Artificial Intelligence in Anesthesia: Enhancing Precision, Safety, and Global Access Through Data-Driven Systems
Abstract
1. Background: Clinical Rationale and Systems-Level Potential of AI in Anesthesia
2. Objective
3. Evolution of AI in Anesthesia
3.1. AI Enables Scalable Anesthesia Support in Low-Resource Health Systems
3.2. Equitable AI Integration Requires Open Access and Global Coordination
4. Clinical Applications and Evidence
4.1. Preoperative Applications
4.2. Intraoperative Applications
4.3. Postoperative Applications
4.4. Comparative Outcomes
4.5. Role of Anesthesiologists in AI-Supported Care
5. Limitations and Risks
5.1. Technical and Clinical Limitations
5.2. Limitations of Model Transferability
5.3. Ethical and Legal Risks
5.4. Bias and Equity Concerns
5.5. Data Privacy and Cybersecurity
5.6. Anesthesiologist Resistance
5.7. Autonomy and Informed Consent
6. Future Directions
6.1. Education and Training
6.2. Global Health and Tele-Anesthesia
6.3. Regulatory and Policy Evolution
6.4. Toward an Equitable and Collaborative Future
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
BIS | Bispectral Index |
EEG | Electroencephalography |
EHR | Electronic Health Record |
FDA | U.S. Food and Drug Administration |
GDPR | General Data Protection Regulation |
HIPAA | Health Insurance Portability and Accountability Act |
MDPE | Median Performance Error |
ML | Machine Learning |
PDMS | Patient Data Management System |
TIVA | Total Intravenous Anesthesia |
UCE | Unplanned Care Escalation |
WAVCNS | Wavelet-based Anesthetic Value for Central Nervous System |
References
- Estrada Alamo, C.E.; Diatta, F.; Monsell, S.E.; Lane-Fall, M.B. Artificial Intelligence in Anesthetic Care: A Survey of Physician Anesthesiologists. Anesth. Analg. 2024, 138, 938–950. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Witkowski, E.; Gao, L.; Meireles, O.; Rosman, G. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology 2020, 132, 379–394. [Google Scholar] [CrossRef]
- Paiste, H.J.; Godwin, R.C.; Smith, A.D.; Berkowitz, D.E.; Melvin, R.L. Strengths-Weaknesses-Opportunities-Threats Analysis of Artificial Intelligence in Anesthesiology and Perioperative Medicine. Front. Digit. Health 2024, 6, 1316931. [Google Scholar] [CrossRef]
- Lidströmer, N.; Ashrafian, H. (Eds.) Artificial Intelligence in Medicine; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-58080-3. [Google Scholar]
- Fritz, B.A.; King, C.R.; Abdelhack, M.; Chen, Y.; Kronzer, A.; Abraham, J.; Tripathi, S.; Ben Abdallah, A.; Kannampallil, T.; Budelier, T.P.; et al. Effect of Machine Learning Models on Clinician Prediction of Postoperative Complications: The Perioperative ORACLE Randomised Clinical Trial. Br. J. Anaesth. 2024, 133, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Miyaguchi, N.; Takeuchi, K.; Kashima, H.; Morita, M.; Morimatsu, H. Predicting Anesthetic Infusion Events Using Machine Learning. Sci. Rep. 2021, 11, 23648. [Google Scholar] [CrossRef]
- Tu, Z.; Zhang, Y.; Lv, X.; Wang, Y.; Zhang, T.; Wang, J.; Yu, X.; Chen, P.; Pang, S.; Li, S.; et al. Accurate Machine Learning-Based Monitoring of Anesthesia Depth with EEG Recording. Neurosci. Bull. 2025, 41, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Wongtangman, K.; Aasman, B.; Garg, S.; Witt, A.S.; Harandi, A.A.; Azimaraghi, O.; Mirhaji, P.; Soby, S.; Anand, P.; Himes, C.P.; et al. Development and Validation of a Machine Learning ASA-Score to Identify Candidates for Comprehensive Preoperative Screening and Risk Stratification. J. Clin. Anesth. 2023, 87, 111103. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Gonzalez, X.T.; Huang, G.; Abraham, J. Machine Learning-Augmented Interventions in Perioperative Care: A Systematic Review and Meta-Analysis. Br. J. Anaesth. 2024, 133, 1159–1172. [Google Scholar] [CrossRef]
