLC and it can be clearly concluded that such an approach deserves routine use and further attention. Full article
(This article belongs to the Special Issue Chemometrics in Analytical Chemistry)
Show Figures

Figure 1

16 pages, 4402 KB  
Article
Optimized Classification of Intelligent Reflecting Surface (IRS)-Enabled GEO Satellite Signals
by Mamoona Jamil, Mubashar Sarfraz, Sajjad A. Ghauri, Muhammad Asghar Khan, Mohamed Marey, Khaled Mohamad Almustafa and Hala Mostafa
Sensors 2023, 23(8), 4173; https://doi.org/10.3390/s23084173 - 21 Apr 2023
Cited by 1 | Viewed by 3520
Abstract
The intelligent reflecting surface (IRS) is a cutting-edge technology for cost-effectively achieving future spectrum- and energy-efficient wireless communication. In particular, an IRS comprises many low-cost passive devices that can independently reflect the incident signal with a configurable phase shift to produce three-dimensional (3D) [...] Read more.
The intelligent reflecting surface (IRS) is a cutting-edge technology for cost-effectively achieving future spectrum- and energy-efficient wireless communication. In particular, an IRS comprises many low-cost passive devices that can independently reflect the incident signal with a configurable phase shift to produce three-dimensional (3D) passive beamforming without transmitting Radio-Frequency (RF) chains. Thus, the IRS can be utilized to greatly improve wireless channel conditions and increase the dependability of communication systems. This article proposes a scheme for an IRS-equipped GEO satellite signal with proper channel modeling and system characterization. Gabor filter networks (GFNs) are jointly proposed for the extraction of distinct features and the classification of these features. Hybrid optimal functions are used to solve the estimated classification problem, and a simulation setup was designed along with proper channel modeling. The experimental results show that the proposed IRS-based methodology provides higher classification accuracy than the benchmark without the IRS methodology. Full article
Show Figures

Figure 1

14 pages, 9186 KB  
Article
Tool-Wear-Estimation System in Milling Using Multi-View CNN Based on Reflected Infrared Images
by Woong-Ki Jang, Dong-Wook Kim, Young-Ho Seo and Byeong-Hee Kim
Sensors 2023, 23(3), 1208; https://doi.org/10.3390/s23031208 - 20 Jan 2023
Cited by 12 | Viewed by 4326
Abstract
A novel method for tool wear estimation in milling using infrared (IR) laser vision and a deep-learning algorithm is proposed and demonstrated. The measurement device employs an IR line laser to irradiate the tool focal point at angles of −7.5°, 0.0°, and +7.5° [...] Read more.
A novel method for tool wear estimation in milling using infrared (IR) laser vision and a deep-learning algorithm is proposed and demonstrated. The measurement device employs an IR line laser to irradiate the tool focal point at angles of −7.5°, 0.0°, and +7.5° to the vertical plane, and three cameras are placed at 45° intervals around the tool to collect the reflected IR light at different locations. For the processing materials and methods, a dry processing method was applied to a 100 mm × 100 mm × 40 mm SDK-11 workpiece through end milling and downward cutting using a TH308 insert. This device uses the diffused light reflected off the surface of a rotating tool roughened by flank wear, and a polarization filter is considered. As the measured tool wear images exhibit a low dynamic range of exposure, high dynamic range (HDR) images are obtained using an exposure fusion method. Finally, tool wear is estimated from the images using a multi-view convolutional neural network. As shown in the results of the estimated tool wear, a mean absolute error (MAE) of prediction error calculated was to be 9.5~35.21 μm. The proposed method can improve machining efficiency by reducing the downtime for tool wear measurement and by increasing tool life utilization. Full article
Show Figures

Figure 1

17 pages, 20833 KB  
Article
Development of a Negligible Zero-Drift NDIR Analyzer for Measuring NH3 Emitted from an Urban Household Solid Waste Incinerator
by Trieu-Vuong Dinh, In-Young Choi, Byeong-Gyu Park, Jee-Hyun Lee, In-Young Kim, Han-Nui Gil, Sang-Woo Lee and Jo-Chun Kim
Atmosphere 2021, 12(7), 858; https://doi.org/10.3390/atmos12070858 - 30 Jun 2021
Cited by 9 | Viewed by 4771
Abstract
An analyzer for measuring NH3 emitted from a combustion process has been developed based on a simple non-dispersive infrared (NDIR) technique because of its cost-effective benefit. The weakness of the NDIR analyzer due to interference and zero-drift has been overcome. A least-interfering [...] Read more.
An analyzer for measuring NH3 emitted from a combustion process has been developed based on a simple non-dispersive infrared (NDIR) technique because of its cost-effective benefit. The weakness of the NDIR analyzer due to interference and zero-drift has been overcome. A least-interfering bandpass filter (BPF) was found and manufactured to compensate for the interfering effects of gases emitted from a combustion process (e.g., CO, NOx, SO2, CO2, H2O, HCl, formaldehyde, acetaldehyde and toluene). It was found that there was no significant interference in the least-interfering BPF with respect to gases of concern. Measurement errors by the analyzer were less than 2.5% in a range of 1 to 10 ppmv of NH3 compared to a standard method when the compound was measured in complicated mixing gases. For the zero-drift, using BPFs with identical center wavelength with respect to different incident infrared intensity was found to help minimize the zero-drift of the NDIR analyzer. As a result, the analyzer could cut approximately 19% of zero-drift caused by the aging effect of both IR source and detector. It suggests that the analyzer could be applied for measuring NH3 emitted from combustion processes with good accuracy and reproducibility. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

21 pages, 4022 KB  
Article
Infrared Image Adaptive Enhancement Guided by Energy of Gradient Transformation and Multiscale Image Fusion
by Feiran Chen, Jianlin Zhang, Jingju Cai, Tao Xu, Gang Lu and Xianrong Peng
Appl. Sci. 2020, 10(18), 6262; https://doi.org/10.3390/app10186262 - 9 Sep 2020
Cited by 12 | Viewed by 3989
Abstract
The detail enhancement and dynamic range compression of infrared (IR) images is an important issue and a necessary practical application in the domain of IR image processing. This paper provides a novel approach to displaying high dynamic range infrared images on common display [...] Read more.
The detail enhancement and dynamic range compression of infrared (IR) images is an important issue and a necessary practical application in the domain of IR image processing. This paper provides a novel approach to displaying high dynamic range infrared images on common display equipment with appropriate contrast and clear detail information. The steps are chiefly as follows. First, in order to protect the weak global details in different regions of the image, we adjust the original normalized image into multiple brightness levels by adaptive Gamma transformation. Second, each brightness image is decomposed into a base layer and several detail layers by the multiscale guided filter. Details in each image are enhanced separately. Third, to obtain the image with global details of the input image, enhanced images in each brightness are fused together. Last, we filter out the outliers and adjust the dynamic range before outputting the image. Compared with other conventional or cutting-edge methods, the experimental results demonstrate that the proposed approach is effective and robust in dynamic range compression and detail information enhancement of IR image. Full article
(This article belongs to the Special Issue Infrared Imaging and NDT)
Show Figures

Figure 1

26 pages, 4303 KB  
Article
Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition
by Chulhee Park and Moon Gi Kang
Sensors 2016, 16(5), 719; https://doi.org/10.3390/s16050719 - 18 May 2016
Cited by 41 | Viewed by 12082
Abstract
A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band [...] Read more.
A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. Full article
(This article belongs to the Special Issue Imaging: Sensors and Technologies)
Show Figures

Graphical abstract

Back to TopTop