Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = HF ocean radar accuracy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18730 KiB  
Article
Comparison of Surface Current Measurement Between Compact and Square-Array Ocean Radar
by Yu-Hsuan Huang and Chia-Yan Cheng
J. Mar. Sci. Eng. 2025, 13(4), 778; https://doi.org/10.3390/jmse13040778 - 14 Apr 2025
Viewed by 505
Abstract
High-frequency (HF) ocean radars have become essential tools for monitoring surface currents, offering real-time, wide-area coverage with cost-effectiveness. This study compares the compact CODAR system (MABT, 13 MHz) and the square-array phased-array radar (KNTN, 8 MHz) deployed at Cape Maobitou, Taiwan. Radial velocity [...] Read more.
High-frequency (HF) ocean radars have become essential tools for monitoring surface currents, offering real-time, wide-area coverage with cost-effectiveness. This study compares the compact CODAR system (MABT, 13 MHz) and the square-array phased-array radar (KNTN, 8 MHz) deployed at Cape Maobitou, Taiwan. Radial velocity measurements were evaluated against data from the Global Drifter Program (GDP), and a quality control (QC) mechanism was applied to improve the data’s reliability. The results indicated that KNTN provides broader spatial coverage, whereas MABT demonstrates higher precision in radial velocity measurements. Baseline velocity comparisons between MABT and KNTN revealed a correlation coefficient of 0.77 and a root-mean-square deviation (RMSD) of 0.23 m/s, which are consistent with typical values reported in previous radar performance evaluations. Drifter-based velocity comparisons showed an initial correlation of 0.49, with an RMSD of 0.43 m/s. In more stable oceanic regions, the correlation improved to 0.81, with the RMSD decreasing to 0.24 m/s. To clarify, this study does not include multiple environmental scenarios but focuses on cases where both radar systems operated simultaneously and where surface drifter data were available within the overlapping area. Comparisons are thus limited by these spatiotemporal conditions. Radar data may still be affected by environmental or human factors, such as ionospheric variations, interference from radio frequency management issues, or inappropriate parameter settings, which could reduce the accuracy and consistency of the observations. International ocean observing programs have developed quality management procedures to enhance data reliability. In Taiwan, the Taiwan Ocean Research Institute (TORI) has established a data quality management mechanism based on international standards for data filtering, noise reduction, and outlier detection, improving the accuracy and stability of radar-derived velocity measurements.To eliminate the effects caused by different center frequencies between MABT and KNTN, this study used the same algorithms and parameter settings as much as possible in all steps, from Doppler spectra processing to radial velocity calculation, ensuring the comparability of the data. This study highlights the strengths and limitations of compact and phased-array HF radar systems based on co-observed cases under consistent operational conditions. Future research should explore multi-frequency radar integration to enhance spatial coverage and measurement precision, improving real-time coastal current monitoring and operational forecasting. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

24 pages, 4581 KiB  
Article
Quality Assessment and Practical Interpretation of the Wave Parameters Estimated by HF Radars in NW Spain
by Ana Basañez, Pablo Lorente, Pedro Montero, Enrique Álvarez-Fanjul and Vicente Pérez-Muñuzuri
Remote Sens. 2020, 12(4), 598; https://doi.org/10.3390/rs12040598 - 11 Feb 2020
Cited by 14 | Viewed by 4152
Abstract
High-frequency (HF) radars are efficient tools for measuring vast areas and gathering ocean parameters in real-time. However, the accuracy of their wave estimates is under analysis. This paper presents a new methodology for analyzing and validating the wave data estimated by two CODAR [...] Read more.
High-frequency (HF) radars are efficient tools for measuring vast areas and gathering ocean parameters in real-time. However, the accuracy of their wave estimates is under analysis. This paper presents a new methodology for analyzing and validating the wave data estimated by two CODAR SeaSonde radars located on the Galician coast (NW Spain). Approximately one and a half years of wave data (January, 2014–April, 2015) were obtained for ten range cells employing two different sampling times used by the radar software. The resulting data were screened by an updated method, and their abundance and quality were described for each radar range cell and different wave regime; the latter were defined using the spectral significant wave height (Hm0) and mean wave direction (Dm) estimated by two buoys and three SIMAR points (SImulación MARina in Spanish, from the wave reanalysis model by Puertos del Estado (PdE)). The correlation between the results and the particularities of the different sea states (broadband or bimodal), the wind and the operation of the devices are discussed. Most HF radar wave parameters’ errors occur for waves from the NNE and higher than 6 m. The best agreement between the Vilán radar and the Vilano-Sisargas buoy wave data was obtained for the dominant wave regime (from the northwest) and the southwest wave regime. However, relevant contradictions regarding wave direction were detected. The possibilities of reducing the wave parameters’ processing time by one hour and increasing the numbers of range cells of the radars have been validated. Full article
(This article belongs to the Special Issue Synergy of Remote Sensing and Modelling Techniques for Ocean Studies)
Show Figures