- Barker, A.B.; Melvin, R.L.; Godwin, R.C.; Benz, D.; Wagener, B.M. Machine Learning Predicts Unplanned Care Escalations for Post-Anesthesia Care Unit Patients during the Perioperative Period: A Single-Center Retrospective Study. J. Med. Syst. 2024, 48, 69. [Google Scholar] [CrossRef]
- Xing, X.; Qu, H.; Wang, L.; Hao, X.; Zhong, Y.; Jing, F. Enhancing Drug Management, Cost Savings, and Staff Satisfaction in Anesthesiology: A Quality Improvement Project in a Chinese Tertiary Hospital. Adv. Ther. 2024, 41, 1953–1966. [Google Scholar] [CrossRef]
- Liu, J.; Xing, L.-M.; Shi, X. Application of Intelligent Management Mode for Drugs and Consumables in Anesthesiology Department. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5053–5062. [Google Scholar] [CrossRef] [PubMed]
- Weiss, Y.G.; Cotev, S.; Drenger, B.; Katzenelson, R. Patient Data Management Systems in Anaesthesia: An Emerging Technology. Can. J. Anaesth. 1995, 42, 914–921. [Google Scholar] [CrossRef] [PubMed]
- West, N.; Van Heusden, K.; Görges, M.; Brodie, S.; Rollinson, A.; Petersen, C.L.; Dumont, G.A.; Ansermino, J.M.; Merchant, R.N. Design and Evaluation of a Closed-Loop Anesthesia System with Robust Control and Safety System. Anesth. Analg. 2018, 127, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Zaouter, C.; Hemmerling, T.M.; Lanchon, R.; Valoti, E.; Remy, A.; Leuillet, S.; Ouattara, A. The Feasibility of a Completely Automated Total IV Anesthesia Drug Delivery System for Cardiac Surgery. Anesth. Analg. 2016, 123, 885–893. [Google Scholar] [CrossRef]
- Wijnberge, M.; Geerts, B.F.; Hol, L.; Lemmers, N.; Mulder, M.P.; Berge, P.; Schenk, J.; Terwindt, L.E.; Hollmann, M.W.; Vlaar, A.P.; et al. Effect of a Machine Learning–Derived Early Warning System for Intraoperative Hypotension vs Standard Care on Depth and Duration of Intraoperative Hypotension During Elective Noncardiac Surgery: The HYPE Randomized Clinical Trial. JAMA 2020, 323, 1052. [Google Scholar] [CrossRef]
- Char, D.S.; Burgart, A. Machine-Learning Implementation in Clinical Anesthesia: Opportunities and Challenges. Anesth. Analg. 2020, 130, 1709–1712. [Google Scholar] [CrossRef]
- Ifeanyichi, M.; Aune, E.; Shrime, M.; Gajewski, J.; Pittalis, C.; Kachimba, J.; Borgstein, E.; Brugha, R.; Baltussen, R.; Bijlmakers, L. Financing of Surgery and Anaesthesia in Sub-Saharan Africa: A Scoping Review. BMJ Open 2021, 11, e051617. [Google Scholar] [CrossRef]
- Mars, M. Health Capacity Development Through Telemedicine in Africa. Yearb. Med. Inf. 2010, 19, 87–93. [Google Scholar] [CrossRef]
- Wamala, D.S.; Augustine, K. A Meta-Analysis of Telemedicine Success in Africa. J. Pathol. Inform. 2013, 4, 6. [Google Scholar] [CrossRef]
- Akpudo, U.E.; Effoduh, J.O.; Kong, J.D.; Gao, Y. Unveiling AI Concerns for Sub-Saharan Africa and Its Vulnerable Groups. ICONIC 2024, 2024, 45–55. [Google Scholar] [CrossRef]
- Meso, P.; Mbarika, V.W.A.; Sood, S.P. An Overview of Potential Factors for Effective Telemedicine Transfer to Sub-Saharan Africa. IEEE Trans. Inform. Technol. Biomed. 2009, 13, 734–739. [Google Scholar] [CrossRef]
- Onoja, J.P.; Ajala, O.A. Synergizing AI and Telecommunications for Global Development: A Framework for Achieving Scalable and Sustainable Development. Comput. Sci. IT Res. J. 2024, 5, 2703–2714. [Google Scholar] [CrossRef]
- Victor, A. Artificial Intelligence in Global Health: An Unfair Future for Health in Sub-Saharan Africa? Health Aff. Sch. 2025, 3, qxaf023. [Google Scholar] [CrossRef] [PubMed]
- Faerron Guzmán, C.A. Global Health in the Age of AI: Safeguarding Humanity through Collaboration and Action. PLoS Glob. Public Health 2024, 4, e0002778. [Google Scholar] [CrossRef] [PubMed]
