Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = HSI reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4917 KiB  
Article
A High-Capacity Reversible Data Hiding Scheme for Encrypted Hyperspectral Images Using Multi-Layer MSB Block Labeling and ERLE Compression
by Yijie Lin, Chia-Chen Lin, Zhe-Min Yeh, Ching-Chun Chang and Chin-Chen Chang
Future Internet 2025, 17(8), 378; https://doi.org/10.3390/fi17080378 - 21 Aug 2025
Abstract
In the context of secure and efficient data transmission over the future Internet, particularly for remote sensing and geospatial applications, reversible data hiding (RDH) in encrypted hyperspectral images (HSIs) has emerged as a critical technology. This paper proposes a novel RDH scheme specifically [...] Read more.
In the context of secure and efficient data transmission over the future Internet, particularly for remote sensing and geospatial applications, reversible data hiding (RDH) in encrypted hyperspectral images (HSIs) has emerged as a critical technology. This paper proposes a novel RDH scheme specifically designed for encrypted HSIs, offering enhanced embedding capacity without compromising data security or reversibility. The approach introduces a multi-layer block labeling mechanism that leverages the similarity of most significant bits (MSBs) to accurately locate embeddable regions. To minimize auxiliary information overhead, we incorporate an Extended Run-Length Encoding (ERLE) algorithm for effective label map compression. The proposed method achieves embedding rates of up to 3.79 bits per pixel per band (bpppb), while ensuring high-fidelity reconstruction, as validated by strong PSNR metrics. Comprehensive security evaluations using NPCR, UACI, and entropy confirm the robustness of the encryption. Extensive experiments across six standard hyperspectral datasets demonstrate the superiority of our method over existing RDH techniques in terms of capacity, embedding rate, and reconstruction quality. These results underline the method’s potential for secure data embedding in next-generation Internet-based geospatial and remote sensing systems. Full article
Show Figures

Figure 1

17 pages, 920 KiB  
Article
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
by Tsung-Jung Tsai, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu and Hsiang-Chen Wang
Bioengineering 2025, 12(8), 828; https://doi.org/10.3390/bioengineering12080828 - 30 Jul 2025
Viewed by 587
Abstract
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision [...] Read more.
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset (n = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings. Full article
Show Figures

Figure 1

32 pages, 5287 KiB  
Article
UniHSFormer X for Hyperspectral Crop Classification with Prototype-Routed Semantic Structuring
by Zhen Du, Senhao Liu, Yao Liao, Yuanyuan Tang, Yanwen Liu, Huimin Xing, Zhijie Zhang and Donghui Zhang
Agriculture 2025, 15(13), 1427; https://doi.org/10.3390/agriculture15131427 - 2 Jul 2025
Viewed by 409
Abstract
Hyperspectral imaging (HSI) plays a pivotal role in modern agriculture by capturing fine-grained spectral signatures that support crop classification, health assessment, and land-use monitoring. However, the transition from raw spectral data to reliable semantic understanding remains challenging—particularly under fragmented planting patterns, spectral ambiguity, [...] Read more.
Hyperspectral imaging (HSI) plays a pivotal role in modern agriculture by capturing fine-grained spectral signatures that support crop classification, health assessment, and land-use monitoring. However, the transition from raw spectral data to reliable semantic understanding remains challenging—particularly under fragmented planting patterns, spectral ambiguity, and spatial heterogeneity. To address these limitations, we propose UniHSFormer-X, a unified transformer-based framework that reconstructs agricultural semantics through prototype-guided token routing and hierarchical context modeling. Unlike conventional models that treat spectral–spatial features uniformly, UniHSFormer-X dynamically modulates information flow based on class-aware affinities, enabling precise delineation of field boundaries and robust recognition of spectrally entangled crop types. Evaluated on three UAV-based benchmarks—WHU-Hi-LongKou, HanChuan, and HongHu—the model achieves up to 99.80% overall accuracy and 99.28% average accuracy, outperforming state-of-the-art CNN, ViT, and hybrid architectures across both structured and heterogeneous agricultural scenarios. Ablation studies further reveal the critical role of semantic routing and prototype projection in stabilizing model behavior, while parameter surface analysis demonstrates consistent generalization across diverse configurations. Beyond high performance, UniHSFormer-X offers a semantically interpretable architecture that adapts to the spatial logic and compositional nuance of agricultural imagery, representing a forward step toward robust and scalable crop classification. Full article
Show Figures

