Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = HIV-1 Rev protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2501 KiB  
Article
Rev Protein Diversity in HIV-1 Group M Clades
by Aleksey Lebedev, Kristina Kim, Ekaterina Ozhmegova, Anastasiia Antonova, Elena Kazennova, Aleksandr Tumanov and Anna Kuznetsova
Viruses 2024, 16(5), 759; https://doi.org/10.3390/v16050759 - 10 May 2024
Cited by 3 | Viewed by 1575
Abstract
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different [...] Read more.
The HIV-1 Rev protein expressed in the early stage of virus replication is involved in the nuclear export of some forms of virus RNA. Naturally occurring polymorphisms in the Rev protein could influence its activity. The association between the genetic features of different virus variants and HIV infection pathogenesis has been discussed for many years. In this study, Rev diversity among HIV-1 group M clades was analyzed to note the signatures that could influence Rev activity and, subsequently, clinical characteristics. From the Los Alamos HIV Sequence Database, 4962 Rev sequences were downloaded and 26 clades in HIV-1 group M were analyzed for amino acid changes, conservation in consensus sequences, and the presence of clade-specific amino acid substitutions (CSSs) and the Wu–Kabat protein variability coefficient (WK). Subtypes G, CRF 02_AG, B, and A1 showed the largest amino acid changes and diversity. The mean conservation of the Rev protein was 80.8%. In consensus sequences, signatures that could influence Rev activity were detected. In 15 out of 26 consensus sequences, an insertion associated with the reduced export activity of the Rev protein, 95QSQGTET96, was identified. A total of 32 CSSs were found in 16 clades, wherein A6 had the 41Q substitution in the functionally significant region of Rev. The high values of WK coefficient in sites 51 and 82, located on the Rev interaction surface, indicate the susceptibility of these positions to evolutionary replacements. Thus, the noted signatures require further investigation. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 2317 KiB  
Article
Different Patterns of Codon Usage and Amino Acid Composition across Primate Lentiviruses
by Angelo Pavesi and Fabio Romerio
Viruses 2023, 15(7), 1580; https://doi.org/10.3390/v15071580 - 20 Jul 2023
Cited by 1 | Viewed by 1619
Abstract
A common feature of the mammalian Lentiviruses (family Retroviridae) is an RNA genome that contains an extremely high frequency of adenine (31.7–38.2%) while being extremely poor in cytosine (13.9–21.2%). Such a biased nucleotide composition has implications for codon usage, causing a striking [...] Read more.
A common feature of the mammalian Lentiviruses (family Retroviridae) is an RNA genome that contains an extremely high frequency of adenine (31.7–38.2%) while being extremely poor in cytosine (13.9–21.2%). Such a biased nucleotide composition has implications for codon usage, causing a striking difference between the frequency of synonymous codons in Lentiviruses and that in their hosts. To test whether primate Lentiviruses present differences in codon and amino acid composition, we assembled a dataset of genome sequences that includes SIV species infecting Old-World monkeys and African apes, HIV-2, and the four groups of HIV-1. Using principal component analysis, we found that HIV-1 shows a significant enrichment in adenine plus thymine in the third synonymous codon position and in adenine and guanine in the first and second nonsynonymous codon positions. Similarly, we observed an enrichment in adenine and in guanine in nonsynonymous first and second codon positions, which affects the amino acid composition of the proteins Gag, Pol, Vif, Vpr, Tat, Rev, Env, and Nef. This result suggests an effect of natural selection in shaping codon usage. Under the hypothesis that the use of synonyms in HIV-1 could reflect adaptation to that of genes expressed in specific cell types, we found a highly significant correlation between codon usage in HIV-1 and monocytes, which was remarkably higher than that with B and T lymphocytes. This finding is in line with the notion that monocytes represent an HIV-1 reservoir in infected patients, and it could help understand how this reservoir is established and maintained. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 1592 KiB  
Review
Positive Regulation of Splicing of Cellular and Viral mRNA by Intragenic RNA Elements That Activate the Stress Kinase PKR, an Antiviral Mechanism
by Raymond Kaempfer
Genes 2023, 14(5), 974; https://doi.org/10.3390/genes14050974 - 26 Apr 2023
Cited by 1 | Viewed by 2331
Abstract
The transient activation of the cellular stress kinase, protein kinase RNA-activated (PKR), by double-helical RNA, especially by viral double-stranded RNA generated during replication, results in the inhibition of translation via the phosphorylation of eukaryotic initiation factor 2 α-chain (eIF2α). Exceptionally, short intragenic elements [...] Read more.
The transient activation of the cellular stress kinase, protein kinase RNA-activated (PKR), by double-helical RNA, especially by viral double-stranded RNA generated during replication, results in the inhibition of translation via the phosphorylation of eukaryotic initiation factor 2 α-chain (eIF2α). Exceptionally, short intragenic elements within primary transcripts of the human tumor necrosis factor (TNF-α) and globin genes, genes essential for survival, can form RNA structures that strongly activate PKR and thereby render the splicing of their mRNAs highly efficient. These intragenic RNA activators of PKR promote early spliceosome assembly and splicing by inducing phosphorylation of nuclear eIF2α, without impairing the translation of the mature spliced mRNA. Unexpectedly, excision of the large human immunodeficiency virus (HIV) rev/tat intron was shown to require activation of PKR by the viral RNA and eIF2α phosphorylation. The splicing of rev/tat mRNA is abrogated by viral antagonists of PKR and by trans-dominant negative mutant PKR, yet enhanced by the overexpression of PKR. The TNFα and HIV RNA activators of PKR fold into compact pseudoknots that are highly conserved within the phylogeny, supporting their essential role in the upregulation of splicing. HIV provides the first example of a virus co-opting a major cellular antiviral mechanism, the activation of PKR by its RNA, to promote splicing. Full article
(This article belongs to the Section RNA)
Show Figures

