Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = HERC2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3707 KiB  
Article
Genome-Wide CRISPR-Cas9 Knockout Screening Identifies NUDCD2 Depletion as Sensitizer for Bortezomib, Carfilzomib and Ixazomib in Multiple Myeloma
by Sophie Vlayen, Tim Dierckx, Marino Caruso, Swell Sieben, Kim De Keersmaecker, Dirk Daelemans and Michel Delforge
Hemato 2025, 6(3), 21; https://doi.org/10.3390/hemato6030021 - 16 Jul 2025
Viewed by 353
Abstract
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated [...] Read more.
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated with drug resistance or sensitization to proteasome inhibitors. Methods: We performed genome-wide CRISPR-Cas9 knockout (KO) screens in human KMS-28-BM myeloma cells to identify genetic determinants associated with resistance or sensitization to proteasome inhibitors. Results: We show that KO of KLF13 and PSMC4 induces drug resistance, while NUDCD2, OSER1 and HERC1 KO cause drug sensitization. Subsequently, we focused on top sensitization hit, NUDCD2, which acts as a co-chaperone of Hsp90 to regulate the LIS1/dynein complex. RNA sequencing showed downregulation of genes involved in the ERAD pathway and in ER-associated ubiquitin-dependent protein catabolic processes in both untreated and carfilzomib-treated NUDCD2 KO cells, suggesting that NUDCD2 depletion alters protein degradation. Furthermore, bortezomib-treated NUDCD2 KO cells showed a decreased expression of genes that have a function in oxidative phosphorylation and the mitochondrial membrane, such as Carnitine Palmitoyltransferase 1A (CPT1A). CPT1A catalyzes the uptake of long chain fatty acids into mitochondria. Mitochondrial lipid metabolism has recently been reported as a possible therapeutic target for MM drug sensitivity. Conclusions: These results contribute to the search for therapeutic targets that can sensitize MM patients to proteasome inhibitors. Full article
(This article belongs to the Section Plasma Cell Disorders)
Show Figures

Figure 1

17 pages, 691 KiB  
Article
Polygenic Risk Score Analysis of 37 SNPs Associated with Melanoma Risk in Colombian Population
by David Tovar-Parra and Luz Dary Gutiérrez-Castañeda
Int. J. Mol. Sci. 2025, 26(10), 4674; https://doi.org/10.3390/ijms26104674 - 14 May 2025
Viewed by 524
Abstract
Melanoma incidence is increasing, with distinct genetic and clinical patterns observed in the Latin American population. This study aimed to evaluate melanoma risk in a Colombian cohort through polygenic risk analysis using 37 variants across nine genes previously associated with melanoma. We performed [...] Read more.
Melanoma incidence is increasing, with distinct genetic and clinical patterns observed in the Latin American population. This study aimed to evaluate melanoma risk in a Colombian cohort through polygenic risk analysis using 37 variants across nine genes previously associated with melanoma. We performed polygenic risk score (PRS) analysis on 85 melanoma patients and 165 controls. Genotyping was performed for 37 melanoma-associated SNPs, and on the basis of previous GWAS reports, individual PRSs were calculated for each participant. The participants were then stratified into quartiles to examine risk gradients. In addition, phenotypic features such as eye and hair color were evaluated, and genetic models and haplotype analyses were performed, adjusting for sex and family history of cancer. PRS quartile stratification revealed a clear risk gradient. Notably, 31.8% of the melanoma cases were clustered in the highest-risk quartile (Q4), with a maximum PRS of 1.04. Variants in TYR, TYRP1, CDKN2A, and HERC2 significantly contributed to risk, and light brown eye and hair colors were strongly associated with increased melanoma risk. Moreover, a protective haplotype in the OCA2-HERC2 region was identified among males. The integration of the PRS with clinical and phenotypic factors has potential for improving melanoma risk stratification in the Colombian population, warranting further investigation in larger, diverse cohorts. Full article
(This article belongs to the Special Issue Advances in Melanoma and Skin Cancers: 2nd Edition)
Show Figures

