Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = HIPAA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 737 KB  
Systematic Review
A Systematic Literature Review on the Implementation and Challenges of Zero Trust Architecture Across Domains
by Sadaf Mushtaq, Muhammad Mohsin and Muhammad Mujahid Mushtaq
Sensors 2025, 25(19), 6118; https://doi.org/10.3390/s25196118 - 3 Oct 2025
Viewed by 557
Abstract
The Zero Trust Architecture (ZTA) model has emerged as a foundational cybersecurity paradigm that eliminates implicit trust and enforces continuous verification across users, devices, and networks. This study presents a systematic literature review of 74 peer-reviewed articles published between 2016 and 2025, spanning [...] Read more.
The Zero Trust Architecture (ZTA) model has emerged as a foundational cybersecurity paradigm that eliminates implicit trust and enforces continuous verification across users, devices, and networks. This study presents a systematic literature review of 74 peer-reviewed articles published between 2016 and 2025, spanning domains such as cloud computing (24 studies), Internet of Things (11), healthcare (7), enterprise and remote work systems (6), industrial and supply chain networks (5), mobile networks (5), artificial intelligence and machine learning (5), blockchain (4), big data and edge computing (3), and other emerging contexts (4). The analysis shows that authentication, authorization, and access control are the most consistently implemented ZTA components, whereas auditing, orchestration, and environmental perception remain underexplored. Across domains, the main challenges include scalability limitations, insufficient lightweight cryptographic solutions for resource-constrained systems, weak orchestration mechanisms, and limited alignment with regulatory frameworks such as GDPR and HIPAA. Cross-domain comparisons reveal that cloud and enterprise systems demonstrate relatively mature implementations, while IoT, blockchain, and big data deployments face persistent performance and compliance barriers. Overall, the findings highlight both the progress and the gaps in ZTA adoption, underscoring the need for lightweight cryptography, context-aware trust engines, automated orchestration, and regulatory integration. This review provides a roadmap for advancing ZTA research and practice, offering implications for researchers, industry practitioners, and policymakers seeking to enhance cybersecurity resilience. Full article
Show Figures

Figure 1

18 pages, 1699 KB  
Article
A Comparative Analysis of Defense Mechanisms Against Model Inversion Attacks on Tabular Data
by Neethu Vijayan, Raj Gururajan and Ka Ching Chan
J. Cybersecur. Priv. 2025, 5(4), 80; https://doi.org/10.3390/jcp5040080 - 2 Oct 2025
Viewed by 373
Abstract
As more machine learning models are used in sensitive fields like healthcare, finance, and smart infrastructure, protecting structured tabular data from privacy attacks is a key research challenge. Although several privacy-preserving methods have been proposed for tabular data, a comprehensive comparison of their [...] Read more.
As more machine learning models are used in sensitive fields like healthcare, finance, and smart infrastructure, protecting structured tabular data from privacy attacks is a key research challenge. Although several privacy-preserving methods have been proposed for tabular data, a comprehensive comparison of their performance and trade-offs has yet to be conducted. We introduce and empirically assess a combined defense system that integrates differential privacy, federated learning, adaptive noise injection, hybrid cryptographic encryption, and ensemble-based obfuscation. The given strategies are analyzed on the benchmark tabular datasets (ADULT, GSS, FTE), showing that the suggested methods can mitigate up to 50 percent of model inversion attacks in relation to baseline models without decreasing the model utility (F1 scores are higher than 0.85). Moreover, on these datasets, our results match or exceed the latest state-of-the-art (SOTA) in terms of privacy. We also transform each defense into essential data privacy laws worldwide (GDPR and HIPAA), suggesting the best applicable guidelines for the ethical and regulation-sensitive deployment of privacy-preserving machine learning models in sensitive spaces. Full article
(This article belongs to the Section Privacy)
Show Figures