- Adekola, A.D.; Kassem, R.G.; Mbata, A.O. Convergence of AI, Blockchain and Pharmacoeconomics in Building Adaptive Pharmaceutical Supply Chains: A Novel Paradigm Shift for Equitable Global Drug Access. Int. J. Sci. Res. Updates 2022, 4, 356–374. [Google Scholar] [CrossRef]
- Shelley, B.; Shaw, M. Machine Learning and Preoperative Risk Prediction: The Machines Are Coming. Br. J. Anaesth. 2024, 133, 925–930. [Google Scholar] [CrossRef]
- Jalilian, L.; Cannesson, M. Precision Medicine in Anesthesiology. Int. Anesthesiol. Clin. 2020, 58, 17–22. [Google Scholar] [CrossRef]
- Ren, Y.; Loftus, T.J.; Datta, S.; Ruppert, M.M.; Guan, Z.; Miao, S.; Shickel, B.; Feng, Z.; Giordano, C.; Upchurch, G.R.; et al. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform. JAMA Netw. Open 2022, 5, e2211973. [Google Scholar] [CrossRef]
- Pambianco, D.J.; Vargo, J.J.; Pruitt, R.E.; Hardi, R.; Martin, J.F. Computer-Assisted Personalized Sedation for Upper Endoscopy and Colonoscopy: A Comparative, Multicenter Randomized Study. Gastrointest. Endosc. 2011, 73, 765–772. [Google Scholar] [CrossRef]
- Li, W.; Hu, Z.; Yuan, Y.; Liu, J.; Li, K. Effect of Hypotension Prediction Index in the Prevention of Intraoperative Hypotension during Noncardiac Surgery: A Systematic Review. J. Clin. Anesth. 2022, 83, 110981. [Google Scholar] [CrossRef]
- Goudra, B.G.; Singh, P.M.; Chandrasekhara, V. SEDASYS®, Airway, Oxygenation, and Ventilation: Anticipating and Managing the Challenges. Dig. Dis. Sci. 2014, 59, 920–927. [Google Scholar] [CrossRef]
- Singh, P.M.; Borle, A.; Goudra, B.G. Use of Computer-Assisted Drug Therapy Outside the Operating Room. Curr. Opin. Anaesthesiol. 2016, 29, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.F.; Bridenbaugh, P.; Gustafson, M. The SEDASYS System Is Not Intended for the Sedation of High-Risk Patients. Gastrointest. Endosc. 2011, 74, 723. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.C.; Saxena, R.C.; Neradilek, M.B.; Hau, V.; Fong, C.T.; Lang, J.D.; Posner, K.L.; Nair, B.G. Forecasting a Crisis: Machine-Learning Models Predict Occurrence of Intraoperative Bradycardia Associated with Hypotension. Anesth. Analg. 2020, 130, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Pardo, E.; Le Cam, E.; Verdonk, F. Artificial Intelligence and Nonoperating Room Anesthesia. Curr. Opin. Anaesthesiol. 2024, 37, 413–420. [Google Scholar] [CrossRef]
- Fahy, B.G.; Chau, D.F. The Technology of Processed Electroencephalogram Monitoring Devices for Assessment of Depth of Anesthesia. Anesth. Analg. 2018, 126, 111–117. [Google Scholar] [CrossRef]
- Aasvang, E.K.; Meyhoff, C.S. The Future of Postoperative Vital Sign Monitoring in General Wards: Improving Patient Safety through Continuous Artificial Intelligence-Enabled Alert Formation and Reduction. Curr. Opin. Anaesthesiol. 2023, 36, 683–690. [Google Scholar] [CrossRef]
- Kambale, M.; Jadhav, S. Applications of Artificial Intelligence in Anesthesia: A Systematic Review. Saudi J. Anaesth. 2024, 18, 249–256. [Google Scholar] [CrossRef]
- Nair, B.G.; Horibe, M.; Newman, S.-F.; Wu, W.-Y.; Peterson, G.N.; Schwid, H.A. Anesthesia Information Management System-Based Near Real-Time Decision Support to Manage Intraoperative Hypotension and Hypertension. Anesth. Analg. 2014, 118, 206–214. [Google Scholar] [CrossRef]
- Duran, H.-T.; Kingeter, M.; Reale, C.; Weinger, M.B.; Salwei, M.E. Decision-Making in Anesthesiology: Will Artificial Intelligence Make Intraoperative Care Safer? Curr. Opin. Anaesthesiol. 2023, 36, 691–697. [Google Scholar] [CrossRef]