Graphical abstract

20 pages, 573 KiB  
Article
On the Regulated Nuclear Transport of Incompletely Spliced mRNAs by HIV-Rev Protein: A Minimal Dynamic Model
by Jeffrey J. Ishizuka, Delaney A. Soble, Tiffany Y. Chang and Enrique Peacock-López
Mathematics 2022, 10(21), 3922; https://doi.org/10.3390/math10213922 - 22 Oct 2022
Viewed by 2202
Abstract
A kinetic model for the HIV-1 Rev protein is developed by drawing upon mechanistic information from the literature to formulate a set of differential equations modeling the behavior of Rev and its various associated factors over time. A set of results demonstrates the [...] Read more.
A kinetic model for the HIV-1 Rev protein is developed by drawing upon mechanistic information from the literature to formulate a set of differential equations modeling the behavior of Rev and its various associated factors over time. A set of results demonstrates the possibility of oscillations in the concentration of these factors. Finally, the results are analyzed, and future directions are discussed. Full article
(This article belongs to the Special Issue Big Data and Bioinformatics)
Show Figures

Figure 1

18 pages, 2725 KiB  
Article
HIV RGB: Automated Single-Cell Analysis of HIV-1 Rev-Dependent RNA Nuclear Export and Translation Using Image Processing in KNIME
by Edward L. Evans, Ginger M. Pocock, Gabriel Einsdorf, Ryan T. Behrens, Ellen T. A. Dobson, Marcel Wiedenmann, Christian Birkhold, Paul Ahlquist, Kevin W. Eliceiri and Nathan M. Sherer
Viruses 2022, 14(5), 903; https://doi.org/10.3390/v14050903 - 26 Apr 2022
Cited by 4 | Viewed by 3766
Abstract
Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus–host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an [...] Read more.
Single-cell imaging has emerged as a powerful means to study viral replication dynamics and identify sites of virus–host interactions. Multivariate aspects of viral replication cycles yield challenges inherent to handling large, complex imaging datasets. Herein, we describe the design and implementation of an automated, imaging-based strategy, “Human Immunodeficiency Virus Red-Green-Blue” (HIV RGB), for deriving comprehensive single-cell measurements of HIV-1 unspliced (US) RNA nuclear export, translation, and bulk changes to viral RNA and protein (HIV-1 Rev and Gag) subcellular distribution over time. Differentially tagged fluorescent viral RNA and protein species are recorded using multicolor long-term (>24 h) time-lapse video microscopy, followed by image processing using a new open-source computational imaging workflow dubbed “Nuclear Ring Segmentation Analysis and Tracking” (NR-SAT) based on ImageJ plugins that have been integrated into the Konstanz Information Miner (KNIME) analytics platform. We describe a typical HIV RGB experimental setup, detail the image acquisition and NR-SAT workflow accompanied by a step-by-step tutorial, and demonstrate a use case wherein we test the effects of perturbing subcellular localization of the Rev protein, which is essential for viral US RNA nuclear export, on the kinetics of HIV-1 late-stage gene regulation. Collectively, HIV RGB represents a powerful platform for single-cell studies of HIV-1 post-transcriptional RNA regulation. Moreover, we discuss how similar NR-SAT-based design principles and open-source tools might be readily adapted to study a broad range of dynamic viral or cellular processes. Full article
(This article belongs to the Special Issue Retroviral RNA Processing)
Show Figures