Figure 1

19 pages, 800 KB  
Review
Artificial Intelligence in Anesthesia: Enhancing Precision, Safety, and Global Access Through Data-Driven Systems
by Rakshita Giri, Shaik Huma Firdhos and Thomas A. Vida
J. Clin. Med. 2025, 14(19), 6900; https://doi.org/10.3390/jcm14196900 - 29 Sep 2025
Viewed by 761
Abstract
Artificial intelligence (AI) enhances anesthesiology by introducing adaptive systems that improve clinical precision, safety, and responsiveness. This review examines the integration of AI in anesthetic practice, with a focus on closed-loop systems that exemplify autonomous control. These platforms integrate continuous physiologic inputs, such [...] Read more.
Artificial intelligence (AI) enhances anesthesiology by introducing adaptive systems that improve clinical precision, safety, and responsiveness. This review examines the integration of AI in anesthetic practice, with a focus on closed-loop systems that exemplify autonomous control. These platforms integrate continuous physiologic inputs, such as BIS, EEG, heart rate, and blood pressure, to titrate anesthetic agents in real time, providing more consistent and responsive management than manual methods. Predictive algorithms reduce intraoperative hypotension by up to 40%, and systems such as McSleepy demonstrate greater accuracy in maintaining anesthetic depth and shortening recovery times. In critical care, AI supports sedation management, reduces clinician cognitive load, and standardizes care delivery during high-acuity procedures. The review also addresses the ethical, legal, and logistical challenges to widespread adoption of AI. Key concerns include algorithmic bias, explainability, and accountability for machine-generated decisions and disparities in access due to infrastructure demands. Regulatory frameworks, such as HIPAA and GDPR, are discussed in the context of securing patient data and ensuring its ethical deployment. Additionally, AI may play a transformative role in global health through remote anesthesia delivery and telemonitoring, helping address anesthesiologist shortages in resource-limited settings. Ultimately, AI-guided closed-loop systems do not replace clinicians; instead, they extend their capacity to deliver safe, responsive, and personalized anesthesia. These technologies signal a shift toward robotic anesthesia, where machine autonomy complements human oversight. Continued interdisciplinary development and rigorous clinical validation will determine how AI integrates into both operating rooms and intensive care units. Full article
(This article belongs to the Special Issue New Insights into Critical Care)
Show Figures

Figure 1

23 pages, 2056 KB  
Article
Blockchain and InterPlanetary Framework for Decentralized and Secure Electronic Health Record Management
by Samia Sayed, Muammar Shahrear Famous, Rashed Mazumder, Risala Tasin Khan, M. Shamim Kaiser, Mohammad Shahadat Hossain, Karl Andersson and Rahamatullah Khondoker
Blockchains 2025, 3(4), 12; https://doi.org/10.3390/blockchains3040012 - 28 Sep 2025
Viewed by 575
Abstract
Blockchain is an emerging technology that is being used to create innovative solutions in many areas, including healthcare. Nowadays healthcare systems face challenges, especially with security, trust, and remote data access. As patient records are digitized and medical systems become more interconnected, the [...] Read more.
Blockchain is an emerging technology that is being used to create innovative solutions in many areas, including healthcare. Nowadays healthcare systems face challenges, especially with security, trust, and remote data access. As patient records are digitized and medical systems become more interconnected, the risk of sensitive data being exposed to cyber threats has grown. In this evolving time for healthcare, it is important to find a balance between the advantages of new technology and the protection of patient information. The combination of blockchain–InterPlanetary File System technology and conventional electronic health record (EHR) management has the potential to transform the healthcare industry by enhancing data security, interoperability, and transparency. However, a major issue that still exists in traditional healthcare systems is the continuous problem of remote data unavailability. This research examines practical methods for safely accessing patient data from any location at any time, with a special focus on IPFS servers and blockchain technology in addition to group signature encryption. Essential processes like maintaining the confidentiality of medical records and safe data transmission could be made easier by these technologies. Our proposed framework enables secure, remote access to patient data while preserving accessibility, integrity, and confidentiality using Ethereum blockchain, IPFS, and group signature encryption, demonstrating hospital-scale scalability and efficiency. Experiments show predictable throughput reduction with file size (200 → 90 tps), controlled latency growth (90 → 200 ms), and moderate gas increase (85k → 98k), confirming scalability and efficiency under varying healthcare workloads. Unlike prior blockchain–IPFS–encryption frameworks, our system demonstrates hospital-scale feasibility through the practical integration of group signatures, hierarchical key management, and off-chain erasure compliance. This design enables scalable anonymous authentication, immediate blocking of compromised credentials, and efficient key rotation without costly re-encryption. Full article
Show Figures