- Manyam, S.C.; Gupta, D.K.; Johnson, K.B.; White, J.L.; Pace, N.L.; Westenskow, D.R.; Egan, T.D. When Is a Bispectral Index of 60 Too Low?: Rational Processed Electroencephalographic Targets Are Dependent on the Sedative–Opioid Ratio. Anesthesiology 2007, 106, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Hemmerling, T.M.; Charabati, S.; Zaouter, C.; Minardi, C.; Mathieu, P.A. A Randomized Controlled Trial Demonstrates That a Novel Closed-Loop Propofol System Performs Better Hypnosis Control than Manual Administration. Can. J. Anesth/J. Can. Anesth. 2010, 57, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.E.; Torous, J.; De Choudhury, M.; Depp, C.A.; Graham, S.A.; Kim, H.-C.; Paulus, M.P.; Krystal, J.H.; Jeste, D.V. Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 2021, 6, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Kachman, M.M.; Brennan, I.; Oskvarek, J.J.; Waseem, T.; Pines, J.M. How Artificial Intelligence Could Transform Emergency Care. Am. J. Emerg. Med. 2024, 81, 40–46. [Google Scholar] [CrossRef]
- Kendale, S.; Kulkarni, P.; Rosenberg, A.D.; Wang, J. Supervised Machine-Learning Predictive Analytics for Prediction of Postinduction Hypotension. Anesthesiology 2018, 129, 675–688. [Google Scholar] [CrossRef]
- Gray, G.M.; Ahumada, L.M.; Rehman, M.A.; Varughese, A.; Fernandez, A.M.; Fackler, J.; Yates, H.M.; Habre, W.; Disma, N.; Lonsdale, H. A Machine-learning Approach for Decision Support and Risk Stratification of Pediatric Perioperative Patients Based on the APRICOT Dataset. Pediatr. Anesth. 2023, 33, 710–719. [Google Scholar] [CrossRef]
- Singhal, M.; Gupta, L.; Hirani, K. A Comprehensive Analysis and Review of Artificial Intelligence in Anaesthesia. Cureus 2023, 15, e45038. [Google Scholar] [CrossRef]
- Song, B.; Zhou, M.; Zhu, J. Necessity and Importance of Developing AI in Anesthesia from the Perspective of Clinical Safety and Information Security. Med. Sci. Monit. 2023, 29, e938835. [Google Scholar] [CrossRef]
- Panch, T.; Mattie, H.; Atun, R. Artificial Intelligence and Algorithmic Bias: Implications for Health Systems. J. Glob. Health 2019, 9, 010318. [Google Scholar] [CrossRef]
- Geny, M.; Andres, E.; Talha, S.; Geny, B. Liability of Health Professionals Using Sensors, Telemedicine and Artificial Intelligence for Remote Healthcare. Sensors 2024, 24, 3491. [Google Scholar] [CrossRef]
- Bottomley, D.; Thaldar, D. Liability for Harm Caused by AI in Healthcare: An Overview of the Core Legal Concepts. Front. Pharmacol. 2023, 14, 1297353. [Google Scholar] [CrossRef]
- Terranova, C.; Cestonaro, C.; Fava, L.; Cinquetti, A. AI and Professional Liability Assessment in Healthcare. A Revolution in Legal Medicine? Front. Med. 2024, 10, 1337335. [Google Scholar] [CrossRef] [PubMed]
- Cestonaro, C.; Delicati, A.; Marcante, B.; Caenazzo, L.; Tozzo, P. Defining Medical Liability When Artificial Intelligence Is Applied on Diagnostic Algorithms: A Systematic Review. Front. Med. 2023, 10, 1305756. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, L.; Hong, J.; Jiang, J.; Zhou, L. Unmasking Bias in Artificial Intelligence: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-Based Models. J. Am. Med. Inform. Assoc. 2024, 31, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.M.; Tipton, K.; Leas, B.; Jepson, C.; Aysola, J.; Cohen, J.B.; Flores, E.; Harhay, M.O.; Schmidt, H.; Weissman, G.E.; et al. The Impact of Health Care Algorithms on Racial and Ethnic Disparities: A Systematic Review. Ann. Intern. Med. 2024, 177, 484–496. [Google Scholar] [CrossRef]
- Yadav, N.; Pandey, S.; Gupta, A.; Dudani, P.; Gupta, S.; Rangarajan, K. Data Privacy in Healthcare: In the Era of Artificial Intelligence. Indian. Dermatol. Online J. 2023, 14, 788–792. [Google Scholar] [CrossRef]
- Li, J. Security Implications of AI Chatbots in Health Care. J. Med. Internet Res. 2023, 25, e47551. [Google Scholar] [CrossRef]