Figure 1

17 pages, 2449 KiB  
Article
Encapsidation of Staufen-2 Enhances Infectivity of HIV-1
by Kannan Balakrishnan, Ananda Ayyappan Jaguva Vasudevan, Krishnaveni Mohareer, Tom Luedde, Carsten Münk and Sharmistha Banerjee
Viruses 2021, 13(12), 2459; https://doi.org/10.3390/v13122459 - 8 Dec 2021
Cited by 6 | Viewed by 4220
Abstract
Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect [...] Read more.
Staufen, the RNA-binding family of proteins, affects various steps in the Human Immuno-Deficiency Virus (HIV-1) replication cycle. While our previous study established Staufen-2–HIV-1 Rev interaction and its role in augmenting nucleocytoplasmic export of RRE-containing viral RNA, viral incorporation of Staufen-2 and its effect on viral propagation were unknown. Here, we report that Staufen-2 interacts with HIV-1 Gag and is incorporated into virions and that encapsidated Staufen-2 boosted viral infectivity. Further, Staufen-2 gets co-packaged into virions, possibly by interacting with host factors Staufen-1 or antiviral protein APOBEC3G, which resulted in different outcomes on the infectivity of Staufen-2-encapsidated virions. These observations suggest that encapsidated host factors influence viral population dynamics and infectivity. With the explicit identification of the incorporation of Staufen proteins into HIV-1 and other retroviruses, such as Simian Immunodeficiency Virus (SIV), we propose that packaging of RNA binding proteins, such as Staufen, in budding virions of retroviruses is probably a general phenomenon that can drive or impact the viral population dynamics, infectivity, and evolution. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 3205 KiB  
Article
Chitosan Oleate Coated PLGA Nanoparticles as siRNA Drug Delivery System
by Dalila Miele, Xin Xia, Laura Catenacci, Milena Sorrenti, Silvia Rossi, Giuseppina Sandri, Franca Ferrari, John J. Rossi and Maria Cristina Bonferoni
Pharmaceutics 2021, 13(10), 1716; https://doi.org/10.3390/pharmaceutics13101716 - 17 Oct 2021
Cited by 22 | Viewed by 3649
Abstract
Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these [...] Read more.
Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these drawbacks and ensure efficient delivery to target cells, viral and non-viral vectors are the two main approaches currently employed. Viral vectors are one of the major vehicles in gene therapy; however, the potent immunogenicity and the insertional mutagenesis is a potential issue for the patient. Non-viral vectors, such as polymeric nanocarriers, provide a safer and more efficient delivery of RNA-interfering molecules. The aim of this work is to employ PLGA core nanoparticles shell-coated with chitosan oleate as siRNA carriers. An siRNA targeted on HIV-1, directed against the viral Tat/Rev transcripts was employed as a model. The ionic interaction between the oligonucleotide’s moieties, negatively charged, and the positive surface charges of the chitosan shell was exploited to associate siRNA and nanoparticles. Non-covalent bonds can protect siRNA from nuclease degradation and guarantee a good cell internalization and a fast release of the siRNA into the cytosolic portion, allowing its easy activation. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Carla Caramella)
Show Figures