Figure 1

31 pages, 3118 KB  
Article
Toward Efficient Health Data Identification and Classification in IoMT-Based Systems
by Afnan Alsadhan, Areej Alhogail and Hessah A. Alsalamah
Sensors 2025, 25(19), 5966; https://doi.org/10.3390/s25195966 - 25 Sep 2025
Viewed by 568
Abstract
The Internet of Medical Things (IoMT) is a rapidly expanding network of medical devices, sensors, and software that exchange patient health data. While IoMT supports personalized care and operational efficiency, it also introduces significant privacy risks, especially when handling sensitive health information. Data [...] Read more.
The Internet of Medical Things (IoMT) is a rapidly expanding network of medical devices, sensors, and software that exchange patient health data. While IoMT supports personalized care and operational efficiency, it also introduces significant privacy risks, especially when handling sensitive health information. Data Identification and Classification (DIC) are therefore critical for distinguishing which data attributes require stronger safeguards. Effective DIC contributes to privacy preservation, regulatory compliance, and more efficient data management. This study introduces SDAIPA (SDAIA-HIPAA), a standardized hybrid IoMT data classification framework that integrates principles from HIPAA and SDAIA with a dual risk perspective—uniqueness and harm potential—to systematically classify IoMT health data. The framework’s contribution lies in aligning regulatory guidance with a structured classification process, validated by domain experts, to provide a practical reference for sensitivity-aware IoMT data management. In practice, SDAIPA can assist healthcare providers in allocating encryption resources more effectively, ensuring stronger protection for high-risk attributes such as genomic or location data while minimizing overhead for lower-risk information. Policymakers may use the standardized IoMT data list as a reference point for refining privacy regulations and compliance requirements. Likewise, AI developers can leverage the framework to guide privacy-preserving training, selecting encryption parameters that balance security with performance. Collectively, these applications demonstrate how SDAIPA can support proportionate and regulation-aligned protection of health data in smart healthcare systems. Full article
(This article belongs to the Special Issue Securing E-Health Data Across IoMT and Wearable Sensor Networks)
Show Figures

Figure 1

31 pages, 2736 KB  
Article
The Rise of Hacking in Integrated EHR Systems: A Trend Analysis of U.S. Healthcare Data Breaches
by Benjamin Yankson, Mehdi Barati, Rebecca Bondzie and Ram Madani
J. Cybersecur. Priv. 2025, 5(3), 70; https://doi.org/10.3390/jcp5030070 - 5 Sep 2025
Viewed by 1022
Abstract
Electronic health record (EHR) data breaches create severe concerns for patients’ privacy, safety, and risk of loss for healthcare entities responsible for managing patient health records. EHR systems collect a vast amount of user-sensitive data, requiring integration, implementation, and the application of essential [...] Read more.
Electronic health record (EHR) data breaches create severe concerns for patients’ privacy, safety, and risk of loss for healthcare entities responsible for managing patient health records. EHR systems collect a vast amount of user-sensitive data, requiring integration, implementation, and the application of essential security principles, controls, and strategies to safeguard against persistent adversary attacks. This research is an exploratory study into current integrated EHR cybersecurity attacks using United States Health Insurance Portability and Accountability Act (HIPAA) privacy and security breach reported data. This work investigates if current EHR implementation lacks the requisite security control to prevent a cyber breach and protect user privacy. We conduct descriptive and trend analysis to describe, demonstrate, summarize data points, and predict direction based on current and historical data by covered entity, type of breaches, and point of breaches (examine, attack methods, patterns, and location of breach information). An Autoregressive Integrated Moving Average (ARIMA) model is used to provide a detailed analysis of the data demonstrating breaches caused by hacking and IT incidents show a significant trend (coefficient 0.84, p-value < 2.2 × 10−16 ***). The findings reveal a consistent rise in breaches—particularly from hacking and IT incidents—disproportionately affecting healthcare providers. The study highlights that EHR data breaches often follow recurring patterns, indicating common vulnerabilities, and underlines the need for prioritized, data-driven security investments. These findings validate the hypothesis that most EHR cybersecurity attacks are concentrated using similar attack methodologies and face common vulnerabilities and demonstrate the value of targeted mitigation strategies to strengthen healthcare cybersecurity. The findings highlight the urgent need for healthcare organizations and policymakers to prioritize targeted, data-driven security investments and enforce stricter controls to protect EHR systems from increasingly frequent and predictable cyberattacks. Full article
(This article belongs to the Special Issue Cyber Security and Digital Forensics—2nd Edition)
Show Figures