Figure 1

17 pages, 1350 KiB  
Review
Regulatory Roles of E3 Ubiquitin Ligases and Deubiquitinases in Bone
by Haotian He, Lifei Wang, Bao Xian and Yayi Xia
Biomolecules 2025, 15(5), 679; https://doi.org/10.3390/biom15050679 - 7 May 2025
Viewed by 766
Abstract
E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) are pivotal regulators of bone homeostasis, orchestrating osteoblast differentiation, proliferation, and osteoclast activity by controlling protein degradation and stability. This review delineates the roles of key E3 ligases (e.g., Smurf1, Smurf2, TRIM family) and DUBs (e.g., [...] Read more.
E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) are pivotal regulators of bone homeostasis, orchestrating osteoblast differentiation, proliferation, and osteoclast activity by controlling protein degradation and stability. This review delineates the roles of key E3 ligases (e.g., Smurf1, Smurf2, TRIM family) and DUBs (e.g., USP family) in bone formation and resorption. E3 ligases such as Smurf1/2 inhibit osteogenesis by degrading BMP/Smad signaling components, while TRIM proteins and HERC ligases promote osteoblast differentiation. Conversely, DUBs like USP2 and USP34 stabilize β-catenin and Smad1/RUNX2, enhancing osteogenic pathways, whereas USP10 and USP12 suppress differentiation. Dysregulation of these enzymes contributes to osteoporosis, fracture non-union, and other bone disorders. The interplay between ubiquitination and deubiquitination, alongside the regulatory role of miRNA and environmental factors, underscores their therapeutic potential. Future research should focus on developing therapies targeting E3 ubiquitin ligases, deubiquitinases, miRNA regulators, and small-molecule inhibitors to restore bone homeostasis in osteoporosis and fracture healing disorders. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 238 KiB  
Article
Clinical-Genetic Approach to Conditions with Macrocephaly and ASD/Behaviour Abnormalities: Variants in PTEN and PPP2R5D Are the Most Recurrent Gene Mutations in a Patient-Oriented Diagnostic Strategy
by Federica Francesca L’Erario, Annalisa Gazzellone, Ilaria Contaldo, Chiara Veredice, Marina Carapelle, Anna Gloria Renzi, Clarissa Modafferi, Marta Palucci, Pino D’Ambrosio, Elena Sonnini, Lorenzo Loberti, Arianna Panfili, Emanuela Lucci Cordisco, Pietro Chiurazzi, Valentina Trevisan, Chiara Leoni, Giuseppe Zampino, Maria Grazia Pomponi, Daniela Orteschi, Marcella Zollino and Giuseppe Marangiadd Show full author list remove Hide full author list
Genes 2025, 16(4), 469; https://doi.org/10.3390/genes16040469 - 20 Apr 2025
Viewed by 815
Abstract
Background: Macrocephaly can be a component manifestation of several monogenic conditions, in association with intellectual disability/developmental delay (ID/DD) behaviour abnormalities, including autism spectrum disorders (ASD), and variable additional features. On the other hand, idiopathic ASD can present with developmental delay and macrocephaly. Methods: [...] Read more.
Background: Macrocephaly can be a component manifestation of several monogenic conditions, in association with intellectual disability/developmental delay (ID/DD) behaviour abnormalities, including autism spectrum disorders (ASD), and variable additional features. On the other hand, idiopathic ASD can present with developmental delay and macrocephaly. Methods: We carried out a retrospective analysis of a cohort of 78 patients who were tested from February 2017 to December 2024 by high-throughput sequencing of a panel of 27 genes (ABCC9, AKT1, AKT2, AKT3, BRWD3, DIS3L2, DNMT3A, EZH2, GPC3, GPC4, HERC1, MED12, MTOR, NFIA, NFIX, NSD1, PDGFRB, PIK3CA, PIK3R1, PIK3R2, PPP2R1A, PPP2R5D, PTEN, RAB39B, RNF135, SETD2, and TBC1D7) because of neurodevelopmental impairment, including ID/DD, ASD/behaviour abnormalities associated with macrocephaly, mimicking to a large extent idiopathic ASD. Results: Pathogenic variants leading to the diagnosis of monogenic conditions were detected in 22 patients (28%), including NSD1 (2), PTEN (16), and PPP2R5D (4). Distinctive of the PTEN-associated phenotype were true macrocephaly (100%), ASD or behaviour abnormalities (92%), mild/borderline ID (79%), and no facial dysmorphisms. Typical of the PPP2R5D-associated phenotype were relative macrocephaly (75%), a few unspecific peculiar facial characteristics (50%), and a more variable presentation of the neurodevelopmental phenotype. Conclusions: Pathogenic variants in PTEN and PPP2R5D are the most recurrent gene mutations in a patient-oriented procedure for the genetic diagnosis of apparently idiopathic ASD and behaviour abnormalities associated with macrocephaly. The clinical applicability of the presented diagnostic strategy is discussed. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
25 pages, 2272 KiB  
Review
The Influencing Factors and Future Development of Energy Consumption and Carbon Emissions in Urban Households: A Review of China’s Experience
by Qinfeng Zhao, Shan Huang, Tian Wang, Yi Yu, Yuhan Wang, Yonghua Li and Weijun Gao
Appl. Sci. 2025, 15(6), 2961; https://doi.org/10.3390/app15062961 - 10 Mar 2025
Cited by 2 | Viewed by 1181
Abstract
Household energy consumption is one of the major drivers of carbon emissions, and an in-depth analysis of its influencing factors, along with forecasting carbon emission trajectories, is crucial for achieving China’s carbon emission targets. This study reviews the research progress on urban household [...] Read more.
Household energy consumption is one of the major drivers of carbon emissions, and an in-depth analysis of its influencing factors, along with forecasting carbon emission trajectories, is crucial for achieving China’s carbon emission targets. This study reviews the research progress on urban household energy-related carbon emissions (HErC) in China since 2000, with a focus on the latest developments in influencing factors. The study categorizes these factors into five major groups: household characteristics, economic attributes, energy consumption features, awareness and norms, and policies and interventions. The findings indicate that income levels, energy efficiency, and household size are the key determinants of urban HErC of China and are commonly used as core assumptions in scenario-based forecasts of emission trends. In addition, although environmental awareness and government services have increasingly garnered attention, their specific effects require further investigation due to the challenges in quantification. A synthesis of existing forecasting studies suggests that, without the implementation of effective measures, HErC will continue to rise, and the peak emission period will be delayed. Enhancing building and energy efficiency, promoting low-carbon consumption and clean energy applications, and implementing multidimensional coordinated policies are considered the most effective pathways for emission reduction. Full article
Show Figures