Graphical abstract

17 pages, 19824 KiB  
Article
The HIV 5′ Gag Region Displays a Specific Nucleotide Bias Regulating Viral Splicing and Infectivity
by Bastian Grewe, Carolin Vogt, Theresa Horstkötter, Bettina Tippler, Han Xiao, Bianca Müller, Klaus Überla, Ralf Wagner, Benedikt Asbach and Jens Bohne
Viruses 2021, 13(6), 997; https://doi.org/10.3390/v13060997 - 27 May 2021
Cited by 1 | Viewed by 3735
Abstract
Alternative splicing and the expression of intron-containing mRNAs is one hallmark of HIV gene expression. To facilitate the otherwise hampered nuclear export of non-fully processed mRNAs, HIV encodes the Rev protein, which recognizes its intronic response element and fuels the HIV RNAs into [...] Read more.
Alternative splicing and the expression of intron-containing mRNAs is one hallmark of HIV gene expression. To facilitate the otherwise hampered nuclear export of non-fully processed mRNAs, HIV encodes the Rev protein, which recognizes its intronic response element and fuels the HIV RNAs into the CRM-1-dependent nuclear protein export pathway. Both alternative splicing and Rev-dependency are regulated by the primary HIV RNA sequence. Here, we show that these processes are extremely sensitive to sequence alterations in the 5’coding region of the HIV genomic RNA. Increasing the GC content by insertion of either GFP or silent mutations activates a cryptic splice donor site in gag, entirely deregulates the viral splicing pattern, and lowers infectivity. Interestingly, an adaptation of the inserted GFP sequence toward an HIV-like nucleotide bias reversed these phenotypes completely. Of note, the adaptation yielded completely different primary sequences although encoding the same amino acids. Thus, the phenotypes solely depend on the nucleotide composition of the two GFP versions. This is a strong indication of an HIV-specific mRNP code in the 5′ gag region wherein the primary RNA sequence bias creates motifs for RNA-binding proteins and controls the fate of the HIV-RNA in terms of viral gene expression and infectivity. Full article
Show Figures

Figure 1

15 pages, 1700 KiB  
Review
The HIV-1 Antisense Gene ASP: The New Kid on the Block
by Zahra Gholizadeh, Mohd. Shameel Iqbal, Rui Li and Fabio Romerio
Vaccines 2021, 9(5), 513; https://doi.org/10.3390/vaccines9050513 - 17 May 2021
Cited by 10 | Viewed by 3860
Abstract
Viruses have developed incredibly creative ways of making a virtue out of necessity, including taking full advantage of their small genomes. Indeed, viruses often encode multiple proteins within the same genomic region by using two or more reading frames in both orientations through [...] Read more.
Viruses have developed incredibly creative ways of making a virtue out of necessity, including taking full advantage of their small genomes. Indeed, viruses often encode multiple proteins within the same genomic region by using two or more reading frames in both orientations through a process called overprinting. Complex retroviruses provide compelling examples of that. The human immunodeficiency virus type 1 (HIV-1) genome expresses sixteen proteins from nine genes that are encoded in the three positive-sense reading frames. In addition, the genome of some HIV-1 strains contains a tenth gene in one of the negative-sense reading frames. The so-called Antisense Protein (ASP) gene overlaps the HIV-1 Rev Response Element (RRE) and the envelope glycoprotein gene, and encodes a highly hydrophobic protein of ~190 amino acids. Despite being identified over thirty years ago, relatively few studies have investigated the role that ASP may play in the virus lifecycle, and its expression in vivo is still questioned. Here we review the current knowledge about ASP, and we discuss some of the many unanswered questions. Full article
(This article belongs to the Special Issue HIV Pathogenesis, Vaccine and Eradication Strategies)
Show Figures