Figure 1

13 pages, 1492 KB  
Article
SecureTeleMed: Privacy-Preserving Volumetric Video Streaming for Telemedicine
by Kaiyuan Hu, Deen Ma and Shi Qiu
Electronics 2025, 14(17), 3371; https://doi.org/10.3390/electronics14173371 - 25 Aug 2025
Viewed by 568
Abstract
Volumetric video streaming holds transformative potential for telemedicine, enabling immersive remote consultations, surgical training, and real-time collaborative diagnostics. However, transmitting sensitive patient data (e.g., 3D medical scans, surgeon head/gaze movements) raises critical privacy risks, including exposure of biometric identifiers and protected health information [...] Read more.
Volumetric video streaming holds transformative potential for telemedicine, enabling immersive remote consultations, surgical training, and real-time collaborative diagnostics. However, transmitting sensitive patient data (e.g., 3D medical scans, surgeon head/gaze movements) raises critical privacy risks, including exposure of biometric identifiers and protected health information (PHI). To address the above concerns, we propose SecureTeleMed, a dual-track encryption scheme tailored for volumetric video based telemedicine. SecureTeleMed combines viewport obfuscation and region of interest (ROI)-aware frame encryption to protect both patient data and clinician interactions while complying with healthcare privacy regulations (e.g., HIPAA, GDPR). Evaluations show SecureTeleMed reduces privacy leakage by 89% compared to baseline encryption methods, with sub-50 ms latency suitable for real-time telemedicine applications. Full article
(This article belongs to the Special Issue Big Data Security and Privacy)
Show Figures

Figure 1

20 pages, 3592 KB  
Article
Federated Security for Privacy Preservation of Healthcare Data in Edge-Cloud Environments
by Rasanga Jayaweera, Himanshu Agrawal and Nickson M. Karie
Sensors 2025, 25(16), 5108; https://doi.org/10.3390/s25165108 - 17 Aug 2025
Viewed by 879
Abstract
Digital transformation in healthcare has introduced data privacy challenges, as hospitals struggle to protect patient information while adopting digital technologies such as AI, IoT, and cloud more rapidly than ever before. The adoption of powerful third-party Machine Learning as a Service (MLaaS) solutions [...] Read more.
Digital transformation in healthcare has introduced data privacy challenges, as hospitals struggle to protect patient information while adopting digital technologies such as AI, IoT, and cloud more rapidly than ever before. The adoption of powerful third-party Machine Learning as a Service (MLaaS) solutions for disease prediction has become a common practice. However, these solutions offer significant privacy risks when sensitive healthcare data are shared externally to a third-party server. This raises compliance concerns under regulations like HIPAA, GDPR, and Australia’s Privacy Act. To address these challenges, this paper explores a decentralized, privacy-preserving approach to train the models among multiple healthcare stakeholders, integrating Federated Learning (FL) with Homomorphic Encryption (HE), ensuring model parameters remain protected throughout the learning process. This paper proposes a novel Homomorphic Encryption-based Adaptive Tuning for Federated Learning (HEAT-FL) framework to select encryption parameters based on model layer sensitivity. The proposed framework leverages the CKKS scheme to encrypt model parameters on the client side before sharing. This enables secure aggregation at the central server without requiring decryption, providing an additional layer of security through model-layer-wise parameter management. The proposed adaptive encryption approach significantly improves runtime efficiency while maintaining a balanced level of security. Compared to the existing frameworks (non-adaptive) using 256-bit security settings, the proposed framework offers a 56.5% reduction in encryption time for 10 clients and 54.6% for four clients per epoch. Full article
(This article belongs to the Special Issue Privacy and Security in Sensor Networks)
Show Figures