Figure 1

19 pages, 3061 KiB  
Article
Association of Genetic Polymorphisms in SLC45A2, TYR, HERC2, and SLC24A in African Women with Melasma: A Pilot Study
by Nomakhosi Mpofana, Zinhle Pretty Mlambo, Mokgadi Ursula Makgobole, Ncoza Cordelia Dlova and Thajasvarie Naicker
Int. J. Mol. Sci. 2025, 26(3), 1158; https://doi.org/10.3390/ijms26031158 - 29 Jan 2025
Viewed by 2061
Abstract
Melasma is a chronic skin disorder characterized by hyperpigmentation, predominantly affecting women with darker skin types, including those of African descent. This study investigates the association between genetic variants in SLC45A2, TYR, HERC2, and SLC24A5 genes and the severity of [...] Read more.
Melasma is a chronic skin disorder characterized by hyperpigmentation, predominantly affecting women with darker skin types, including those of African descent. This study investigates the association between genetic variants in SLC45A2, TYR, HERC2, and SLC24A5 genes and the severity of melasma in women of reproductive age. Forty participants were divided into two groups: twenty with facial melasma and twenty without. Deoxyribonucleic acid (DNA) was extracted from blood samples and genotyped using TaqMan assays to identify allele frequencies and genotype distributions. Significant associations were observed for the TYR gene (rs1042602), HERC2 gene (rs1129038), and SLC24A5 gene (rs1426654) polymorphisms, highlighting their potential roles in melasma susceptibility. For example, the rs1042602 Single Nucleotide Polymorphisms (SNP) in the TYR gene showed a strong association with melasma, with the AA genotype conferring a markedly increased risk. Similarly, the rs1129038 SNP in the HERC2 gene and the rs1426654 SNP in the SLC24A5 gene revealed significant genetic variations between groups in women of African descent. These findings underscore the influence of genetic polymorphisms on melasma’s pathogenesis, emphasizing the need for personalized approaches to its treatment, particularly for women with darker skin types. Full article
(This article belongs to the Special Issue Molecular Research Progress of Skin and Skin Diseases: 2nd Edition)
Show Figures