Figure 1

14 pages, 780 KiB  
Review
HIV-1: To Splice or Not to Splice, That Is the Question
by Ann Emery and Ronald Swanstrom
Viruses 2021, 13(2), 181; https://doi.org/10.3390/v13020181 - 26 Jan 2021
Cited by 51 | Viewed by 7141
Abstract
The transcription of the HIV-1 provirus results in only one type of transcript—full length genomic RNA. To make the mRNA transcripts for the accessory proteins Tat and Rev, the genomic RNA must completely splice. The mRNA transcripts for Vif, Vpr, and Env must [...] Read more.
The transcription of the HIV-1 provirus results in only one type of transcript—full length genomic RNA. To make the mRNA transcripts for the accessory proteins Tat and Rev, the genomic RNA must completely splice. The mRNA transcripts for Vif, Vpr, and Env must undergo splicing but not completely. Genomic RNA (which also functions as mRNA for the Gag and Gag/Pro/Pol precursor polyproteins) must not splice at all. HIV-1 can tolerate a surprising range in the relative abundance of individual transcript types, and a surprising amount of aberrant and even odd splicing; however, it must not over-splice, which results in the loss of full-length genomic RNA and has a dramatic fitness cost. Cells typically do not tolerate unspliced/incompletely spliced transcripts, so HIV-1 must circumvent this cell policing mechanism to allow some splicing while suppressing most. Splicing is controlled by RNA secondary structure, cis-acting regulatory sequences which bind splicing factors, and the viral protein Rev. There is still much work to be done to clarify the combinatorial effects of these splicing regulators. These control mechanisms represent attractive targets to induce over-splicing as an antiviral strategy. Finally, splicing has been implicated in latency, but to date there is little supporting evidence for such a mechanism. In this review we apply what is known of cellular splicing to understand splicing in HIV-1, and present data from our newer and more sensitive deep sequencing assays quantifying the different HIV-1 transcript types. Full article
(This article belongs to the Special Issue Retroviral RNA Processing)
Show Figures

Figure 1

26 pages, 7635 KiB  
Article
HIV-1 Gag Forms Ribonucleoprotein Complexes with Unspliced Viral RNA at Transcription Sites
by Kevin M. Tuffy, Rebecca J. Kaddis Maldonado, Jordan Chang, Paul Rosenfeld, Alan Cochrane and Leslie J. Parent
Viruses 2020, 12(11), 1281; https://doi.org/10.3390/v12111281 - 9 Nov 2020
Cited by 23 | Viewed by 4272
Abstract
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, [...] Read more.
The ability of the retroviral Gag protein of Rous sarcoma virus (RSV) to transiently traffic through the nucleus is well-established and has been implicated in genomic RNA (gRNA) packaging Although other retroviral Gag proteins (human immunodeficiency virus type 1, HIV-1; feline immunodeficiency virus, FIV; Mason-Pfizer monkey virus, MPMV; mouse mammary tumor virus, MMTV; murine leukemia virus, MLV; and prototype foamy virus, PFV) have also been observed in the nucleus, little is known about what, if any, role nuclear trafficking plays in those viruses. In the case of HIV-1, the Gag protein interacts in nucleoli with the regulatory protein Rev, which facilitates nuclear export of gRNA. Based on the knowledge that RSV Gag forms viral ribonucleoprotein (RNPs) complexes with unspliced viral RNA (USvRNA) in the nucleus, we hypothesized that the interaction of HIV-1 Gag with Rev could be mediated through vRNA to form HIV-1 RNPs. Using inducible HIV-1 proviral constructs, we visualized HIV-1 Gag and USvRNA in discrete foci in the nuclei of HeLa cells by confocal microscopy. Two-dimensional co-localization and RNA-immunoprecipitation of fractionated cells revealed that interaction of nuclear HIV-1 Gag with USvRNA was specific. Interestingly, treatment of cells with transcription inhibitors reduced the number of HIV-1 Gag and USvRNA nuclear foci, yet resulted in an increase in the degree of Gag co-localization with USvRNA, suggesting that Gag accumulates on newly synthesized viral transcripts. Three-dimensional imaging analysis revealed that HIV-1 Gag localized to the perichromatin space and associated with USvRNA and Rev in a tripartite RNP complex. To examine a more biologically relevant cell, latently infected CD4+ T cells were treated with prostratin to stimulate NF-κB mediated transcription, demonstrating striking localization of full-length Gag at HIV-1 transcriptional burst site, which was labelled with USvRNA-specific riboprobes. In addition, smaller HIV-1 RNPs were observed in the nuclei of these cells. These data suggest that HIV-1 Gag binds to unspliced viral transcripts produced at the proviral integration site, forming vRNPs in the nucleus. Full article
(This article belongs to the Special Issue Function and Structure of Viral Ribonucleoproteins Complexes)
Show Figures

