Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = Hausner ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 338
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

19 pages, 2098 KiB  
Article
Influence of an Antioxidant Nanomaterial on Oral Tablet Formulation: Flow Properties and Critical Quality Attributes
by Andrea C. Ortiz, Javiera Carrasco-Rojas, Sofía Peñaloza, Mario J. Simirgiotis, Lorena Rubio-Quiroz, Diego Ruiz, Carlos F. Lagos, Javier Morales and Francisco Arriagada
Antioxidants 2025, 14(7), 829; https://doi.org/10.3390/antiox14070829 - 5 Jul 2025
Viewed by 550
Abstract
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid [...] Read more.
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid (MSN-CAF) on powder flow properties and their tableting performance. Aminated MSNs were synthesized via co-condensation and conjugated with caffeic acid using EDC/NHS chemistry. Antioxidant capacity was evaluated using DPPH, ABTS●+, ORAC, and FRAP assays. Powder blends with varying MSN-CAF concentrations (10–70%) were characterized for flow properties (angle of repose, Hausner ratio, Carr’s index), tablets were produced via direct compression, and critical quality attributes (weight uniformity, hardness, friability, disintegration, nanoparticle release) were assessed. MSN-CAF exhibited reduced antioxidant capacity compared with free caffeic acid due to pore entrapment but retained significant activity. Formulation F1 (10% MSN-CAF) showed excellent flowability (angle of repose: 12°, Hausner ratio: 1.16, Carr’s index: 14%), enabling robust tablet production with rapid disintegration, low friability, and complete nanoparticle release in 10 min. Additionally, the antioxidant nanomaterial demonstrated biocompatibility with the HepG2 cell line. MSN-CAF is a versatile nanoexcipient for direct compression tablets, offering potential as an active packaging agent and delivery system in the nutraceutical and food industries. Full article
Show Figures

Figure 1

11 pages, 2752 KiB  
Article
Encapsulation of ɣ-Aminobutyric Acid Compounds Extracted from Germinated Brown Rice by Freeze-Drying Technique
by Tarinee Nilkamheang, Chanikarn Thanaseelangkoon, Rawinan Sangsue, Sarunya Parisaka, Le Ke Nghiep, Pitchaporn Wanyo, Nitchara Toontom and Kukiat Tudpor
Molecules 2024, 29(21), 5119; https://doi.org/10.3390/molecules29215119 - 30 Oct 2024
Cited by 2 | Viewed by 1137
Abstract
Gamma-aminobutyric acid (GABA) from plants has several bioactivities, such as neurotransmission, anti-cancer cell proliferation, and blood pressure control. Its bioactivities vary when exposed to pH, heat, and ultraviolet. This study analyzed the protective effect of the GABA encapsulation technique using gum arabic (GA) [...] Read more.
Gamma-aminobutyric acid (GABA) from plants has several bioactivities, such as neurotransmission, anti-cancer cell proliferation, and blood pressure control. Its bioactivities vary when exposed to pH, heat, and ultraviolet. This study analyzed the protective effect of the GABA encapsulation technique using gum arabic (GA) and maltodextrin (MD) and the freeze-drying method. The impact of different ratios of the wall material GA and MD on morphology, GABA content, antioxidant activity, encapsulation efficiency, process yield, and physical properties were analyzed. Results showed that the structure of encapsulated GABA powder was similar to broken glass pieces of various sizes and irregular shapes. The highest GABA content and encapsulation efficiency were, respectively, 90.77 mg/g and 84.36% when using the wall material GA:MD ratio of 2:2. The encapsulated powder’s antioxidant activity was 1.09–1.80 g of encapsulation powder for each formula, which showed no significant difference. GA and MD as the wall material in a 2:2 (w/w) ratio showed the lowest bulk density. The high amount of MD showed the highest Hausner ratio (HR), and Carr’s index (CI) showed high encapsulation efficiency and process yield. The stability of encapsulated GABA powder can be kept in clear glass with a screw cap at 35 °C for 42 days compared to the non-encapsulated one, which can be preserved for only 18 days under the same condition. In conclusion, this study demonstrated that the freeze-drying process for GABA encapsulation preserved GABA component extracts from brown rice while increasing its potential beneficial properties. Using a wall material GA:MD ratio of 2:2 resulted in the maximum GABA content, solubility, and encapsulation efficiency while having the lowest bulk density. Full article
Show Figures