Figure 1

14 pages, 3034 KiB  
Article
HERC1 E3 Ubiquitin Ligase Is Necessary for Autophagy Processes and for the Maintenance and Homeostasis of Vesicles in Motor Nerve Terminals, but Not for Proteasomal Activity
by Miguel Ángel Pérez-Castro, Francisco Hernández-Rasco, Isabel María Alonso-Bellido, María S. Letrán-Sánchez, Eva María Pérez-Villegas, Joana Vitallé, Luis Miguel Real, Ezequiel Ruiz-Mateos, José Luis Venero, Lucía Tabares, Ángel Manuel Carrión, José Ángel Armengol, Sara Bachiller and Rocío Ruiz
Int. J. Mol. Sci. 2025, 26(2), 793; https://doi.org/10.3390/ijms26020793 - 18 Jan 2025
Viewed by 1157
Abstract
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection [...] Read more.
The ubiquitin proteasome system (UPS) is implicated in protein homeostasis. One of the proteins involved in this system is HERC1 E3 ubiquitin ligase, which was associated with several processes including the normal development and neurotransmission at the neuromuscular junction (NMJ), autophagy in projection neurons, myelination of the peripheral nervous system, among others. The tambaleante (tbl) mouse model carries the spontaneous mutation Gly483Glu substitution in the HERC1 E3 protein. Using this model, we analyzed the implication of HERC1 E3 ubiquitin ligase in the activity of UPS, autophagy, and synaptic homeostasis in brain and muscle tissues. Regarding UPS, no differences were found in its activity nor in the specific gene expression in both brain and muscle tissues from tbl compared with the control littermates. Furthermore, the use of the specific UPS inhibitor (MG-132), did not alter the evoked neurotransmitter release in the levator auris longus (LAL) muscle. Interestingly, the expression of the autophagy-related gene p62 was significantly increased in the muscle of tbl compared to the control littermates. Indeed, impaired evoked neurotransmitter release was observed with the autophagy inhibitor Wortmannin. Finally, altered levels of Clathrin and Synaptophysin were detected in muscle tissues. Altogether, our findings show that HERC1 E3 ubiquitin ligase mutation found in tbl mice alters autophagy and vesicular recycling without affecting proteasomal function. Full article
(This article belongs to the Special Issue Molecular and Neuromuscular Mechanisms in Skeletal Muscle Aging)
Show Figures