Figure 1

21 pages, 2065 KB  
Article
FED-EHR: A Privacy-Preserving Federated Learning Framework for Decentralized Healthcare Analytics
by Rızwan Uz Zaman Wani and Ozgu Can
Electronics 2025, 14(16), 3261; https://doi.org/10.3390/electronics14163261 - 17 Aug 2025
Viewed by 1376
Abstract
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous monitoring and real-time data collection through interconnected medical devices such as wearable sensors and smart health monitors. These devices generate sensitive physiological data, including cardiac signals, glucose levels, and vital signs, [...] Read more.
The Internet of Medical Things (IoMT) is revolutionizing healthcare by enabling continuous monitoring and real-time data collection through interconnected medical devices such as wearable sensors and smart health monitors. These devices generate sensitive physiological data, including cardiac signals, glucose levels, and vital signs, that are integrated into electronic health records (EHRs). Machine Learning (ML) and Deep Learning (DL) techniques have shown significant potential for predictive diagnostics and decision support based on such data. However, traditional centralized ML approaches raise significant privacy concerns due to the transmission and aggregation of sensitive health information. Additionally, compliance with data protection regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) and General Data Protection Regulation (GDPR), restricts centralized data sharing and analytics. To address these challenges, this study introduces FED-EHR, a privacy-preserving Federated Learning (FL) framework that enables collaborative model training on distributed EHR datasets without transferring raw data from its source. The framework is implemented using Logistic Regression (LR) and Multi-Layer Perceptron (MLP) models and was evaluated using two publicly available clinical datasets: the UCI Breast Cancer Wisconsin (Diagnostic) dataset and the Pima Indians Diabetes dataset. The experimental results demonstrate that FED-EHR achieves a classification performance comparable to centralized learning, with ROC-AUC scores of 0.83 for the Diabetes dataset and 0.98 for the Breast Cancer dataset using MLP while preserving data privacy by ensuring data locality. These findings highlight the practical feasibility and effectiveness of applying the proposed FL approach in real-world IoMT scenarios, offering a secure, scalable, and regulation-compliant solution for intelligent healthcare analytics. Full article
Show Figures

Figure 1

31 pages, 1317 KB  
Article
Privacy-Preserving Clinical Decision Support for Emergency Triage Using LLMs: System Architecture and Real-World Evaluation
by Alper Karamanlıoğlu, Berkan Demirel, Onur Tural, Osman Tufan Doğan and Ferda Nur Alpaslan
Appl. Sci. 2025, 15(15), 8412; https://doi.org/10.3390/app15158412 - 29 Jul 2025
Viewed by 1476
Abstract
This study presents a next-generation clinical decision-support architecture for Clinical Decision Support Systems (CDSS) focused on emergency triage. By integrating Large Language Models (LLMs), Federated Learning (FL), and low-latency streaming analytics within a modular, privacy-preserving framework, the system addresses key deployment challenges in [...] Read more.
This study presents a next-generation clinical decision-support architecture for Clinical Decision Support Systems (CDSS) focused on emergency triage. By integrating Large Language Models (LLMs), Federated Learning (FL), and low-latency streaming analytics within a modular, privacy-preserving framework, the system addresses key deployment challenges in high-stakes clinical settings. Unlike traditional models, the architecture processes both structured (vitals, labs) and unstructured (clinical notes) data to enable context-aware reasoning with clinically acceptable latency at the point of care. It leverages big data infrastructure for large-scale EHR management and incorporates digital twin concepts for live patient monitoring. Federated training allows institutions to collaboratively improve models without sharing raw data, ensuring compliance with GDPR/HIPAA, and FAIR principles. Privacy is further protected through differential privacy, secure aggregation, and inference isolation. We evaluate the system through two studies: (1) a benchmark of 750+ USMLE-style questions validating the medical reasoning of fine-tuned LLMs; and (2) a real-world case study (n = 132, 75.8% first-pass agreement) using de-identified MIMIC-III data to assess triage accuracy and responsiveness. The system demonstrated clinically acceptable latency and promising alignment with expert judgment on reviewed cases. The infectious disease triage case demonstrates low-latency recognition of sepsis-like presentations in the ED. This work offers a scalable, audit-compliant, and clinician-validated blueprint for CDSS, enabling low-latency triage and extensibility across specialties. Full article
(This article belongs to the Special Issue Large Language Models: Transforming E-health)
Show Figures