Figure 1

14 pages, 2555 KiB  
Article
Application of SAP to Improve the Handling Properties of Iron Ore Tailings of High Cohesiveness: Could a Reagent Help the Decommissioning Process of a Dam?
by Hely Simões Gurgel and Ivo André Homrich Schneider
Mining 2024, 4(4), 733-746; https://doi.org/10.3390/mining4040041 - 2 Oct 2024
Viewed by 1579
Abstract
This work aims to evaluate the use of a superabsorbent polymer (SAP) to provide improvements in the handling properties of iron ore tailings (IOT). The material studied came from the magnetic separation reprocessing of the material discarded at the Gelado Dam, located in [...] Read more.
This work aims to evaluate the use of a superabsorbent polymer (SAP) to provide improvements in the handling properties of iron ore tailings (IOT). The material studied came from the magnetic separation reprocessing of the material discarded at the Gelado Dam, located in Serra dos Carajás in the state of Pará, Brazil. While the concentrate presents reasonable handling conditions, the tailings, with 61.5% iron, 15% moisture, and 39% of the mass, have high cohesiveness and adhesiveness due to their fine nature and the climatic conditions of the Amazon rainforest. However, the tailings can still be considered a product as long as the handling and transportation logistics are feasible. Thus, studies with an SAP and IOT were carried out in a bench rotating drum to promote mixing between them, and the main variables studied were the SAP dosage and the required contact time. The improvement in the physical properties of the IOT were evaluated considering the Hausner ratio, Carr index, Jenike’s flow function index, Atterberg limits, and chute angle. The superabsorbent polymer promoted a significant improvement in the state of consistency of the material, and the best performance was obtained with a dosage of 1000 g t−1. As long as a suitable contact condition was promoted, a contact time of 1 min was enough to achieve the expected benefits. After dosing with the superabsorbent polymer, the material’s handling classification changed from ‘cohesive’ to ‘easy flow’, and the chute angle was reduced from 90° to levels below 60°. It was concluded that the application of the superabsorbent polymer has the potential to improve the fluidity of the material discarded in the magnetic concentration operation, allowing it to be handled throughout the production and transportation chain. The SAP appears to be an important additive for the full use of the material present in the dam (100% recovery), with both economic and socio-environmental benefits. Full article
(This article belongs to the Special Issue Envisioning the Future of Mining, 2nd Edition)
Show Figures

Figure 1

32 pages, 1801 KiB  
Article
Development of Novel Honey- and Oat-Based Cocoa Beverages—A Comprehensive Analysis of the Impact of Drying Temperature and Mixture Composition on Physical, Chemical and Sensory Properties
by Kristina Tušek and Maja Benković
Molecules 2024, 29(19), 4665; https://doi.org/10.3390/molecules29194665 - 30 Sep 2024
Viewed by 1195
Abstract
This research aimed to assess the influence of drying temperature (50, 60 and 70 °C), honey/oat flour ratio (60:40, 50:50 and 40:60) and cocoa contents (5, 6.25 and 7.5 g/100 g) on the physical (color, moisture content, bulk density, flowability (Hausner ratio, Carr [...] Read more.
This research aimed to assess the influence of drying temperature (50, 60 and 70 °C), honey/oat flour ratio (60:40, 50:50 and 40:60) and cocoa contents (5, 6.25 and 7.5 g/100 g) on the physical (color, moisture content, bulk density, flowability (Hausner ratio, Carr index), dispersibility, solubility, and particle size), chemical (total dissolved solids, conductivity, pH, amount of sugar, color, total polyphenolic content, and antioxidant activity), and sensory properties (powder appearance, color, odor; and beverage appearance, color, odor, sweetness, bitterness, taste, texture) of a newly developed cocoa powder mixture in which honey was used as a sweetener and oat flour as a filler. Also, a further aim of this study was to optimize the composition of the mixture based on chemical, physical and sensory properties. Based on the optimization results, the highest total polyphenolic content and antioxidant activity were achieved at 70 °C with a honey/oat ratio of 50% and a cocoa content of 7.5 g. Drying temperature has a significant effect on powder odor and beverage odor, as well as on beverage bitterness, while the honey/oat flour ratio has a significant effect on color, with primarily values L* and a*. The cocoa contents mostly affect total polyphenolic content and antioxidant activity. Full article
(This article belongs to the Special Issue Plant Foods Ingredients as Functional Foods and Nutraceuticals III)
Show Figures