Figure 1

18 pages, 1712 KiB  
Article
Genomic Analysis of Sarda Sheep Raised at Diverse Temperatures Highlights Several Genes Involved in Adaptations to the Environment and Heat Stress Response
by Giustino Gaspa, Alberto Cesarani, Alfredo Pauciullo, Ilaria Peana and Nicolò P. P. Macciotta
Animals 2024, 14(24), 3585; https://doi.org/10.3390/ani14243585 - 12 Dec 2024
Cited by 2 | Viewed by 1319
Abstract
Livestock expresses complex traits influenced by several factors. The response of animals to variations in climatic factors, such as increases in temperature, may induce heat stress conditions. In this study, animals living at different temperatures were compared using the genome-wide Wright fixation index [...] Read more.
Livestock expresses complex traits influenced by several factors. The response of animals to variations in climatic factors, such as increases in temperature, may induce heat stress conditions. In this study, animals living at different temperatures were compared using the genome-wide Wright fixation index (FST). A total of 825 genotypes of Sarda breed ewes were divided into two groups based on the flocks’ average temperature over a 20-year period to compute the FST: 395 and 430 sheep were represented in colder and hotter groups, respectively. After LOWESS regression and CONTROL CHART application, 623 significant markers and 97 selection signatures were found. A total of 280 positional candidate genes were retrieved from a public database. Among these genomic regions, we found 51 annotated genes previously associated with heat stress/tolerance in ruminants (FCGR1A, MDH1, UGP2, MYO1G, and HSPB3), as well as immune response and cellular mechanisms related to how animals cope with thermal stress (RIPK1, SERPINB1, SERPINB9, and PELI1). Moreover, other genes were associated with milk fat (SCD, HERC3, SCFD2, and CHUK), body weight, body fat, and intramuscular fat composition (AGPAT2, ABCD2, MFAP32, YTHDC1, SIRT3, SCD, and RNF121), which might suggest the influence of environmental conditions on the genome of Sarda sheep. Full article
Show Figures

Figure 1

14 pages, 3723 KiB  
Article
Fish HERC7: Phylogeny, Characterization, and Potential Implications for Antiviral Immunity in European Sea Bass
by Yulema Valero, Elena Chaves-Pozo and Alberto Cuesta
Int. J. Mol. Sci. 2024, 25(14), 7751; https://doi.org/10.3390/ijms25147751 - 15 Jul 2024
Cited by 2 | Viewed by 1223
Abstract
E3 ubiquitin ligases, key components of the ubiquitin proteasome system, orchestrate protein degradation through ubiquitylation and profoundly impact cellular biology. Small HERC E3 ligases (HERC3-6) have diverse functions in mammals, including roles in spermatogenesis, protein degradation, and immunity. Until now, only mammals’ HERC3, [...] Read more.
E3 ubiquitin ligases, key components of the ubiquitin proteasome system, orchestrate protein degradation through ubiquitylation and profoundly impact cellular biology. Small HERC E3 ligases (HERC3-6) have diverse functions in mammals, including roles in spermatogenesis, protein degradation, and immunity. Until now, only mammals’ HERC3, HERC5, and HERC6 are known to participate in immune responses, with major involvement in the antiviral response. Interestingly, an exclusive HERC7 has been characterized in fish showing great molecular conservation and antiviral roles. Thus, this study identifies and characterizes the herc7 gene in the European sea bass teleost. The European sea bass herc7 gene and the putative protein show good conservation of the promoter binding sites for interferons and the RCC1 and HECT domains characteristic of HERC proteins, respectively. The phylogenetic analysis shows a unique cluster with the fish-exclusive HERC7 orthologues. During ontogeny, the herc7 gene is expressed from 3 days post-fertilization onwards, being constitutively and widely distributed in adult tissues. In vitro, stimulated leucocytes up-regulate the herc7 gene in response to mitogens and viruses, pointing to a role in the immune response. Furthermore, sea bass herc7 expression is related to the interferon response intensity and viral load in different tissues upon in vivo infection with red-grouper betanodavirus (RGNNV), suggesting the potential involvement of fish HERC7 in ISGylation-based antiviral activity, similarly to mammalian HERC5. This study broadens the understanding of small HERC proteins in fish species and highlights HERC7 as a potential contributor to the immune response in European sea bass, with implications for antiviral defense mechanisms. Future research is needed to unravel the precise actions and functions of HERC7 in teleost fish immunity, providing insights into direct antiviral activity and viral evasion. Full article
(This article belongs to the Special Issue Fish Immunology: 4th Edition)
Show Figures

