Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = High-Voltage Alternating Current (HVAC) cable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1527 KiB  
Article
Grid-Forming: A Control Approach to Go Further Offshore?
by Rui Alves, Thyge Knuppel and Agustí Egea-Àlvarez
Electricity 2025, 6(1), 4; https://doi.org/10.3390/electricity6010004 - 26 Jan 2025
Viewed by 1209
Abstract
Offshore wind farms are increasingly being commissioned farther from shore, and high voltage alternating current (HVAC) transmission systems are preferred because of their maturity and reliability. However, as cable length increases, ensuring system stability becomes more challenging, making it essential to investigate shunt [...] Read more.
Offshore wind farms are increasingly being commissioned farther from shore, and high voltage alternating current (HVAC) transmission systems are preferred because of their maturity and reliability. However, as cable length increases, ensuring system stability becomes more challenging, making it essential to investigate shunt reactor compensation configurations and converter control strategies. This study examines three different shunt reactor compensation arrangements and two control strategies, grid-forming (GFM) and grid-following (GFL), across three cable lengths (80 km, 120 km, and 150 km). The systems were evaluated based on small-signal stability using disk margins for different active power operating points, and later for different short-circuit ratios (SCR) and X/R. The results demonstrate that the GFM is preferable for longer cables and enhanced stability. The most robust configuration includes a shunt reactor placed in the mid-cable with additional reactors at both ends of the cable, followed by an arrangement with reactors at the beginning and end. The GFM converter control maintained stability across all operating points, cable lengths, and configurations, whereas the stability of the GFL unit was highly dependent on active power injection and struggled under weaker grid conditions. Thus, for longer HVAC cables, it is necessary to employ GFM control units, and it is recommended to use shunt reactors at the cable start and end, as well as at mid-cable, for optimal stability. Full article
Show Figures

Figure 1

41 pages, 10274 KiB  
Article
Techno-Economic Assessment of Coaxial HTS HVAC Transmission Cables with Critical Current Grading between Phases Using the OSCaR Tool
by Andrea Musso, Lorenzo Cavallucci, Giuliano Angeli, Marco Bocchi, Angelo L’Abbate, Lorenzo Carmine Vitulano, Sebastian Dambone Sessa, Francesco Sanniti and Marco Breschi
Appl. Sci. 2024, 14(17), 7488; https://doi.org/10.3390/app14177488 - 24 Aug 2024
Cited by 1 | Viewed by 1416
Abstract
In recent years, the scientific and industrial interest regarding alternative technologies for transmission cables has increased. These conductors should efficiently transmit significant amounts of power between grid nodes, which are expected to be particularly congested due to the projected global increase in electricity [...] Read more.
In recent years, the scientific and industrial interest regarding alternative technologies for transmission cables has increased. These conductors should efficiently transmit significant amounts of power between grid nodes, which are expected to be particularly congested due to the projected global increase in electricity production. Superconducting cables are considered a promising solution in this context, offering the potential to transmit large amounts of energy with minimal losses and compact dimensions, thereby potentially benefiting the environment. To evaluate the feasibility of integrating superconducting cables into existing grids, techno-economic approaches should be adopted. Such techniques enable the conceptual design of a specific cable structure, allowing users to explore a wide range of operating parameters to derive optimal designs. This paper reports a comprehensive techno-economic analysis of High Voltage Alternating Current (HVAC) cables realized with High-Temperature Superconducting (HTS) tapes, with the aim to transmit extremely high-power level. The optimal coaxial design is selected using Optimization Tool for Superconducting Cable Research (OSCaR) by implementing a graded approach to the critical current of the HTS tapes used for the different phases. This optimization aims to achieve the most effective balance between the cost of the coated conductors and their electrical properties. The whole set of model equations, the user-defined parameters, and the applied constraints are detailed. The OSCaR tool is then applied to assess the impact on the optimized design of the cable system and the corresponding cost indexes of several crucial parameters, such as the maximum transmitted power, the voltage level, and the line length. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 6122 KiB  
Review
Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm
by Asad Rehman, Mohsin Ali Koondhar, Zafar Ali, Munawar Jamali and Ragab A. El-Sehiemy
Sustainability 2023, 15(19), 14175; https://doi.org/10.3390/su151914175 - 25 Sep 2023
Cited by 14 | Viewed by 5494
Abstract
The reactive power (RP) control of the high voltage alternating current transmission system (HVAC TS) for offshore wind farms (OWFs) is a crucial task to assure the consistent and efficient operation of the system. The importance of RP compensation (RPC) in power system [...] Read more.
The reactive power (RP) control of the high voltage alternating current transmission system (HVAC TS) for offshore wind farms (OWFs) is a crucial task to assure the consistent and efficient operation of the system. The importance of RP compensation (RPC) in power system operation is to maintain voltage stability and reduce power losses. Offshore wind farms present unique challenges for power system operation due to their distance from the onshore grid, variable wind conditions, and complex electrical infrastructure. The HVAC TS is common for OWFs as it is well-suited for transmitting large amounts of power over long distances. In this paper, a literature-based analysis helps in improving the operation and reliability of OWFs, ultimately leading to greater renewable energy utilization. This paper concludes that optimal RPC is a critical task for ensuring the stable and efficient operation of HVAC TSs for OWFs. Advanced control and optimization techniques can help achieve an optimal RPC, thereby minimizing TLS and improving the overall system efficiency. Furthermore, the study investigates the possible benefits of incorporating novel technologies and approaches, such as RESs, into the power compensation process. By offering insightful information on how to optimize HVAC TSs for OWFs, for example, subsea power cables with multiple layers must be used to carry electricity from large offshore wind farms, the development of more sustainable and effective energy solutions is possible. The research concludes by stating that ensuring the steady and effective operation of HVAC TSs for OWFs is a crucial responsibility. Advanced optimization and control solutions can reduce TLS and increase system efficiency by assisting in achieving the optimal RPC. Full article
(This article belongs to the Special Issue Sustainable Future of Power System: Estimation and Optimization)
Show Figures