Figure 1

13 pages, 1109 KiB  
Technical Note
Detection of Bacterial Leaf Spot Disease in Sesame (Sesamum indicum L.) Using a U-Net Autoencoder
by Minju Lee, Jeseok Lee, Amit Ghimire, Yegyeong Bae, Tae-An Kang, Youngnam Yoon, In-Jung Lee, Choon-Wook Park, Byungwon Kim and Yoonha Kim
Remote Sens. 2025, 17(13), 2230; https://doi.org/10.3390/rs17132230 - 29 Jun 2025
Viewed by 394
Abstract
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. [...] Read more.
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. In this study, we extend this framework to a binary classification by employing a U-Net based deterministic autoencoder augmented with attention blocks to analyze HSI data of sesame plants inoculated with Pseudomonas syringae pv. sesami. Single-band grayscale images across the full spectral range were used to train the model on healthy samples, while the presence of disease was classified by assessing the reconstruction error, which we refer to as the anomaly score. The average classification accuracy in the visible region spectrum (430–689 nm) exceeded 0.8, with peaks at 641 nm and 689 nm. In comparison, the near-infrared region (>700 nm) attained an accuracy of approximately 0.6. Several visible bands demonstrated potential for early disease detection. Some lesion samples showed a gradual increase in anomaly scores over time, and notably, Band 23 (689 nm) exhibited exceeded anomaly scores even at early stages before visible symptoms appeared. This supports the potential of this wavelength for the early-stage detection of bacterial leaf spots in sesame. Full article
Show Figures

Graphical abstract

23 pages, 5811 KiB  
Article
Multi-Attitude Hybrid Network for Remote Sensing Hyperspectral Images Super-Resolution
by Chi Chen, Yunhan Sun, Xueyan Hu, Ning Zhang, Hao Feng, Zheng Li and Yongcheng Wang
Remote Sens. 2025, 17(11), 1947; https://doi.org/10.3390/rs17111947 - 4 Jun 2025
Cited by 1 | Viewed by 666
Abstract
Benefiting from the development of deep learning, the super-resolution technology for remote sensing hyperspectral images (HSIs) has achieved impressive progress. However, due to the high coupling of complex components in remote sensing HSIs, it is challenging to achieve a complete characterization of the [...] Read more.
Benefiting from the development of deep learning, the super-resolution technology for remote sensing hyperspectral images (HSIs) has achieved impressive progress. However, due to the high coupling of complex components in remote sensing HSIs, it is challenging to achieve a complete characterization of the internal information, which in turn limits the precise reconstruction of detailed texture and spectral features. Therefore, we propose the multi-attitude hybrid network (MAHN) for extracting and characterizing information from multiple feature spaces. On the one hand, we construct the spectral hypergraph cross-attention module (SHCAM) and the spatial hypergraph self-attention module (SHSAM) based on the high and low-frequency features in the spectral and the spatial domains, respectively, which are used to capture the main structure and detail changes within the image. On the other hand, high-level semantic information in mixed pixels is parsed by spectral mixture analysis, and semantic hypergraph 3D module (SH3M) are constructed based on the abundance of each category to enhance the propagation and reconstruction of semantic information. Furthermore, to mitigate the domain discrepancies among features, we introduce a sensitive bands attention mechanism (SBAM) to enhance the cross-guidance and fusion of multi-domain features. Extensive experiments demonstrate that our method achieves optimal reconstruction results compared to other state-of-the-art algorithms while effectively reducing the computational complexity. Full article
Show Figures