Figure 1

16 pages, 2344 KiB  
Article
Genomic Characterization of Local Croatian Sheep Breeds-Effective Population Size, Inbreeding & Signatures of Selection
by Jelena Ramljak, Marija Špehar, Dora Ceranac, Valentino Držaić, Ivan Pocrnić, Dolores Barać, Boro Mioč, Ivan Širić, Zdravko Barać, Ante Ivanković and Ante Kasap
Animals 2024, 14(13), 1928; https://doi.org/10.3390/ani14131928 - 29 Jun 2024
Cited by 8 | Viewed by 1653
Abstract
The Istrian (IS) and the Pag sheep (PS) are local Croatian breeds which provide significant income for the regional economy and have a cultural and traditional importance for the inhabitants. The aim of this study was to estimate some important population specific genetic [...] Read more.
The Istrian (IS) and the Pag sheep (PS) are local Croatian breeds which provide significant income for the regional economy and have a cultural and traditional importance for the inhabitants. The aim of this study was to estimate some important population specific genetic parameters in IS (N = 1293) and PS (N = 2637) based on genome wide SNPs. Estimates of linkage disequilibrium effective population size (Ne) evidenced more genetic variability in PS (Ne = 838) compared to IS (Ne = 197), regardless of historical time (both recent and ancient genetic variability). The discrepancy in the recent genetic variability between these breeds was additionally confirmed by the estimates of genomic inbreeding (FROH), which was estimated to be notably higher in IS (FROH>2 = 0.062) than in PS (FROH>2 = 0.029). The average FROH2–4, FROH4–8, FROH8–16, and FROH>16 were 0.26, 1.65, 2.14, and 3.72 for IS and 0.22, 0.61, 0.75, and 1.58 for PS, thus evidencing a high contribution of recent inbreeding in the overall inbreeding. One ROH island with > 30% of SNP incidence in ROHs was detected in IS (OAR6; 34,253,440–38,238,124 bp) while there was no ROH islands detected in PS. Seven genes (CCSER1, HERC3, LCORL, NAP1L5, PKD2, PYURF, and SPP1) involved in growth, feed intake, milk production, immune responses, and resistance were associated with the found autozygosity. The results of this study represent the first comprehensive insight into genomic variability of these two Croatian local sheep breeds and will serve as a baseline for setting up the most promising strategy of genomic Optimum Contribution Selection. Full article
(This article belongs to the Special Issue The Role of Genetics and Breeding in Livestock Management)
Show Figures