Figure 1

21 pages, 817 KB  
Article
C3-VULMAP: A Dataset for Privacy-Aware Vulnerability Detection in Healthcare Systems
by Jude Enenche Ameh, Abayomi Otebolaku, Alex Shenfield and Augustine Ikpehai
Electronics 2025, 14(13), 2703; https://doi.org/10.3390/electronics14132703 - 4 Jul 2025
Viewed by 828
Abstract
The increasing integration of digital technologies in healthcare has expanded the attack surface for privacy violations in critical systems such as electronic health records (EHRs), telehealth platforms, and medical device software. However, current vulnerability detection datasets lack domain-specific privacy annotations essential for compliance [...] Read more.
The increasing integration of digital technologies in healthcare has expanded the attack surface for privacy violations in critical systems such as electronic health records (EHRs), telehealth platforms, and medical device software. However, current vulnerability detection datasets lack domain-specific privacy annotations essential for compliance with healthcare regulations like HIPAA and GDPR. This study presents C3-VULMAP, a novel and large-scale dataset explicitly designed for privacy-aware vulnerability detection in healthcare software. The dataset comprises over 30,000 vulnerable and 7.8 million non-vulnerable C/C++ functions, annotated with CWE categories and systematically mapped to LINDDUN privacy threat types. The objective is to support the development of automated, privacy-focused detection systems that can identify fine-grained software vulnerabilities in healthcare environments. To achieve this, we developed a hybrid construction methodology combining manual threat modeling, LLM-assisted synthetic generation, and multi-source aggregation. We then conducted comprehensive evaluations using traditional machine learning algorithms (Support Vector Machines, XGBoost), graph neural networks (Devign, Reveal), and transformer-based models (CodeBERT, RoBERTa, CodeT5). The results demonstrate that transformer models, such as RoBERTa, achieve high detection performance (F1 = 0.987), while Reveal leads GNN-based methods (F1 = 0.993), with different models excelling across specific privacy threat categories. These findings validate C3-VULMAP as a powerful benchmarking resource and show its potential to guide the development of privacy-preserving, secure-by-design software in embedded and electronic healthcare systems. The dataset fills a critical gap in privacy threat modeling and vulnerability detection and is positioned to support future research in cybersecurity and intelligent electronic systems for healthcare. Full article
Show Figures