Figure 1

14 pages, 961 KiB  
Article
RNA-Binding Domains of Heterologous Viral Proteins Substituted for Basic Residues in the RSV Gag NC Domain Restore Specific Packaging of Genomic RNA
by Breanna L. Rice, Timothy L. Lochmann and Leslie J. Parent
Viruses 2020, 12(4), 370; https://doi.org/10.3390/v12040370 - 27 Mar 2020
Cited by 1 | Viewed by 3075
Abstract
The Rous sarcoma virus Gag polyprotein transiently traffics through the nucleus, which is required for efficient incorporation of the viral genomic RNA (gRNA) into virus particles. Packaging of gRNA is mediated by two zinc knuckles and basic residues located in the nucleocapsid (NC) [...] Read more.
The Rous sarcoma virus Gag polyprotein transiently traffics through the nucleus, which is required for efficient incorporation of the viral genomic RNA (gRNA) into virus particles. Packaging of gRNA is mediated by two zinc knuckles and basic residues located in the nucleocapsid (NC) domain in Gag. To further examine the role of basic residues located downstream of the zinc knuckles in gRNA encapsidation, we used a gain-of-function approach. We replaced a basic residue cluster essential for gRNA packaging with heterologous basic residue motif (BR) with RNA-binding activity from either the HIV-1 Rev protein (Rev BR) or the HSV ICP27 protein (ICP27 BR). Compared to wild-type Gag, the mutant ICP27 BR and Rev BR Gag proteins were much more strongly localized to the nucleus and released significantly lower levels of virus particles. Surprisingly, both the ICP27 BR and Rev BR mutants packaged normal levels of gRNA per virus particle when examined in the context of a proviral vector, yet both mutants were noninfectious. These results support the hypothesis that basic residues located in the C-terminal region of NC are required for selective gRNA packaging, potentially by binding non-specifically to RNA via electrostatic interactions. Full article
(This article belongs to the Special Issue The 11th International Retroviral Nucleocapsid and Assembly Symposium)
Show Figures

Figure 1

16 pages, 1680 KiB  
Review
DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs
by Marina K. Kukhanova, Inna L. Karpenko and Alexander V. Ivanov
Molecules 2020, 25(4), 1015; https://doi.org/10.3390/molecules25041015 - 24 Feb 2020
Cited by 62 | Viewed by 9299
Abstract
This short review is focused on enzymatic properties of human ATP-dependent RNA helicase DDX3 and the development of antiviral and anticancer drugs targeting cellular helicases. DDX3 belongs to the DEAD-box proteins, a large family of RNA helicases that participate in all aspects of [...] Read more.
This short review is focused on enzymatic properties of human ATP-dependent RNA helicase DDX3 and the development of antiviral and anticancer drugs targeting cellular helicases. DDX3 belongs to the DEAD-box proteins, a large family of RNA helicases that participate in all aspects of cellular processes, such as cell cycle progression, apoptosis, innate immune response, viral replication, and tumorigenesis. DDX3 has a variety of functions in the life cycle of different viruses. DDX3 helicase is required to facilitate both the Rev-mediated export of unspliced/partially spliced human immunodeficiency virus (HIV) RNA from nucleus and Tat-dependent translation of viral genes. DDX3 silencing blocks the replication of HIV, HCV, and some other viruses. On the other hand, DDX displays antiviral effect against Dengue virus and hepatitis B virus through the stimulation of interferon beta production. The role of DDX3 in different types of cancer is rather controversial. DDX3 acts as an oncogene in one type of cancer, but demonstrates tumor suppressor properties in other types. The human DDX3 helicase is now considered as a new attractive target for the development of novel pharmaceutical drugs. The most interesting inhibitors of DDX3 helicase and the mechanisms of their actions as antiviral or anticancer drugs are discussed in this short review. Full article
(This article belongs to the Special Issue Discovery of New Antiviral Substances)
Show Figures