Figure 1

15 pages, 3730 KiB  
Article
The Chromatin Organization Close to SNP rs12913832, Involved in Eye Color Variation, Is Evolutionary Conserved in Vertebrates
by Desiree Brancato, Francesca Bruno, Elvira Coniglio, Valentina Sturiale, Salvatore Saccone and Concetta Federico
Int. J. Mol. Sci. 2024, 25(12), 6602; https://doi.org/10.3390/ijms25126602 - 15 Jun 2024
Cited by 2 | Viewed by 2849
Abstract
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional [...] Read more.
The most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the HERC2 gene, which interacts with the promoter region of the contiguous OCA2 gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of OCA2, directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions. In this study, we investigated the organization of the chromatin close to the HERC2/OCA2 locus in human lymphocyte nuclei using fluorescence in situ hybridization (FISH) and high-throughput chromosome conformation capture (Hi-C) data. The 3 Mb of genomic DNA that belonged to the chromosomal region 15q12-q13.1 revealed the presence of three contiguous chromatin loops, which exhibited a different level of compaction depending on the presence of the A or G allele in the SNP rs12913832. Moreover, the analysis of the genomic organization of the genes has demonstrated that this chromosomal region is evolutionarily highly conserved, as evidenced by the analysis of syntenic regions in species from other Vertebrate classes. Thus, the role of rs12913832 variant is relevant not only in determining the transcriptional activation of the OCA2 gene but also in the chromatin compaction of a larger region, underscoring the critical role of chromatin organization in the proper regulation of the involved genes. It is crucial to consider the broader implications of this finding, especially regarding the potential regulatory role of similar polymorphisms located within intronic regions, which do not influence the same gene by modulating the splicing process, but they regulate the expression of adjacent genes. Therefore, caution should be exercised when utilizing whole-exome sequencing for diagnostic purposes, as intron sequences may provide valuable gene regulation information on the region where they reside. Thus, future research efforts should also be directed towards gaining a deeper understanding of the precise mechanisms underlying the role and mode of action of intronic SNPs in chromatin loop organization and transcriptional regulation. Full article
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Exosomal miRNA Changes Associated with Restoration to Sinus Rhythm in Atrial Fibrillation Patients
by Pei-Chien Tsai, Albert Min-Shan Ko, Yu-Lin Chen, Cheng-Hsun Chiu, Yung-Hsin Yeh and Feng-Chun Tsai
Int. J. Mol. Sci. 2024, 25(7), 3861; https://doi.org/10.3390/ijms25073861 - 29 Mar 2024
Cited by 2 | Viewed by 1977
Abstract
We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF [...] Read more.
We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF patients at Chang Gung Memorial Hospital in Taiwan both immediately before and within 14 days following rhythm control treatment. Exosomes were isolated from these samples, and small RNA sequencing was performed. Using DESeq2 analysis, we identified nine miRNAs (16-2-3p, 22-3p, 23a-3p, 23b-3p, 125a-5p, 328-3p, 423-5p, 504-5p, and 582-3p) associated with restoration to SR. Further analysis using the DIABLO model revealed a correlation between the decreased expression of miR-125a-5p and miR-328-3p and the early recurrence of AF. Furthermore, early recurrence is associated with a longer duration of AF, presumably indicating a more extensive state of underlying cardiac remodeling. In addition, the reads were mapped to mRNA sequences, leading to the identification of 14 mRNAs (AC005041.1, ARHGEF12, AMT, ANO8, BCL11A, DIO3OS, EIF4ENIF1, G2E3-AS1, HERC3, LARS, NT5E, PITX1, SLC16A12, and ZBTB21) associated with restoration to SR. Monitoring these serum exosomal miRNA and mRNA expression patterns may be beneficial for optimizing treatment outcomes in AF patients. Full article
(This article belongs to the Special Issue Genetic Research in Cardiac Diseases)
Show Figures

Figure 1

17 pages, 7380 KiB  
Article
Unveiling Shared Immune Responses in Porcine Alveolar Macrophages during ASFV and PRRSV Infection Using Single-Cell RNA-seq
by Bo Jiang, Lu Li, Yu Wu, Xiaoying Wang, Ning Gao, Zhichao Xu, Chunhe Guo, Sheng He, Guihong Zhang, Yaosheng Chen, Xiaohong Liu and Zhengcao Li
Microorganisms 2024, 12(3), 563; https://doi.org/10.3390/microorganisms12030563 - 12 Mar 2024
Cited by 5 | Viewed by 3154
Abstract
African swine fever virus (ASFV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections lead to severe respiratory diseases in pigs, resulting in significant economic losses for the global swine industry. While numerous studies have focused on specific gene functions or pathway activities [...] Read more.
African swine fever virus (ASFV) and porcine reproductive and respiratory syndrome virus (PRRSV) infections lead to severe respiratory diseases in pigs, resulting in significant economic losses for the global swine industry. While numerous studies have focused on specific gene functions or pathway activities during infection, an investigation of shared immune responses in porcine alveolar macrophages (PAMs) after ASFV and PRRSV infections was lacking. In this study, we conducted a comparison using two single-cell transcriptomic datasets generated from PAMs under ASFV and PRRSV infection. Pattern recognition receptors (PRRs) RIG-I (DDX58), MDA5 (IFIH1), and LGP2 (DHX58) were identified as particularly recognizing ASFV and PRRSV, triggering cellular defense responses, including the upregulation of four cytokine families (CCL, CXCL, IL, and TNF) and the induction of pyroptosis. Through weighted gene co-expression network analysis and protein–protein interaction analysis, we identified thirteen gene and protein interactions shared by both scRNA-seq analyses, suggesting the ability to inhibit both ASFV and PRRSV viral replication. We discovered six proteins (PARP12, PARP14, HERC5, DDX60, RSAD2, and MNDA) in PAMs as inhibitors of ASFV and PRRSV replication. Collectively, our findings showed detailed characterizations of the immune responses in PAMs during ASFV and PRRSV infections, which may facilitate the treatments of these viral diseases. Full article
(This article belongs to the Special Issue Clinical Viral Infections and Autoimmunity)
Show Figures