Figure 1

21 pages, 10091 KiB  
Article
Scalable Hyperspectral Enhancement via Patch-Wise Sparse Residual Learning: Insights from Super-Resolved EnMAP Data
by Parth Naik, Rupsa Chakraborty, Sam Thiele and Richard Gloaguen
Remote Sens. 2025, 17(11), 1878; https://doi.org/10.3390/rs17111878 - 28 May 2025
Viewed by 840
Abstract
A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational [...] Read more.
A majority of hyperspectral super-resolution methods aim to enhance the spatial resolution of hyperspectral imaging data (HSI) by integrating high-resolution multispectral imaging data (MSI), leveraging rich spectral information for various geospatial applications. Key challenges include spectral distortions from high-frequency spatial data, high computational complexity, and limited training data, particularly for new-generation sensors with unique noise patterns. In this contribution, we propose a novel parallel patch-wise sparse residual learning (P2SR) algorithm for resolution enhancement based on fusion of HSI and MSI. The proposed method uses multi-decomposition techniques (i.e., Independent component analysis, Non-negative matrix factorization, and 3D wavelet transforms) to extract spatial and spectral features to form a sparse dictionary. The spectral and spatial characteristics of the scene encoded in the dictionary enable reconstruction through a first-order optimization algorithm to ensure an efficient sparse representation. The final spatially enhanced HSI is reconstructed by combining the learned features from low-resolution HSI and applying an MSI-regulated guided filter to enhance spatial fidelity while minimizing artifacts. P2SR is deployable on a high-performance computing (HPC) system with parallel processing, ensuring scalability and computational efficiency for large HSI datasets. Extensive evaluations on three diverse study sites demonstrate that P2SR consistently outperforms traditional and state-of-the-art (SOA) methods in both quantitative metrics and qualitative spatial assessments. Specifically, P2SR achieved the best average PSNR (25.2100) and SAM (12.4542) scores, indicating superior spatio-spectral reconstruction contributing to sharper spatial features, reduced mixed pixels, and enhanced geological features. P2SR also achieved the best average ERGAS (8.9295) and Q2n (0.5156), which suggests better overall fidelity across all bands and perceptual accuracy with the least spectral distortions. Importantly, we show that P2SR preserves critical spectral signatures, such as Fe2+ absorption, and improves the detection of fine-scale environmental and geological structures. P2SR’s ability to maintain spectral fidelity while enhancing spatial detail makes it a powerful tool for high-precision remote sensing applications, including mineral mapping, land-use analysis, and environmental monitoring. Full article
Show Figures

Graphical abstract

16 pages, 2323 KiB  
Article
Real-Time Intraoperative Decision-Making in Head and Neck Tumor Surgery: A Histopathologically Grounded Hyperspectral Imaging and Deep Learning Approach
by Ayman Bali, Saskia Wolter, Daniela Pelzel, Ulrike Weyer, Tiago Azevedo, Pietro Lio, Mussab Kouka, Katharina Geißler, Thomas Bitter, Günther Ernst, Anna Xylander, Nadja Ziller, Anna Mühlig, Ferdinand von Eggeling, Orlando Guntinas-Lichius and David Pertzborn
Cancers 2025, 17(10), 1617; https://doi.org/10.3390/cancers17101617 - 10 May 2025
Cited by 1 | Viewed by 1190
Abstract
Background: Accurate and rapid intraoperative tumor margin assessment remains a major challenge in surgical oncology. Current gold-standard methods, such as frozen section histology, are time-consuming, operator-dependent, and prone to misclassification, which limits their clinical utility. Objective: To develop and evaluate a novel hyperspectral [...] Read more.
Background: Accurate and rapid intraoperative tumor margin assessment remains a major challenge in surgical oncology. Current gold-standard methods, such as frozen section histology, are time-consuming, operator-dependent, and prone to misclassification, which limits their clinical utility. Objective: To develop and evaluate a novel hyperspectral imaging (HSI) workflow that integrates deep learning with three-dimensional (3D) tumor modeling for real-time, label-free tumor margin delineation in head and neck squamous cell carcinoma (HNSCC). Methods: Freshly resected HNSCC samples were snap-frozen and imaged ex vivo from multiple perspectives using a standardized HSI protocol, resulting in a 3D model derived from HSI. Each sample was serially sectioned, stained, and annotated by pathologists to create high-resolution 3D histological reconstructions. The volumetric histological models were co-registered with the HSI data (n = 712 Datacubes), enabling voxel-wise projection of tumor segmentation maps from the HSI-derived 3D model onto the corresponding histological ground truth. Three deep learning models were trained and validated on these datasets to differentiate tumor from non-tumor regions with high spatial precision. Results: This work demonstrates strong potential for the proposed HSI system, with an overall classification accuracy of 0.98 and a tumor sensitivity of 0.93, underscoring the system’s ability to reliably detect tumor regions and showing high concordance with histopathological findings. Conclusion: The integration of HSI with deep learning and 3D tumor modeling offers a promising approach for precise, real-time intraoperative tumor margin assessment in HNSCC. This novel workflow has the potential to improve surgical precision and patient outcomes by providing rapid, label-free tissue differentiation. Full article
Show Figures