- Binkley, C.E.; Pilkington, B.C. Informed Consent for Clinician-AI Collaboration and Patient Data Sharing: Substantive, Illusory, or Both. Am. J. Bioeth. 2023, 23, 83–85. [Google Scholar] [CrossRef]
- Rose, S.L.; Shapiro, D. An Ethically Supported Framework for Determining Patient Notification and Informed Consent Practices When Using Artificial Intelligence in Health Care. Chest 2024, 166, 572–578. [Google Scholar] [CrossRef]
- Iserson, K.V. Informed Consent for Artificial Intelligence in Emergency Medicine: A Practical Guide. Am. J. Emerg. Med. 2024, 76, 225–230. [Google Scholar] [CrossRef]
- Canales, C.; Lee, C.; Cannesson, M. Science Without Conscience Is but the Ruin of the Soul: The Ethics of Big Data and Artificial Intelligence in Perioperative Medicine. Anesth. Analg. 2020, 130, 1234–1243. [Google Scholar] [CrossRef]
- Mathis, M.; Steffner, K.R.; Subramanian, H.; Gill, G.P.; Girardi, N.I.; Bansal, S.; Bartels, K.; Khanna, A.K.; Huang, J. Overview and Clinical Applications of Artificial Intelligence and Machine Learning in Cardiac Anesthesiology. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1211–1220. [Google Scholar] [CrossRef]
- Ruskin, K.J.; Corvin, C.; Rice, S.C.; Winter, S.R. Autopilots in the Operating Room: Safe Use of Automated Medical Technology. Anesthesiology 2020, 133, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Dratsch, T.; Chen, X.; Rezazade Mehrizi, M.; Kloeckner, R.; Mähringer-Kunz, A.; Püsken, M.; Baeßler, B.; Sauer, S.; Maintz, D.; Pinto Dos Santos, D. Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance. Radiology 2023, 307, e222176. [Google Scholar] [CrossRef] [PubMed]
- Bienefeld, N.; Keller, E.; Grote, G. Human-AI Teaming in Critical Care: A Comparative Analysis of Data Scientists’ and Clinicians’ Perspectives on AI Augmentation and Automation. J. Med. Internet Res. 2024, 26, e50130. [Google Scholar] [CrossRef] [PubMed]
- Alrassi, J.; Katsufrakis, P.J.; Chandran, L. Technology Can Augment, but Not Replace, Critical Human Skills Needed for Patient Care. Acad. Med. 2021, 96, 37–43. [Google Scholar] [CrossRef]
- Davoud, S.C.; Kovacheva, V.P. On the Horizon: Specific Applications of Automation and Artificial Intelligence in Anesthesiology. Curr. Anesth. Rep. 2023, 13, 31–40. [Google Scholar] [CrossRef]
- Owolabi, E.O.; Mac Quene, T.; Louw, J.; Davies, J.I.; Chu, K.M. Telemedicine in Surgical Care in Low- and Middle-Income Countries: A Scoping Review. World J. Surg. 2022, 46, 1855–1869. [Google Scholar] [CrossRef]
- Kamel Rahimi, A.; Pienaar, O.; Ghadimi, M.; Canfell, O.J.; Pole, J.D.; Shrapnel, S.; Van Der Vegt, A.H.; Sullivan, C. Implementing AI in Hospitals to Achieve a Learning Health System: Systematic Review of Current Enablers and Barriers. J. Med. Internet Res. 2024, 26, e49655. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Das, R.P.; Rosak-Szyrocka, J.; Żywiołek, J.; Muduli, K.; Prasad, M. Modeling Conceptual Framework for Implementing Barriers of AI in Public Healthcare for Improving Operational Excellence: Experiences from Developing Countries. Sustainability 2022, 14, 11698. [Google Scholar] [CrossRef]
- Kruk, M.E.; Gage, A.D.; Arsenault, C.; Jordan, K.; Leslie, H.H.; Roder-DeWan, S.; Adeyi, O.; Barker, P.; Daelmans, B.; Doubova, S.V.; et al. High-Quality Health Systems in the Sustainable Development Goals Era: Time for a Revolution. Lancet Glob. Health 2018, 6, e1196–e1252. [Google Scholar] [CrossRef]
- Han, Y.; Mannan, A.; Han, L.; Cao, J.-L. In Response. Anesth. Analg. 2019, 128, e80–e81. [Google Scholar] [CrossRef]
- Koller, D.; Beam, A.; Manrai, A.; Ashley, E.; Liu, X.; Gichoya, J.; Holmes, C.; Zou, J.; Dagan, N.; Wong, T.Y.; et al. Why We Support and Encourage the Use of Large Language Models in NEJM AI Submissions. NEJM AI 2024, 1, AIe2300128M. [Google Scholar] [CrossRef]