Graphical abstract

30 pages, 4883 KB  
Article
Cyber-Secure IoT and Machine Learning Framework for Optimal Emergency Ambulance Allocation
by Jonghyuk Kim and Sewoong Hwang
Appl. Sci. 2025, 15(13), 7156; https://doi.org/10.3390/app15137156 - 25 Jun 2025
Viewed by 1079
Abstract
Optimizing ambulance deployment is a critical task in emergency medical services (EMS), as it directly affects patient outcomes and system efficiency. This study proposes a cyber-secure, machine learning-based framework for predicting region-specific ambulance allocation and response times across South Korea. The model integrates [...] Read more.
Optimizing ambulance deployment is a critical task in emergency medical services (EMS), as it directly affects patient outcomes and system efficiency. This study proposes a cyber-secure, machine learning-based framework for predicting region-specific ambulance allocation and response times across South Korea. The model integrates heterogeneous datasets—including demographic profiles, transportation indices, medical infrastructure, and dispatch records from 229 EMS centers—and incorporates real-time IoT streams such as traffic flow and geolocation data to enhance temporal responsiveness. Supervised regression algorithms—Random Forest, XGBoost, and LightGBM—were trained on 2061 center-month observations. Among these, Random Forest achieved the best balance of accuracy and interpretability (MSE = 0.05, RMSE = 0.224). Feature importance analysis revealed that monthly patient transfers, dispatch variability, and high-acuity case frequencies were the most influential predictors, underscoring the temporal and contextual complexity of EMS demand. To support policy decisions, a Lasso-based simulation tool was developed, enabling dynamic scenario testing for optimal ambulance counts and dispatch time estimates. The model also incorporates the coefficient of variation (CV) of workload intensity as a performance metric to guide long-term capacity planning and equity assessment. All components operate within a cyber-secure architecture that ensures end-to-end encryption of sensitive EMS and IoT data, maintaining compliance with privacy regulations such as GDPR and HIPAA. By integrating predictive analytics, real-time data, and operational simulation within a secure framework, this study offers a scalable and resilient solution for data-driven EMS resource planning. Full article
Show Figures

Figure 1

39 pages, 30587 KB  
Article
Hierarchical Swin Transformer Ensemble with Explainable AI for Robust and Decentralized Breast Cancer Diagnosis
by Md. Redwan Ahmed, Hamdadur Rahman, Zishad Hossain Limon, Md Ismail Hossain Siddiqui, Mahbub Alam Khan, Al Shahriar Uddin Khondakar Pranta, Rezaul Haque, S M Masfequier Rahman Swapno, Young-Im Cho and Mohamed S. Abdallah
Bioengineering 2025, 12(6), 651; https://doi.org/10.3390/bioengineering12060651 - 13 Jun 2025
Cited by 3 | Viewed by 1891
Abstract
Early and accurate detection of breast cancer is essential for reducing mortality rates and improving clinical outcomes. However, deep learning (DL) models used in healthcare face significant challenges, including concerns about data privacy, domain-specific overfitting, and limited interpretability. To address these issues, we [...] Read more.
Early and accurate detection of breast cancer is essential for reducing mortality rates and improving clinical outcomes. However, deep learning (DL) models used in healthcare face significant challenges, including concerns about data privacy, domain-specific overfitting, and limited interpretability. To address these issues, we propose BreastSwinFedNetX, a federated learning (FL)-enabled ensemble system that combines four hierarchical variants of the Swin Transformer (Tiny, Small, Base, and Large) with a Random Forest (RF) meta-learner. By utilizing FL, our approach ensures collaborative model training across decentralized and institution-specific datasets while preserving data locality and preventing raw patient data exposure. The model exhibits strong generalization and performs exceptionally well across five benchmark datasets—BreakHis, BUSI, INbreast, CBIS-DDSM, and a Combined dataset—achieving an F1 score of 99.34% on BreakHis, a PR AUC of 98.89% on INbreast, and a Matthews Correlation Coefficient (MCC) of 99.61% on the Combined dataset. To enhance transparency and clinical adoption, we incorporate explainable AI (XAI) through Grad-CAM, which highlights class-discriminative features. Additionally, we deploy the model in a real-time web application that supports uncertainty-aware predictions and clinician interaction and ensures compliance with GDPR and HIPAA through secure federated deployment. Extensive ablation studies and paired statistical analyses further confirm the significance and robustness of each architectural component. By integrating transformer-based architectures, secure collaborative training, and explainable outputs, BreastSwinFedNetX provides a scalable and trustworthy AI solution for real-world breast cancer diagnostics. Full article
(This article belongs to the Special Issue Breast Cancer: From Precision Medicine to Diagnostics)
Show Figures