Figure 1

22 pages, 10240 KiB  
Article
SSHFormer: Optimizing Spectral Reconstruction with a Spatial–Spectral Hybrid Transformer
by Ang Gao, Yubo Dong, Danhua Liu, Anqi Li, Zhenyuan Lin and Yuyan Li
Remote Sens. 2025, 17(9), 1585; https://doi.org/10.3390/rs17091585 - 30 Apr 2025
Viewed by 427
Abstract
Reconstructing hyperspectral images (HSIs) from RGB images is an effective technique to overcome the high cost of spectrometers. Recently, Transformers have shown potential in capturing long-range dependencies for spectral reconstruction. However, few Transformer models attempt to simultaneously capture both spatial and spectral correlations [...] Read more.
Reconstructing hyperspectral images (HSIs) from RGB images is an effective technique to overcome the high cost of spectrometers. Recently, Transformers have shown potential in capturing long-range dependencies for spectral reconstruction. However, few Transformer models attempt to simultaneously capture both spatial and spectral correlations in HSIs. Within this study, we introduce an integrated spatial–spectral hybrid Transformer (SSHFormer) framework designed to capture the interplay between spatial and spectral features in HSIs, with the aim of incrementally enhancing the fidelity of the reconstructed HSIs. In SSHFormer, we propose a spatial–spectral multi-head self-attention (SSMA) mechanism, which utilizes dilated convolution to extract non-local spatial features while maintaining parameter efficiency and applies the attention mechanism to the channel dimension to model inter-spectral correlations. Additionally, a 3D feedforward network (3DFFN) is proposed for SSHFormer, which leverages 3D convolution to fuse the spatial and spectral information, enabling more comprehensive feature extraction. Experimental results demonstrate that our SSHFormer achieves state-of-the-art (SOTA) performance on public datasets. Full article
Show Figures

Graphical abstract

25 pages, 58691 KiB  
Article
Hyperspectral Image Reconstruction Based on Blur–Kernel–Prior and Spatial–Spectral Attention
by Hongyu Xie, Mingyu Yang, Huansong Huang, Mingle Zhang, Wei Zhang, Qingbin Jiao, Liang Xu and Xin Tan
Remote Sens. 2025, 17(8), 1401; https://doi.org/10.3390/rs17081401 - 15 Apr 2025
Cited by 1 | Viewed by 907
Abstract
Given the problem of spatial detail loss and spectral feature degradation in hyperspectral images (HSIs) characterized as blur, often caused by noise during image acquisition, and methods of removing blur noise designed on HSIs being insufficient, we propose an HSI reconstruction network based [...] Read more.
Given the problem of spatial detail loss and spectral feature degradation in hyperspectral images (HSIs) characterized as blur, often caused by noise during image acquisition, and methods of removing blur noise designed on HSIs being insufficient, we propose an HSI reconstruction network based on a Blur–Kernel–Prior (BKP) method and Spectral–Spatial Attention (SSA) strategy for noise removal and reconstruction of HSIs. Specifically, a grouping strategy is designed to segment the HSIs into spectral dimension sub-images, and the BKP module, based on U-Net, learns the spatially adaptive blur kernel to extract and remove blurred features from each sub-image while preserving spatial features with spatial resolution. Subsequently, the SSA block is employed to extract shallow features, details, and edge information using a hybrid 2D–3D convolution from the sub-images, followed by deep feature extraction using a deep ResNet and multi-head attention (MSA) on the merged image to maximize the preservation of spectral dimension information. The L1 loss function, combined with spectral dimension loss and peak signal-to-noise ratio loss, is utilized to constrain and ensure reconstruction accuracy. Experiments on both synthetic and real datasets demonstrate that our method exhibits excellent performance in reconstructing HSIs affected by blurred noise, outperforming existing methods in terms of quantitative quality and recovery of spectral dimension information. Full article
Show Figures