Figure 1

23 pages, 25213 KiB  
Article
Evaluating Flow Characteristics of Ground and Cut Biomass for Industrial Applications
by Birce Dikici, Hussein Awad Kurdi Saad and Bo Zhao
Powders 2024, 3(3), 437-459; https://doi.org/10.3390/powders3030024 - 11 Sep 2024
Cited by 2 | Viewed by 1390
Abstract
In recent years, biomass utilization has significantly increased, presenting challenges in its incorporation into various systems. Effective handling requires reliable data on biomass flow properties for designing warehouses and processing equipment. This study investigates the physical properties of ground barley grains, ground oak [...] Read more.
In recent years, biomass utilization has significantly increased, presenting challenges in its incorporation into various systems. Effective handling requires reliable data on biomass flow properties for designing warehouses and processing equipment. This study investigates the physical properties of ground barley grains, ground oak leaves, ground straw, and cut jute. Barley grains, oak leaves, and straw bales were milled, and jute was cut into 2–3 mm lengths and oven-dried. Particle size distribution, bulk density, Hausner ratio, Carr’s index, moisture content, static angle of repose, and flowability tests and SEM analysis were conducted. The study found that ground barley, having the smallest particle size and highest bulk density, showed superior flow properties due to its rounded particles and clusters, as reflected by a low Hausner ratio. In contrast, jute fibers had a low bulk density and poor flowability, while ground straw exhibited hindered flow due to its larger, more irregular particles. Additionally, the biomass sliding behavior varied with particle size and surface irregularities, with ground barley adhering well to plywood and ground oak leaves adhering well to aluminum. These findings underscore the pivotal roles of particle shape and interparticle forces in determining the biomass flow properties, pointing towards a future where precise environmental control and advanced analytical methods drive innovations in biomass utilization. Full article
Show Figures

Figure 1

19 pages, 4472 KiB  
Article
Inhaled Ivermectin-Loaded Lipid Polymer Hybrid Nanoparticles: Development and Characterization
by Seyedeh Negin Kassaee, Godwin A. Ayoko, Derek Richard, Tony Wang and Nazrul Islam
Pharmaceutics 2024, 16(8), 1061; https://doi.org/10.3390/pharmaceutics16081061 - 12 Aug 2024
Cited by 5 | Viewed by 2560
Abstract
Ivermectin (IVM), a drug originally used for treating parasitic infections, is being explored for its potential applications in cancer therapy. Despite the promising anti-cancer effects of IVM, its low water solubility limits its bioavailability and, consequently, its biological efficacy as an oral formulation. [...] Read more.
Ivermectin (IVM), a drug originally used for treating parasitic infections, is being explored for its potential applications in cancer therapy. Despite the promising anti-cancer effects of IVM, its low water solubility limits its bioavailability and, consequently, its biological efficacy as an oral formulation. To overcome this challenge, our research focused on developing IVM-loaded lipid polymer hybrid nanoparticles (LPHNPs) designed for potential pulmonary administration. IVM-loaded LPHNPs were developed using the emulsion solvent evaporation method and characterized in terms of particle size, morphology, entrapment efficiency, and release pattern. Solid phase characterization was investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Using a Twin stage impinger (TSI) attached to a device, aerosolization properties of the developed LPHNPs were studied at a flow rate of 60 L/min, and IVM was determined by a validated HPLC method. IVM-loaded LPHNPs demonstrated spherical-shaped particles between 302 and 350 nm. Developed formulations showed an entrapment efficiency between 68 and 80% and a sustained 50 to 60% IVM release pattern within 96 h. Carr’s index (CI), Hausner ratio (HR), and angle of repose (θ) indicated proper flowability of the fabricated LPHNPs. The in vitro aerosolization analysis revealed fine particle fractions (FPFs) ranging from 18.53% to 24.77%. This in vitro study demonstrates the potential of IVM-loaded LPHNPs as a delivery vehicle through the pulmonary route. Full article
(This article belongs to the Special Issue Novel Dry Powder Formulation and Delivery Systems)
Show Figures