Figure 1

29 pages, 1645 KB  
Review
Integral Security Pillars for Medical Devices: A Comprehensive Analysis
by Marcela Ulloa-Zamora, Cristian Barría-Huidobro, Manuel Sánchez-Rubio and Lorena Galeazzi
Appl. Sci. 2025, 15(12), 6634; https://doi.org/10.3390/app15126634 - 12 Jun 2025
Viewed by 1054
Abstract
Cybersecurity is an essential component for preserving the integrity of healthcare systems, particularly in the face of the increasing adoption of interconnected medical devices, which significantly expands cyber risk exposure. A critical issue in this context is the fragmentation of knowledge regarding the [...] Read more.
Cybersecurity is an essential component for preserving the integrity of healthcare systems, particularly in the face of the increasing adoption of interconnected medical devices, which significantly expands cyber risk exposure. A critical issue in this context is the fragmentation of knowledge regarding the security of these devices. The absence of a unified framework hampers the systematic identification of vulnerabilities and the effective implementation of protective measures. This study highlights such fragmentation by requiring the integration of seven ISO standards, nine NIST controls, one HIPAA regulation, one ENISA directive, one GDPR regulation, and one HITRUST framework, along with the review of 47 scientific articles and analysis of 27 documented vulnerabilities (CVEs). The need to consult this broad range of sources reflects both the complexity of the regulatory landscape and the lack of standardization in medical device security. Based on this review, key pillars were defined to support an integral and adaptable security model. This model provides a practical tool to strengthen digital healthcare infrastructures, facilitate continuous audits, and mitigate emerging threats, all while aligning with international standards. Furthermore, it promotes the consolidation of fragmented knowledge, helping to close security gaps and enhance the resilience of healthcare systems in a globalized environment. Full article
Show Figures

Figure 1

16 pages, 1226 KB  
Article
Advanced Digital System for International Collaboration on Biosample-Oriented Research: A Multicriteria Query Tool for Real-Time Biosample and Patient Cohort Searches
by Alexandros Fridas, Anna Bourouliti, Loukia Touramanidou, Desislava Ivanova, Kostantinos Votis and Panagiotis Katsaounis
Computers 2025, 14(5), 157; https://doi.org/10.3390/computers14050157 - 23 Apr 2025
Viewed by 617
Abstract
The advancement of biomedical research depends on efficient data sharing, integration, and annotation to ensure reproducibility, accessibility, and cross-disciplinary collaboration. International collaborative research is crucial for advancing biomedical science and innovation but often faces significant barriers, such as data sharing limitations, inefficient sample [...] Read more.
The advancement of biomedical research depends on efficient data sharing, integration, and annotation to ensure reproducibility, accessibility, and cross-disciplinary collaboration. International collaborative research is crucial for advancing biomedical science and innovation but often faces significant barriers, such as data sharing limitations, inefficient sample management, and scalability challenges. Existing infrastructures for biosample and data repositories face challenges limiting large-scale research efforts. This study presents a novel platform designed to address these issues, enabling researchers to conduct high-quality research more efficiently and at reduced costs. The platform employs a modular, distributed architecture that ensures high availability, redundancy, and interoperability among diverse stakeholders, as well as integrates advanced features, including secure access management, comprehensive query functionalities, real-time availability reporting, and robust data mining capabilities. In addition, this platform supports dynamic, multi-criteria searches tailored to disease-specific patient profiles and biosample-related data across pre-analytical, post-analytical, and cryo-storage processes. By evaluating the platform’s modular architecture and pilot testing outcomes, this study demonstrates its potential to enhance interdisciplinary collaboration, streamline research workflows, and foster transformative advancements in biomedical research. The key is the innovation of a real-time dynamic e-consent (DRT e-consent) system, which allows donors to update their consent status in real time, ensuring compliance with ethical and regulatory frameworks such as GDPR and HIPAA. The system also supports multi-modal data integration, including genomic sequences, electronic health records (EHRs), and imaging data, enabling researchers to perform complex queries and generate comprehensive insights. Full article
(This article belongs to the Special Issue Future Systems Based on Healthcare 5.0 for Pandemic Preparedness 2024)
Show Figures

Figure 1

Back to TopTop