Figure 1

20 pages, 1641 KiB  
Article
Spectral Information Divergence-Driven Diffusion Networks for Hyperspectral Target Detection
by Jinfu Gong, Zhen Huang, Zhengye Yang, Xuezhuan Ding and Fanming Li
Appl. Sci. 2025, 15(8), 4076; https://doi.org/10.3390/app15084076 - 8 Apr 2025
Viewed by 618
Abstract
Hyperspectral Imagery (HSI) plays a crucial role in military and civilian target detection. However, HSI target detection remains highly challenging due to the interference caused by complex and diverse real-world scenarios. This paper proposes a Spectral Information Divergence-driven Diffusion Network model (SID-DN) for [...] Read more.
Hyperspectral Imagery (HSI) plays a crucial role in military and civilian target detection. However, HSI target detection remains highly challenging due to the interference caused by complex and diverse real-world scenarios. This paper proposes a Spectral Information Divergence-driven Diffusion Network model (SID-DN) for hyperspectral target detection, which significantly enhances detection robustness in complex scenes by decoupling background distribution modeling from target detection. The proposed method focuses on learning the background distribution in hyperspectral data and achieves target detection by accurately reconstructing background samples to identify differences between background and target samples. This method introduces an adaptive coarse detection module, which optimizes the coarse detection process in generative hyperspectral target detection, effectively reducing the background-target misclassification. Additionally, a SID-based Diffusion model is designed to optimize the loss of Diffusion, effectively reducing the interference of suspected target samples during the background learning process. Experiments on three real-world datasets demonstrate that the method is highly competitive, with detection results significantly outperforming current state-of-the-art methods. Full article
Show Figures

Figure 1

16 pages, 4095 KiB  
Article
Color-Coded Compressive Spectral Imager Based on Focus Transformer Network
by Jinshan Li, Xu Ma, Aanish Paruchuri, Abdullah Alrushud and Gonzalo R. Arce
Sensors 2025, 25(7), 2006; https://doi.org/10.3390/s25072006 - 23 Mar 2025
Viewed by 563
Abstract
Compressive spectral imaging (CSI) methods aim to reconstruct a three-dimensional hyperspectral image (HSI) from a single or a few two-dimensional compressive measurements. Conventional CSIs use separate optical elements to independently modulate the light field in the spatial and spectral domains, thus increasing the [...] Read more.
Compressive spectral imaging (CSI) methods aim to reconstruct a three-dimensional hyperspectral image (HSI) from a single or a few two-dimensional compressive measurements. Conventional CSIs use separate optical elements to independently modulate the light field in the spatial and spectral domains, thus increasing the system complexity. In addition, real applications of CSIs require advanced reconstruction algorithms. This paper proposes a low-cost color-coded compressive snapshot spectral imaging method to reduce the system complexity and improve the HSI reconstruction performance. The combination of a color-coded aperture and an RGB detector is exploited to achieve higher degrees of freedom in the spatio-spectral modulations, which also renders a low-cost miniaturization scheme to implement the system. In addition, a deep learning method named Focus-based Mask-guided Spectral-wise Transformer (F-MST) network is developed to further improve the reconstruction efficiency and accuracy of HSIs. The simulations and real experiments demonstrate that the proposed F-MST algorithm achieves superior image quality over commonly used iterative reconstruction algorithms and deep learning algorithms. Full article
(This article belongs to the Special Issue Computational Optical Sensing and Imaging)
Show Figures