Figure 1

18 pages, 2311 KiB  
Article
Impact of Spray Drying on the Properties of Grape Pomace Extract Powder
by Betina Louise Angioletti Decker, Emilio de Castro Miguel, Thatyane Vidal Fonteles, Fabiano A. N. Fernandes and Sueli Rodrigues
Processes 2024, 12(7), 1390; https://doi.org/10.3390/pr12071390 - 3 Jul 2024
Cited by 8 | Viewed by 2533
Abstract
Incorporating anthocyanins, valuable natural pigments, into a powder can improve their stability, but exposure to high temperatures during processing can cause them to degrade. The purpose of this study was to investigate how the inlet air temperature during spray drying affects the physical [...] Read more.
Incorporating anthocyanins, valuable natural pigments, into a powder can improve their stability, but exposure to high temperatures during processing can cause them to degrade. The purpose of this study was to investigate how the inlet air temperature during spray drying affects the physical and chemical characteristics as well as the flowability of a grape pomace anthocyanin powder obtained through ultrasound-assisted extraction using acidified water as the solvent. An anthocyanin solution containing 13% (w/v) maltodextrin was subjected to spray drying at temperatures ranging from 120 to 170 °C. Tukey’s test was applied to compare the means of the samples. The samples dried at temperatures between 130 and 170 °C were adequate, with a moisture content < 5% and a water activity < 0.3, indicating that the powder was stable. The highest anthocyanin retention (91.94 ± 1.59%) and process yield (50.00 ± 3.06%) were achieved at 140 °C, while higher temperatures resulted in anthocyanin degradation. Furthermore, the powder exhibited poor flowability, indicating cohesive behavior (Hausner ratio > 42.29% and Carr index > 1.73), which is an industrial parameter rarely considered in spray-drying studies. The acidification process was found to promote high anthocyanin retention following high-temperature processing. However, powders obtained from food matrices with low pH and high sugar content may exhibit increased cohesion due to interaction forces. These findings highlight the potential of utilizing grape pomace and green solvents to produce bioactive-rich powders for industrial applications. Full article
(This article belongs to the Special Issue Separation and Extraction Techniques in Food Processing and Analysis)
Show Figures

Figure 1

15 pages, 3506 KiB  
Article
Bed Stability Control in Pulsed Fluidized-Bed Agglomeration of Instant Riceberry Powder Using an Image-Processing Technique
by Wasan Duangkhamchan, Prarin Chupawa, Naoshi Kondo and Donludee Jaisut
Foods 2024, 13(12), 1859; https://doi.org/10.3390/foods13121859 - 13 Jun 2024
Viewed by 1224
Abstract
The problematic cohesiveness of food powders can commonly be solved using pulsed fluidized-bed agglomeration. However, progressively larger granules may result in unstable fluidization. The aims of this research study were to investigate fluid bed expansion as affected by particle enlargement and to control [...] Read more.
The problematic cohesiveness of food powders can commonly be solved using pulsed fluidized-bed agglomeration. However, progressively larger granules may result in unstable fluidization. The aims of this research study were to investigate fluid bed expansion as affected by particle enlargement and to control its stability using an image-processing technique. Instant riceberry powder (IRP) was agglomerated using varied air pulsation frequencies (1, 2.5, and 4 Hz). Bed expansion captured by image processing revealed that expanded bed height decreased with agglomeration time. The results showed an enlargement of agglomerated IRP, expressed in D10, D50, and D90, with narrower distribution presented by span, and an improvement in bulk and reconstitution properties. The reduced Carr index (22–27%) and Hausner ratio (1.28–1.38) presented fair flowability and intermediate cohesiveness, respectively. Additionally, airflow during agglomerate growth was progressively adjusted using the image-processing method to enhance bed hydrodynamic stability, leading to improved process efficiency and product quality. This proposed approach has potential applications in the food powder manufacturing industry, particularly by enhancing the fluidization of cohesive particles with cracks and channels. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