Graphical abstract

28 pages, 7018 KiB  
Article
Measuring the Directional Ocean Spectrum from Simulated Bistatic HF Radar Data
by Rachael L. Hardman, Lucy R. Wyatt and Charles C. Engleback
Remote Sens. 2020, 12(2), 313; https://doi.org/10.3390/rs12020313 - 18 Jan 2020
Cited by 6 | Viewed by 4303
Abstract
HF radars are becoming important components of coastal operational monitoring systems particularly for currents and mostly using monostatic radar systems where the transmit and receive antennas are colocated. A bistatic configuration, where the transmit antenna is separated from the receive antennas, offers some [...] Read more.
HF radars are becoming important components of coastal operational monitoring systems particularly for currents and mostly using monostatic radar systems where the transmit and receive antennas are colocated. A bistatic configuration, where the transmit antenna is separated from the receive antennas, offers some advantages and has been used for current measurement. Currents are measured using the Doppler shift from ocean waves which are Bragg-matched to the radio signal. Obtaining a wave measurement is more complicated. In this paper, the theoretical basis for bistatic wave measurement with a phased-array HF radar is reviewed and clarified. Simulations of monostatic and bistatic radar data have been made using wave models and wave spectral data. The Seaview monostatic inversion method for waves, currents and winds has been modified to allow for a bistatic configuration and has been applied to the simulated data for two receive sites. Comparisons of current and wave parameters and of wave spectra are presented. The results are encouraging, although the monostatic results are more accurate. Large bistatic angles seem to reduce the accuracy of the derived oceanographic measurements, although directional spectra match well over most of the frequency range. Full article
(This article belongs to the Special Issue Bistatic HF Radar)
Show Figures

Graphical abstract

4 pages, 163 KiB  
Editorial
Editorial for Special Issue “Ocean Radar”
by Weimin Huang, Björn Lund and Biyang Wen
Remote Sens. 2019, 11(7), 834; https://doi.org/10.3390/rs11070834 - 8 Apr 2019
Viewed by 2717
Abstract
This Special Issue hosts papers related to ocean radars including the high-frequency (HF) surface wave and sky wave radars, X-, L-, K-band marine radars, airborne scatterometers, and altimeter. The topics covered by these papers include sea surface wind, wave and current measurements, new [...] Read more.
This Special Issue hosts papers related to ocean radars including the high-frequency (HF) surface wave and sky wave radars, X-, L-, K-band marine radars, airborne scatterometers, and altimeter. The topics covered by these papers include sea surface wind, wave and current measurements, new methodologies and quality control schemes for improving the estimation results, clutter and interference classification and detection, and optimal design as well as calibration of the sensors for better performance. Although different problems are tackled in each paper, their ultimate purposes are the same, i.e., to improve the capacity and accuracy of these radars in ocean monitoring. Full article
(This article belongs to the Special Issue Ocean Radar)
18 pages, 2643 KiB  
Article
Interoperability of Direction-Finding and Beam-Forming High-Frequency Radar Systems: An Example from the Australian High-Frequency Ocean Radar Network
by Simone Cosoli and Stuart de Vos
Remote Sens. 2019, 11(3), 291; https://doi.org/10.3390/rs11030291 - 1 Feb 2019
Cited by 9 | Viewed by 5031
Abstract
Direction-finding SeaSonde (4.463 MHz; 5.2625 MHz) and phased-array WEllen RAdar WERA (9.33 MHz; 13.5 MHz) High-frequency radar (HFR) systems are routinely operated in Australia for scientific research, operational modeling, coastal monitoring, fisheries, and other applications. Coverage of WERA and SeaSonde HFRs in Western [...] Read more.
Direction-finding SeaSonde (4.463 MHz; 5.2625 MHz) and phased-array WEllen RAdar WERA (9.33 MHz; 13.5 MHz) High-frequency radar (HFR) systems are routinely operated in Australia for scientific research, operational modeling, coastal monitoring, fisheries, and other applications. Coverage of WERA and SeaSonde HFRs in Western Australia overlap. Comparisons with subsurface currents show that both HFR types agree well with current meter records. Correlation (R), root-mean-squares differences (RMSDs), and mean bias (bias) for hourly-averaged radial currents range between R = (−0.03, 0.78), RMSD = (9.2, 30.3) cm/s, and bias = (−5.2, 5.2) cm/s for WERAs; and R = (0.1, 0.76), RMSD = (17.4, 33.6) cm/s, bias = (0.03, 0.36) cm/s for SeaSonde HFRs. Pointing errors (θ) are in the range θ = (1°, 21°) for SeaSonde HFRs, and θ = (3°, 8°) for WERA HFRs. For WERA HFR current components, comparison metrics are RU = (−0.12, 0.86), RMSDU = (12.3, 15.7) cm/s, biasU = (−5.1, −0.5) cm/s; and, RV = (0.61, 0.86), RMSDV = (15.4, 21.1) cm/s, and biasV = (−0.5, 9.6) cm/s for the zonal (u) and the meridional (v) components. Magnitude and phase angle for the vector correlation are ρ = (0.58, 0.86), φ = (−10°, 28°). Good match was found in a direct comparison of SeaSonde and WERA HFR currents in their overlap (ρ = (0.19, 0.59), φ = (−4°, +54°)). Comparison metrics at the mooring slightly decrease when SeaSonde HFR radials are combined with WERA HFR: scalar (vector) correlations for RU, V, (ρ) are in the range RU = (−0.20, 0.83), RV = (0.39, 0.79), ρ = (0.47, 0.72). When directly compared over the same grid, however, vectors from WERA HFR radials and vectors from merged SeaSonde–WERA show RU (RV) exceeding 0.9 (0.7) within the HFR grid. Despite the intrinsic differences between the two types of radars used here, findings show that different HFR genres can be successfully merged, thus increasing current mapping capability of the existing HFR networks, and minimising operational downtime, however at a likely cost of slightly decreased data quality. Full article
(This article belongs to the Special Issue Ocean Radar)
Show Figures