Figure 1

18 pages, 2362 KiB  
Article
Hyperspectral Target Detection Based on Masked Autoencoder Data Augmentation
by Zhixuan Zhuang, Jinhui Lan and Yiliang Zeng
Remote Sens. 2025, 17(6), 1097; https://doi.org/10.3390/rs17061097 - 20 Mar 2025
Viewed by 1025
Abstract
Deep metric learning combines deep learning with metric learning to explore the deep spectral space and distinguish between the target and background. Current target detection methods typically fail to accurately distinguish local differences between the target and background, leading to insufficient suppression of [...] Read more.
Deep metric learning combines deep learning with metric learning to explore the deep spectral space and distinguish between the target and background. Current target detection methods typically fail to accurately distinguish local differences between the target and background, leading to insufficient suppression of the pixels surrounding the target and poor detection performance. To solve this issue, a hyperspectral target detection method based on masked autoencoder data augmentation (HTD-DA) was proposed. HTD-DA includes a multi-scale spectral metric network based on a triplet network, which enhances the ability to learn local and global spectral variations using multi-scale feature extraction and feature fusion, thereby improving background suppression. To alleviate the lack of training data, a masked spectral data augmentation network was employed. It utilizes the entire hyperspectral image (HSI) training the network to learn spectral variability through mask-based reconstruction techniques and generate target samples based on the prior spectrum. Additionally, in search of more optimal spectral space, an Inter-class Difference Amplification Triplet (IDAT) Loss was introduced to enhance the separation between the target and background when finding the spectral space, by making full use of background and prior information. The experimental results demonstrated that the proposed model provides superior detection results. Full article
(This article belongs to the Special Issue Image Processing from Aerial and Satellite Imagery)
Show Figures

Graphical abstract

24 pages, 12113 KiB  
Article
Hyperspectral Image Mixed Denoising via Robust Representation Coefficient Image Guidance and Nonlocal Low-Rank Approximation
by Jiawei Song, Baolong Guo, Zhe Yuan, Chao Wang, Fangliang He and Cheng Li
Remote Sens. 2025, 17(6), 1021; https://doi.org/10.3390/rs17061021 - 14 Mar 2025
Viewed by 553
Abstract
Recently, hyperspectral image (HSI) mixed denoising methods based on nonlocal subspace representation (NSR) have achieved significant success. However, most of these methods focus on optimizing the denoiser for representation coefficient images (RCIs) without considering how to construct RCIs that better inherit the spatial [...] Read more.
Recently, hyperspectral image (HSI) mixed denoising methods based on nonlocal subspace representation (NSR) have achieved significant success. However, most of these methods focus on optimizing the denoiser for representation coefficient images (RCIs) without considering how to construct RCIs that better inherit the spatial structure of the clean HSI, thereby affecting subsequent denoising performance. Although existing works have constructed RCIs from the perspective of sparse principal component analysis (SPCA), the refinement of RCIs in mixed noise conditions still leaves much to be desired. To address the aforementioned challenges, in this paper, we reconstructed robust RCIs based on SPCA in mixed noise circumstances to better preserve the spatial structure of the clean HSI. Furthermore, we propose to utilize the robust RCIs as prior information and perform iterative denoising in the denoiser that incorporates low-rank approximation. Extensive experiments conducted on both simulated and real HSI datasets demonstrate that the proposed robust RCIs guidance and low-rank approximation method, denoted as RRGNLA, exhibits competitive performance in terms of mixed denoising accuracy and computational efficiency. For instance, on the Washington DC Mall (WDC) dataset in Case 3, the denoising quantitative metrics of the mean peak signal-to-noise ratio (MPSNR), mean structural similarity index (MSSIM), and spectral angle mean (SAM) are 36.06 dB, 0.963, and 3.449, respectively, with a running time of 35.24 s. On the Pavia University (PaU) dataset in Case 4, the denoising quantitative metrics of MPSNR, MSSIM, and SAM are 34.34 dB, 0.924, and 5.505, respectively, with a running time of 32.79 s. Full article
Show Figures