26 pages, 7576 KiB  
Article
New Hydrophilic Matrix Tablets for the Controlled Released of Chlorzoxazone
by Andreea Creteanu, Gabriela Lisa, Cornelia Vasile, Maria-Cristina Popescu, Daniela Pamfil, Claudiu N. Lungu, Alina Diana Panainte and Gladiola Tantaru
Int. J. Mol. Sci. 2024, 25(10), 5137; https://doi.org/10.3390/ijms25105137 - 9 May 2024
Cited by 2 | Viewed by 1923
Abstract
The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some [...] Read more.
The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some new oral matrix tablet formulations, based on Kollidon®SR and chitosan, in order to optimize the low-dose oral bioavailability of chlorzoxazone, a non-steroidal anti-inflammatory drug of class II Biopharmaceutical Classification System. Nine types of chlorzoxazone matrix tablets were obtained using the direct compression method by varying the components ratio as 1:1, 1:2, and 1:3 chlorzoxazone/excipients, 20–40 w/w % Kollidon®SR, 3–7 w/w % chitosan while the auxiliary substances: Aerosil® 1 w/w %, magnesium stearate 0.5 w/w % and Avicel® up to 100 w/w % were kept in constant concentrations. Pharmaco-technical characterization of the tablets included the analysis of flowability and compressibility properties (flow time, friction coefficient, angle of repose, Hausner ratio, and Carr index), and pharmaco-chemical characteristics (such as mass and dose uniformity, thickness, diameter, mechanical strength, friability, softening degree, and in vitro release profiles). Based on the obtained results, only three matrix tablet formulations (F1b, F2b, and F3b, containing 30 w/w % KOL and 5 w/w % CHT, were selected and further tested. These formulations were studied in detail by Fourier-transform infrared spectrometry, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The results were analyzed by fitting into four representative mathematical models for the modified-release oral formulations. In vitro kinetic study revealed a complex mechanism of release occurring in two steps of drug release, the first step (0–2 h) and the second (2–36 h). Two factors were calculated to assess the release profile of chlorzoxazone: f1—the similarity factor, and f2—the factor difference. The results have shown that both Kollidon®SR and chitosan may be used as matrix-forming agents when combined with chlorzoxazone. The three formulations showed optima pharmaco-technical properties and in vitro kinetic behavior; therefore, they have tremendous potential to be used in oral pharmaceutical products for the controlled delivery of chlorzoxazone. In vitro dissolution tests revealed a faster drug release for the F2b sample. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 2nd Edition)
Show Figures

Figure 1

25 pages, 11671 KiB  
Article
Free-Flowing Polymer-Bonded Powder Composition of Hexahydro-1,3,5-trinitro-1,3,5-triazine Using Solvent–Slurry Coating
by Muhammad Soulaman Khan, Muhammad Ahsan, Sarah Farrukh, Erum Pervaiz and Abdul Qadeer Malik
Polymers 2024, 16(6), 841; https://doi.org/10.3390/polym16060841 - 19 Mar 2024
Cited by 1 | Viewed by 1560
Abstract
A number of coating techniques have been used to improve the processability of high explosives. These techniques are typically used for developing compositions, such as boosters and fillers. The most typically used technique is the “solvent–slurry coating”. Several compositions of polymer-bonded explosives have [...] Read more.
A number of coating techniques have been used to improve the processability of high explosives. These techniques are typically used for developing compositions, such as boosters and fillers. The most typically used technique is the “solvent–slurry coating”. Several compositions of polymer-bonded explosives have been industrialized using this technique. The NUPC-6 polymer-bonded powder composition of hexahydro-1,3,5-trinitro-1,3,5-triazine is optimized using the solvent–slurry coating. It involved multiple processes, i.e., preparing a slurry of high explosives in an aqueous phase, dissolving the modified polymer binder in an organic solvent, maintaining both the solvent and slurry at controlled temperatures, introducing polymer binder solution and ingredients in the slurry, distilling the solvent, mixing contents homogeneously, filtering the polymer-coated hexahydro-1,3,5-trinitro-1,3,5-triazine composition, and drying in a vacuum oven. The phlegmatizing and hydrophobic agents enhance flowability and hydrophobicity. The mass flow rate, bulk density, tapped density, compressibility index, and Hausner ratio are determined to evaluate its flowability during filling operations. The results show that the composition is flowable using a filling funnel, with a 150 mm upper diameter, 25 mm flow diameter, and 136 mm total funnel height. The raw polymer binder was modified using diisooctylsebacate and SAE-10 oil. The additives in the composition enhance its flowability, and it might be used in underwater applications. Full article
Show Figures