Figure 1

30 pages, 5680 KiB  
Article
Deletion of Vaccinia Virus A40R Gene Improves the Immunogenicity of the HIV-1 Vaccine Candidate MVA-B
by Patricia Pérez, María Q. Marín, Adrián Lázaro-Frías, Carlos Óscar S. Sorzano, Carmen E. Gómez, Mariano Esteban and Juan García-Arriaza
Vaccines 2020, 8(1), 70; https://doi.org/10.3390/vaccines8010070 - 6 Feb 2020
Cited by 14 | Viewed by 5672
Abstract
Development of a safe and efficacious vaccine against the HIV/AIDS pandemic remains a major scientific goal. We previously described an HIV/AIDS vaccine based on the modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120 and Gag-Pol-Nef (GPN) of clade B (termed MVA-B), which showed [...] Read more.
Development of a safe and efficacious vaccine against the HIV/AIDS pandemic remains a major scientific goal. We previously described an HIV/AIDS vaccine based on the modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120 and Gag-Pol-Nef (GPN) of clade B (termed MVA-B), which showed moderate immunogenicity in phase I prophylactic and therapeutic clinical trials. Here, to improve the immunogenicity of MVA-B, we generated a novel recombinant virus, MVA-B ΔA40R, by deleting in the MVA-B genome the vaccinia virus (VACV) A40R gene, which encodes a protein with unknown immune function. The innate immune responses triggered by MVA-B ΔA40R in infected human macrophages, in comparison to parental MVA-B, revealed an increase in the mRNA expression levels of interferon (IFN)-β, IFN-induced genes, and chemokines. Compared to priming with DNA-B (a mixture of DNA-gp120 plus DNA-GPN) and boosting with MVA-B, mice immunized with a DNA-B/MVA-B ΔA40R regimen induced higher magnitude of adaptive and memory HIV-1-specific CD4+ and CD8+ T-cell immune responses that were highly polyfunctional, mainly directed against Env. and of an effector memory phenotype, together with enhanced levels of antibodies against HIV-1 gp120. Reintroduction of the A40R gene into the MVA-B ΔA40R genome (virus termed MVA-B ΔA40R-rev) promoted in infected cells high mRNA and protein A40 levels, with A40 protein localized in the cell membrane. MVA-B ΔA40R-rev significantly reduced mRNA levels of IFN-β and of several other innate immune-related genes in infected human macrophages. In immunized mice, MVA-B ΔA40R-rev reduced the magnitude of the HIV-1-specific CD4+ and CD8+ T cell responses compared to MVA-B ΔA40R. These results revealed an immunosuppressive role of the A40 protein, findings relevant for the optimization of poxvirus vectors as vaccines. Full article
(This article belongs to the Special Issue HIV Vaccine)
Show Figures

Figure 1

18 pages, 3791 KiB  
Review
Structural Fluidity of the Human Immunodeficiency Virus Rev Response Element
by Chringma Sherpa and Stuart F. J. Le Grice
Viruses 2020, 12(1), 86; https://doi.org/10.3390/v12010086 - 11 Jan 2020
Cited by 9 | Viewed by 4474
Abstract
Nucleocytoplasmic transport of unspliced and partially spliced human immunodeficiency virus (HIV) RNA is mediated in part by the Rev response element (RRE), a ~350 nt cis-acting element located in the envelope coding region of the viral genome. Understanding the interaction of the RRE [...] Read more.
Nucleocytoplasmic transport of unspliced and partially spliced human immunodeficiency virus (HIV) RNA is mediated in part by the Rev response element (RRE), a ~350 nt cis-acting element located in the envelope coding region of the viral genome. Understanding the interaction of the RRE with the viral Rev protein, cellular co-factors, and its therapeutic potential has been the subject of almost three decades of structural studies, throughout which a recurring discussion theme has been RRE topology, i.e., whether it comprises 4 or 5 stem-loops (SLs) and whether this has biological significance. Moreover, while in vitro mutagenesis allows the construction of 4 SL and 5 SL RRE conformers and testing of their roles in cell culture, it has not been immediately clear if such findings can be translated to a clinical setting. Herein, we review several articles demonstrating remarkable flexibility of the HIV-1 and HIV-2 RREs following initial observations that HIV-1 resistance to trans-dominant Rev therapy was founded in structural rearrangement of its RRE. These observations can be extended not only to cell culture studies demonstrating a growth advantage for the 5 SL RRE conformer but also to evolution in RRE topology in patient isolates. Finally, RRE conformational flexibility provides a target for therapeutic intervention, and we describe high throughput screening approaches to exploit this property. Full article
(This article belongs to the Special Issue Antiviral Agents)
Show Figures

Figure 1

Back to TopTop