Figure 1

16 pages, 3853 KiB  
Article
Effect of Acetylated SEBS/PP for Potential HVAC Cable Insulation
by Peng Zhang, Xuan Wang, Jiaming Yang and Yongqi Zhang
Materials 2021, 14(8), 1811; https://doi.org/10.3390/ma14081811 - 7 Apr 2021
Cited by 4 | Viewed by 2497
Abstract
Blending polypropylene (PP) with thermoplastic elastomer SEBS can effectively improve the mechanical toughness of PP, thus leading to the promise of SEBS/PP as the primary insulation material for high voltage alternating current (HVAC) cables. However, the growth of electrical trees during cable operation [...] Read more.
Blending polypropylene (PP) with thermoplastic elastomer SEBS can effectively improve the mechanical toughness of PP, thus leading to the promise of SEBS/PP as the primary insulation material for high voltage alternating current (HVAC) cables. However, the growth of electrical trees during cable operation limits the application of SEBS/PP. In this paper, acetylation reaction is used to construct acetophenone group at the end of the benzene ring on SEBS so that it has the effect of both a toughening agent and a voltage stabilizer. Then PP was melt blended with acetylated SEBS (Ac-SEBS), and the effects of Ac-SEBS on the mechanical properties, electrical tree resistance, alternating current (AC) breakdown strength, and dielectric spectrum of PP were mainly investigated with reference to PP and SEBS/PP. The results showed that Ac-SEBS with 30% content could enhance the mechanical toughness of PP and improve the electrical tree resistance and AC breakdown strength of SEBS/PP. The AC breakdown field strength of Ac-SEBS/PP reached the highest when the acetylation level was 4.6%, which was 9.2% higher than that of SEBS/PP. At this time, Ac-SEBS was also able to absorb high-energy electrons through the keto-enol interchange isomerization reaction, which inhibited the initiation and growth of electric trees and caused the development of electric dendrites in a jungle-like manner. Moreover, the dielectric loss factor of AC-SEBS/PP in power frequency is within the allowable range of industry. Therefore, Ac-SEBS/PP is expected to be applied to HVAC cables, thus further improving the efficiency of HVAC power transmission. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

42 pages, 10878 KiB  
Review
A Review about the Modeling and Simulation of Electro-Quasistatic Fields in HVDC Cable Systems
by Christoph Jörgens and Markus Clemens
Energies 2020, 13(19), 5189; https://doi.org/10.3390/en13195189 - 5 Oct 2020
Cited by 11 | Viewed by 4114
Abstract
In comparison to high-voltage alternating current (HVAC) cable systems, high-voltage direct current (HVDC) systems have several advantages, e.g., the transmitted power or long-distance transmission. The insulating materials feature a non-linear dependency on the electric field and the temperature. Applying a constant voltage, space [...] Read more.
In comparison to high-voltage alternating current (HVAC) cable systems, high-voltage direct current (HVDC) systems have several advantages, e.g., the transmitted power or long-distance transmission. The insulating materials feature a non-linear dependency on the electric field and the temperature. Applying a constant voltage, space charges accumulate in the insulation and yield a slowly time-varying electric field. As a complement to measurements, numerical simulations are used to obtain the electric field distribution inside the insulation. The simulation results can be used to design HVDC cable components such that possible failure can be avoided. This work is a review about the simulation of the time-varying electric field in HVDC cable components, using conductivity-based cable models. The effective mechanisms and descriptions of charge movement result in different conductivity models. The corresponding simulation results of the models are compared against measurements and analytic approximations. Different numerical techniques show variations of the accuracy and the computation time that are compared. Coupled electro-thermal field simulations are applied to consider the environment and its effect on the resulting electric field distribution. A special case of an electro-quasistatic field describes the drying process of soil, resulting from the temperature and electric field. The effect of electro-osmosis at HVDC ground electrodes is considered within this model. Full article
(This article belongs to the Special Issue Design and Testing of Power Cable System)
Show Figures

Graphical abstract

21 pages, 526 KiB  
Article
Dynamic Rating of Three-Core XLPE Submarine Cables for Offshore Wind Farms
by Thomas V. M. Nielsen, Simon Jakobsen and Mehdi Savaghebi
Appl. Sci. 2019, 9(4), 800; https://doi.org/10.3390/app9040800 - 25 Feb 2019
Cited by 13 | Viewed by 9435
Abstract
This article aims to determine the most suitable cross-sectional area for a high voltage alternating current (HVAC) submarine cable in the design phase of new projects. A thermal ladder network method (LNM) was used to analyse the thermal behaviour in the centre of [...] Read more.
This article aims to determine the most suitable cross-sectional area for a high voltage alternating current (HVAC) submarine cable in the design phase of new projects. A thermal ladder network method (LNM) was used to analyse the thermal behaviour in the centre of the conductor as the hottest spot of the cable. On the basis of the calculated cable parameters and a thermal cable analysis of transient conditions applied by a step function with a time duration greater than 1 h, this article proposes a method for a dynamic rating of submarine cables. The dynamic rating is accomplished through an iterative process. The method was tested with a MATLAB simulation and validated in comparison with a finite element method (FEM)-based approach. Full article
(This article belongs to the Special Issue Offshore Wind Energy)
Show Figures

Figure 1

Back to TopTop