Figure 1

16 pages, 5266 KiB  
Article
Structural Variation Evolution at the 15q11-q13 Disease-Associated Locus
by Annalisa Paparella, Alberto L’Abbate, Donato Palmisano, Gerardina Chirico, David Porubsky, Claudia R. Catacchio, Mario Ventura, Evan E. Eichler, Flavia A. M. Maggiolini and Francesca Antonacci
Int. J. Mol. Sci. 2023, 24(21), 15818; https://doi.org/10.3390/ijms242115818 - 31 Oct 2023
Cited by 7 | Viewed by 1926
Abstract
The impact of segmental duplications on human evolution and disease is only just starting to unfold, thanks to advancements in sequencing technologies that allow for their discovery and precise genotyping. The 15q11-q13 locus is a hotspot of recurrent copy number variation associated with [...] Read more.
The impact of segmental duplications on human evolution and disease is only just starting to unfold, thanks to advancements in sequencing technologies that allow for their discovery and precise genotyping. The 15q11-q13 locus is a hotspot of recurrent copy number variation associated with Prader–Willi/Angelman syndromes, developmental delay, autism, and epilepsy and is mediated by complex segmental duplications, many of which arose recently during evolution. To gain insight into the instability of this region, we characterized its architecture in human and nonhuman primates, reconstructing the evolutionary history of five different inversions that rearranged the region in different species primarily by accumulation of segmental duplications. Comparative analysis of human and nonhuman primate duplication structures suggests a human-specific gain of directly oriented duplications in the regions flanking the GOLGA cores and HERC segmental duplications, representing potential genomic drivers for the human-specific expansions. The increasing complexity of segmental duplication organization over the course of evolution underlies its association with human susceptibility to recurrent disease-associated rearrangements. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases)
Show Figures

Figure 1

18 pages, 1498 KiB  
Review
Forensic DNA Phenotyping: Genes and Genetic Variants for Eye Color Prediction
by Desiree Brancato, Elvira Coniglio, Francesca Bruno, Vincenzo Agostini, Salvatore Saccone and Concetta Federico
Genes 2023, 14(8), 1604; https://doi.org/10.3390/genes14081604 - 10 Aug 2023
Cited by 9 | Viewed by 8911
Abstract
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, [...] Read more.
In recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the HERC2-OCA2 locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the HERC2-OCA2 locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates. Currently, there are some genetic panels to predict eye color by genomic DNA analysis, even if the exact role of the SNP variants in the formation of eye color is still poorly understood, with a low level of predictivity in the so-called intermediate eye color. Many variants in OCA2, HERC2, and other genes lie in introns or correspond to synonymous variants, highlighting greater complexity in the mechanism of action of such genes than a simple missense variation. Here, we show the main genes involved in oculocutaneous pigmentation and their structural and functional features, as well as which genetic variants show the highest level of eye color predictivity in currently used FDP assays. Despite the great recent advances and impact of FDP in criminal cases, it is necessary to enhance scientific research to better understand the mechanism of action behind each genetic variant involved in eye color, with the goal of obtaining higher levels of prediction. Full article
(This article belongs to the Special Issue Genome Evolution)
Show Figures

Figure 1

Back to TopTop