Figure 1

16 pages, 5901 KiB  
Article
Wind Direction Inversion from Narrow-Beam HF Radar Backscatter Signals in Low and High Wind Conditions at Different Radar Frequencies
by Wei Shen and Klaus-Werner Gurgel
Remote Sens. 2018, 10(9), 1480; https://doi.org/10.3390/rs10091480 - 16 Sep 2018
Cited by 15 | Viewed by 4861
Abstract
Land-based, high-frequency (HF) surface wave radar has the unique capability of monitoring coastal surface parameters, such as current, waves, and wind, up to 200 km off the coast. The Doppler spectrum of the backscattered radar signal is characterized by two strong peaks that [...] Read more.
Land-based, high-frequency (HF) surface wave radar has the unique capability of monitoring coastal surface parameters, such as current, waves, and wind, up to 200 km off the coast. The Doppler spectrum of the backscattered radar signal is characterized by two strong peaks that are caused by the Bragg-resonant scattering from the ocean surface. The wavelength of Bragg resonant waves is exactly half the radio wavelength (grazing incidence), and these waves are located at the higher frequency part of the wave spectral distribution. When HF radar operates at higher frequencies, the resonant waves are relatively shorter waves, which are more sensitive to a change in wind direction, and they rapidly respond to local wind excitation and a change in wind direction. When the radar operates at lower frequencies, the corresponding resonant waves are relatively longer and take longer time to respond to a change in wind direction due to the progress of wave growth from short waves to long waves. For the wind inversion from HF radar backscatter signals, the accuracy of wind measurement is also relevant to radar frequency. In this paper, a pattern-fitting method for extracting wind direction by estimating the wave spreading parameter is presented, and a comparison of the pattern-fitting method and a conventional method is given as well, which concludes that the pattern-fitting method presents better results than the conventional method. In order to analyze the wind direction inversion from radar backscatter signals under different wind conditions and at different radar frequencies, two radar experiments accomplished in Norway and Italy are introduced, and the results of wind direction inversion are presented. In the two experiments, the radar worked at 27.68 MHz and 12 MHz, respectively, and the wind conditions at the sea surface were quite different. In the experiment in Norway, 67.4% of the wind records were higher than 5 m/s, while, in the experiment in Italy, only 18.9% of the wind records were higher than 5 m/s. All these factors affect the accuracy of wind direction inversion. The paper analyzes the radar data and draws a conclusion on the influencing factor of wind direction inversion. Full article
(This article belongs to the Special Issue Ocean Radar)
Show Figures

Graphical abstract

27 pages, 16107 KiB  
Article
The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site
by Lei Ren, Diarmuid Nagle, Michael Hartnett and Stephen Nash
Energies 2017, 10(12), 2114; https://doi.org/10.3390/en10122114 - 12 Dec 2017
Cited by 6 | Viewed by 4895
Abstract
The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to [...] Read more.
The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1) using wind data measured onshore on the NUI Galway campus (NUIG) and (2) using offshore wind data provided by a high resolution wind model (HR). A scenario with no wind forcing (NW) was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF) radar Coastal Ocean Dynamics Applications Radar (CODAR) observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing. Full article
Show Figures

Graphical abstract

Back to TopTop