Figure 1

13 pages, 2170 KiB  
Article
Pulse Spray Drying for Bovine Skimmed Milk Powder Production
by María Romo, Doll Chutani, Dinar Fartdinov, Ram Raj Panthi, Nooshin Vahedikia, Massimo Castellari, Xavier Felipe and Eoin G. Murphy
Foods 2024, 13(6), 869; https://doi.org/10.3390/foods13060869 - 13 Mar 2024
Cited by 6 | Viewed by 3731
Abstract
Pulse Spray Drying (PSD) has potential as a sustainable means of skimmed milk powder (SMP) production. In this study, powders were obtained from PSD using different drying outlet temperatures (70, 80, 90 and 100 °C), and their characteristics were compared to those of [...] Read more.
Pulse Spray Drying (PSD) has potential as a sustainable means of skimmed milk powder (SMP) production. In this study, powders were obtained from PSD using different drying outlet temperatures (70, 80, 90 and 100 °C), and their characteristics were compared to those of traditional Spray Drying (SD). Native whey proteins were well preserved and Solubility Indexes were over 98% in all cases, despite powders obtained by PSD displaying lower solubility than the SD ones. No visual difference was observable in the powders (ΔE < 2); however, PSD powders were found to be yellower with a higher Browning Index. The drying technology did not have a significant effect on powder moisture content and bulk density. Particle size distribution and scanning electron microscopy images confirmed the presence of fine particles (<10 μm) in all samples that might have provided poor flowability and wetting behavior (overall Carr Index and Hausner ratio were 33.86 ± 3.25% and 1.52 ± 0.07, respectively). Higher amounts of agglomerated particles were found at low temperatures in the products processed with both technologies, but PSD samples showed a narrower particle size distribution and hollow particles with more wrinkles on the surface (probably due to the fast evaporation rate in PSD). Overall, PSD provided SMP with comparable physicochemical characteristics to SD and, once optimized at the industrial level, could offer significant advantages in terms of thermal efficiency without significant modification of the final product quality. Full article
(This article belongs to the Special Issue Conventional and Emerging Processing Techniques of Food Products)
Show Figures

Figure 1

13 pages, 845 KiB  
Article
Surface Characterization and Bulk Property Analysis of Aluminum Powders Treated with Hydrophobic Coatings: Stearic Acid and Phenyl-Phosphonic Acid
by Bellamarie Ludwig
Solids 2024, 5(1), 1-13; https://doi.org/10.3390/solids5010001 - 22 Dec 2023
Cited by 1 | Viewed by 1667
Abstract
Stearic and phenyl-phosphonic acids were applied to fine aluminum particles to understand their effect on the surface chemical composition and bulk properties of the surface-treated powders. During the solution phase deposition process, the surface composition changes chemically through a condensation reaction between the [...] Read more.
Stearic and phenyl-phosphonic acids were applied to fine aluminum particles to understand their effect on the surface chemical composition and bulk properties of the surface-treated powders. During the solution phase deposition process, the surface composition changes chemically through a condensation reaction between the acid and particle surface hydroxyl groups, forming covalent chemical bonds. The retention of both types of acids was verified through characterization using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The presence of stearic acid on the particle surface was observed through signature absorbance peaks, including interfacial C-O bonding modes, carboxylate, and carbonyl moieties, all present on both the treated powder. Spectra using XPS showed an increase in -CH relative intensity signal on the particle surface when compared to the raw material when considering the the carbon 2p photoelectron peak. Similar findings confirmed the presence of the phenyl-phosphonic acid when comparing to the raw material. The IR spectrum confirmed the presence of P-O-Al, P-O, and phosponates as a result of the surface bonding between the reagent and particles. XPS always provided evidence through the presence of phosphorous 2p and 2s photoelecton peaks at 191.3 and 133.4 eV, respectively. The bulk properties of both surface treated powders improved, as shown through improved apparent/tap density and a decreased Hausner Ratio (Group C to Group A behavior). Rheological characterization provided additional evidence by showing a reduced specific energy, flow rate index, and cohesion. The particle packing was improved as evidenced through reduced compressibility as a function of applied normal stress. Full article
Show Figures