Figure 1

46 pages, 3073 KiB  
Review
Compressive Sensing in Power Engineering: A Comprehensive Survey of Theory and Applications, and a Case Study
by Lekshmi R. Chandran, Ilango Karuppasamy, Manjula G. Nair, Hongjian Sun and Parvathy Krishnan Krishnakumari
J. Sens. Actuator Netw. 2025, 14(2), 28; https://doi.org/10.3390/jsan14020028 - 7 Mar 2025
Viewed by 2275
Abstract
Compressive Sensing (CS) is a transformative signal processing framework that enables sparse signal acquisition at rates below the Nyquist limit, offering substantial advantages in data efficiency and reconstruction accuracy. This survey explores the theoretical foundations of CS, including sensing matrices, sparse bases, and [...] Read more.
Compressive Sensing (CS) is a transformative signal processing framework that enables sparse signal acquisition at rates below the Nyquist limit, offering substantial advantages in data efficiency and reconstruction accuracy. This survey explores the theoretical foundations of CS, including sensing matrices, sparse bases, and recovery algorithms, with a focus on its applications in power engineering. CS has demonstrated significant potential in enhancing key areas such as state estimation (SE), fault detection, fault localization, outage identification, harmonic source identification (HSI), Power Quality Detection condition monitoring, and so on. Furthermore, CS addresses challenges in data compression, real-time grid monitoring, and efficient resource utilization. A case study on smart meter data recovery demonstrates the practical application of CS in real-world power systems. By bridging CS theory and its application, this survey underscores its potential to drive innovation, efficiency, and sustainability in power engineering and beyond. Full article
(This article belongs to the Section Wireless Control Networks)
Show Figures

Figure 1

36 pages, 12339 KiB  
Article
ATIS-Driven 3DCNet: A Novel Three-Stream Hyperspectral Fusion Framework with Knowledge from Downstream Classification Performance
by Quan Zhang, Jian Long, Jun Li, Chunchao Li, Jianxin Si and Yuanxi Peng
Remote Sens. 2025, 17(5), 825; https://doi.org/10.3390/rs17050825 - 26 Feb 2025
Viewed by 615
Abstract
Reconstructing high-resolution hyperspectral images (HR-HSIs) by fusing low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) is a significant challenge in image processing. Traditional fusion methods focus on visual and statistical metrics, often neglecting the requirements of downstream tasks. To address this gap, [...] Read more.
Reconstructing high-resolution hyperspectral images (HR-HSIs) by fusing low-resolution hyperspectral images (LR-HSIs) and high-resolution multispectral images (HR-MSIs) is a significant challenge in image processing. Traditional fusion methods focus on visual and statistical metrics, often neglecting the requirements of downstream tasks. To address this gap, we propose a novel three-stream fusion network, 3DCNet, designed to integrate spatial and spectral information from LR-HSIs and HR-MSIs. The framework includes two dedicated branches for extracting spatial and spectral features, alongside a hybrid spatial–spectral branch (HSSI). The spatial block (SpatB) and the spectral block (SpecB) are designed to extract spatial and spectral details. The training process employs the global loss, spatial edge loss, and spectral angle loss for fusion tasks, with an alternating training iteration strategy (ATIS) to enhance downstream classification by iteratively refining the fusion and classification networks. Fusion experiments on seven datasets demonstrate that 3DCNet outperforms existing methods in generating high-quality HR-HSIs. Superior performance in downstream classification tasks on four datasets proves the importance of the ATIS. Ablation studies validate the importance of each module and the ATIS process. The 3DCNet framework not only advances the fusion process by leveraging downstream knowledge but also sets a new benchmark for classification-oriented hyperspectral fusion. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Back to TopTop