AI Application | Function | Benefit |
---|---|---|
Predictive Modeling [26] | Identifies surgical risks using patient data | Reduces anesthesia-related errors |
Closed-Loop Anesthesia Systems [14] | Automates anesthetic drug administration | Improves stability, reduces hypotension |
Machine Learning-Based Risk Assessment [25] | Predicts complications (hypotension, hypoxia) | Allows proactive interventions |
AI-Driven Inventory Management [26] | Automates drug and supply tracking) | Reduces distribution errors from 4% to 1% |
AI Application | Study Type | Function | Benefit |
---|---|---|---|
Sedasys System (computer-assisted propofol sedation) [30] | Multicenter randomized control trial (≈1000 patients, FDA-approved trial, U.S.) | Demonstrated safe delivery of moderate propofol sedation in low-risk patients; reduced anesthesiologist presence at bedside; comparable safety outcomes to conventional care. | Restricted to ASA I-II patients; excluded airway emergencies; not adaptable in complex cases; professional resistance; lack of reimbursement pathways; withdrawn from market despite FDA approval. |
McSleepy (closed-loop total intravenous anesthesia system) [30] | Pilot studies (single-center, <100 patients) | Automated propofol-remifentanil delivery achieved stable hemodynamics and adequate anesthesia; feasibility demonstrated. | Very small studies; limited generalizability; not validated in diverse or high-risk populations; requires specialized hardware. |
Closed loop anesthetic depth control (EEG-based BIS monitoring) [14] | Single-center RCTs (50–150 patients each) | Improved anesthetic depth stability; reduced anesthetic consumption; shortened emergence vs. manual titration. | Mostly controlled trial settings; small sample sizes; external validation lacking; not widely adopted in real-world OR environments. |
Predictive analytics for intraoperative hypotension (e.g., Hypotension Prediction Index) [31] | Observational studies + pilot trials | Predicts intraoperative hypotension minutes in advance with high AUC (>0.85); potential to allow earlier intervention. | Requires invasive arterial monitoring; prone to false positives; performance may degrade in novel populations; not yet integrated into standard practice. |
Machine learning for postoperative complications (e.g., AKI, delirium, ICU transfer) [5] | Retrospective observational studies (electronic health record datasets) | Achieved high predictive accuracy (AUC > 0.80) for risk stratification. | Trained on retrospective data; not prospectively validated; limited external generalizability; risk of overfitting. |
Tele-anesthesia and AI-guided anesthesia in low-resource settings [18] | Proof-of-concept reports; pilot implementations | Demonstrated feasibility of remote monitoring and AI-assisted monitoring and AI-assisted sedation in select LMIC contexts; potential to extend anesthesia services. | Very limited evidence; infrastructure gaps; clinician training barriers; high variability in implementation feasibility; ethical/legal frameworks underdeveloped. |
a | |||
---|---|---|---|
Feature | Sedasys | McSleepy | Manual Administration |
AI Involvement | Closed-loop, ML-based drug delivery | Automated propofol delivery via feedback loop | Human-guided drug titration |
Primary Function | Maintain anesthesia depth during surgery | Mild-to-moderate sedation for endoscopy | Flexible anesthetic management across case types |
Clinical Approval | Research prototype | FDA-approved (withdrawn) [30] | Gold standard; no special approval required |
Effectiveness in Routine procedures | High in controlled environments [15] | High—Reduced desaturation and faster recovery [30] | Effective when administered by trained anesthesiologists [17] |