Figure 1

22 pages, 4126 KiB  
Article
Enhanced Apigenin Dissolution and Effectiveness Using Glycyrrhizin Spray-Dried Solid Dispersions Filled in 3D-Printed Tablets
by Asma B. Omer, Farhat Fatima, Mohammed Muqtader Ahmed, Mohammed F. Aldawsari, Ahmed Alalaiwe, Md. Khalid Anwer and Abdul Aleem Mohammed
Biomedicines 2023, 11(12), 3341; https://doi.org/10.3390/biomedicines11123341 - 18 Dec 2023
Cited by 4 | Viewed by 1820
Abstract
This study aimed to prepare glycyrrhizin–apigenin spray-dried solid dispersions and develop PVA filament-based 3D printlets to enhance the dissolution and therapeutic effects of apigenin (APN); three formulations (APN1–APN3) were proportioned from 1:1 to 1:3. A physicochemical analysis was conducted, which revealed process yields [...] Read more.
This study aimed to prepare glycyrrhizin–apigenin spray-dried solid dispersions and develop PVA filament-based 3D printlets to enhance the dissolution and therapeutic effects of apigenin (APN); three formulations (APN1–APN3) were proportioned from 1:1 to 1:3. A physicochemical analysis was conducted, which revealed process yields of 80.5–91% and APN content within 98.0–102.0%. FTIR spectroscopy confirmed the structural preservation of APN, while Powder-XRD analysis and Differential Scanning Calorimetry indicated its transformation from a crystalline to an amorphous form. APN2 exhibited improved flow properties, a lower Angle of Repose, and Carr’s Index, enhancing compressibility, with the Hausner Ratio confirming favorable flow properties for pharmaceutical applications. In vitro dissolution studies demonstrated superior performance with APN2, releasing up to 94.65% of the drug and revealing controlled release mechanisms with a lower mean dissolution time of 71.80 min and a higher dissolution efficiency of 19.2% compared to the marketed APN formulation. This signified enhanced dissolution and improved therapeutic onset. APN2 exhibited enhanced antioxidant activity; superior cytotoxicity against colon cancer cells (HCT-116), with a lower IC50 than APN pure; and increased antimicrobial activity. A stability study confirmed the consistency of APN2 after 90 days, as per ICH, with an f2 value of 70.59 for both test and reference formulations, ensuring reliable pharmaceutical development. This research underscores the potential of glycyrrhizin–apigenin solid dispersions for pharmaceutical and therapeutic applications, particularly highlighting the superior physicochemical properties, dissolution behavior, biological activities, and stability of APN2, while the development of a 3D printlet shell offers promise for enhanced drug delivery and therapeutic outcomes in colon cancer treatment, displaying advanced formulation and processing techniques. Full article
Show Figures

Figure 1

25 pages, 3195 KiB  
Article
Microencapsulation of Juniper and Black Pepper Essential Oil Using the Coacervation Method and Its Properties after Freeze-Drying
by Alicja Napiórkowska, Arkadiusz Szpicer, Iwona Wojtasik-Kalinowska, Maria Dolores Torres Perez, Herminia Dominguez González and Marcin Andrzej Kurek
Foods 2023, 12(23), 4345; https://doi.org/10.3390/foods12234345 - 1 Dec 2023
Cited by 18 | Viewed by 3108
Abstract
Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model [...] Read more.
Essential oils are mixtures of chemical compounds that are very susceptible to the effects of the external environment. Hence, more attention has been drawn to their preservation methods. The aim of the study was to test the possibility of using the classical model of complex coacervation for the microencapsulation of essential oils. Black pepper (Piper nigrum) and juniper (Juniperus communis) essential oils were dissolved in grape seed (GSO) and soybean (SBO) oil to minimize their loss during the process, and formed the core material. Various mixing ratios of polymers (gelatin (G), gum Arabic (GA)) were tested: 1:1; 1:2, and 2:1. The oil content was 10%, and the essential oil content was 1%. The prepared coacervates were lyophilized and then screened to obtain a powder. The following analyses were determined: encapsulation efficiency (EE), Carr index (CI), Hausner ratio (HR), solubility, hygroscopicity, moisture content, and particle size. The highest encapsulation efficiency achieved was within the range of 64.09–59.89%. The mixing ratio G/GA = 2:1 allowed us to obtain powders that were characterized by the lowest solubility (6.55–11.20%). The smallest particle sizes, which did not exceed 6 μm, characterized the powders obtained by mixing G/GA = 1:1. All powder samples were characterized by high cohesiveness and thus poor or very poor flow (CI = 30.58–50.27, HR = 1.45–2.01). Full article
Show Figures

Figure 1

Back to TopTop