Effectiveness in Complex Cases | Limited [15] | Not suitable for deep sedation or airy issues [31] | High adaptability for complex scenarios [17] |
Anesthesiologist Supervision Required | Yes | No—operated by non-anesthesia personnel [30] | Yes |
Risk of Complications | Low in simple cases [15] | Higher risk if unexpected complications arise [32] | Generally low with skilled providers [17] |
Market Adoption | Experimental use in academic settings | Poor—Withdrawn due to low market uptake [33] | Universal |
Limitations | Limited real-world scalability; lacks validation [15] | Cannot manage deep sedation; lacks responsiveness to emergencies [32,33] | Labor-intensive; subject to inter-provider variability |
b. | |||
Methods | Outcome | AI Performance | Traditional Method Performance |
Sedasys System (Propofol) | Maintenance of oxygen saturation | Reduced desaturation events (74%) [30] | Higher rate of desaturation events |
Closed-Loop TIVA in Cardiac Surgery | Automated anesthesia delivery | 80% of cases completed without manual intervention [15] | Manual adjustments required throughout |
Hypotension Prediction Models | Prediction of intraoperative hypotension | 89% accuracy in detecting bradycardia associated hypotension [35] | Traditional risk assessment methods are less precise |
Category | AI-Driven Management | Manual Management | Key Findings |
---|---|---|---|
Depth of Anesthesia (BIS) | Maintained BIS 40–60 in 75–89% of time | Maintained BIS 40–60 in 56–60% of time | Significantly improved depth control with AI |
Performance Error | MDPE—1.1%, MDAPE 9.1% | MDPE—10.7%, MDAPE 15.7% | More accurate propofol titration with AI [43] |
Induction to EtAA Target | Median time to target: 75 s | Median time: 158 s | Faster anesthetic onset with AI [44] |
Manual Interventions | 8 adjustments per case | 22 adjustments per case | Reduced intervention burden with AI [45] |
Moderate/Major Complications | 17% rate | 36% rate | Lower complication rates with AI [45] |
Predictive Accuracy | XGBoost AUC 0.95; Gradient Boosting AUC 0.912; Random Forest AUC 0.842 | No formal predictive model | ML models outperform manual judgment for AKI prediction [46] |
Ethical Challenge | Description | Potential Solution |
---|---|---|
Algorithmic Bias | AI models trained on biased datasets may lead to disparities in anesthesia management | More diverse training datasets, bias audits |
Liability and Accountability | Determining legal responsibilities for AI errors | Shared accountability models, regulatory frameworks |
Data Privacy Risks | AI requires vast amounts of patient data | Strong encryption, federated learning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giri, R.; Firdhos, S.H.; Vida, T.A. Artificial Intelligence in Anesthesia: Enhancing Precision, Safety, and Global Access Through Data-Driven Systems. J. Clin. Med. 2025, 14, 6900. https://doi.org/10.3390/jcm14196900
Giri R, Firdhos SH, Vida TA. Artificial Intelligence in Anesthesia: Enhancing Precision, Safety, and Global Access Through Data-Driven Systems. Journal of Clinical Medicine. 2025; 14(19):6900. https://doi.org/10.3390/jcm14196900
Chicago/Turabian StyleGiri, Rakshita, Shaik Huma Firdhos, and Thomas A. Vida. 2025. "Artificial Intelligence in Anesthesia: Enhancing Precision, Safety, and Global Access Through Data-Driven Systems" Journal of Clinical Medicine 14, no. 19: 6900. https://doi.org/10.3390/jcm14196900
APA StyleGiri, R., Firdhos, S. H., & Vida, T. A. (2025). Artificial Intelligence in Anesthesia: Enhancing Precision, Safety, and Global Access Through Data-Driven Systems. Journal of Clinical Medicine, 14(19), 6900. https://doi.org/10.3390/jcm14196900