The Influencing Factors and Future Development of Energy Consumption and Carbon Emissions in Urban Households: A Review of China’s Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliometric Analysis and Manual Review
2.2. Literature Sources
3. Bibliometric Analysis
3.1. Research Performance
3.2. Keyword Co-Occurrence
3.3. Co-Citation Analysis
4. Factors Affecting HErC
4.1. Household Characteristics
4.2. Economic Attributes
4.3. Energy Consumption Features
4.4. Awareness and Norms
4.5. Policies and Interventions
5. Prediction of Household Carbon Emission in China
No. | Article | Study Area | Prediction Method | Mark |
---|---|---|---|---|
1 | Lin and Li, 2024 | Fujian province | Kaya-LMDI-SD-MC | [103] |
2 | Chen et al., 2024 | Whole country | Kaya identity | [107] |
3 | An et al., 2024 | Provinces | XGBoost-TPE | [101] |
4 | Cui and Pan, 2024 | Beijing City | Ridge Regression | [105] |
5 | Bei et al., 2024 | Wuhan City | LEAP model | [104] |
6 | Su et al., 2023 | Whole country | Multiple machine learning | [106] |
7 | X. Zhang et al., 2023 | Whole country | Linear extrapolation | [108] |
8 | Y. Zhang et al., 2023 | Whole country | Multiple regression | [109] |
9 | Yu et al., 2023 | Whole country | IPCC and citation data | [99] |
10 | Zhao et al., 2022 | Provinces | STIRPAT model | [102] |
11 | Huo et al., 2021 | Whole country | SD-LEAP | [100] |
12 | Liu et al., 2021 | Whole country | IPCC and citation data | [110] |
13 | Xia et al., 2019 | Whole country | Multiple regression | [111] |
5.1. Prediction Model
5.2. Scenario Design and Factor Selection
5.3. Carbon Emission Development and Reduction Approaches
6. Discussion and Conclusions
6.1. Discussion and Future Directions
6.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.; Gao, W.; Su, Y.; Wang, T.; Wang, J. How can C&D waste recycling do a carbon emission contribution for construction industry in Japan city? Energy Build. 2023, 298, 113538. [Google Scholar] [CrossRef]
- Ohta, H. Japan’s policy on net carbon neutrality by 2050. East Asian Policy 2021, 13, 19–32. [Google Scholar] [CrossRef]
- Liobikienė, G.; Butkus, M. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. Renew. Energy 2017, 106, 298–309. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, C.; Chen, X.; Jia, L.; Guo, X.; Chen, R.; Zhang, M.; Chen, Z.; Wang, H. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects. China Geol. 2021, 4, 720–746. [Google Scholar] [CrossRef]
- UN-Habitat. World Cities Report 2022: Envisaging the Future of Cities. 2022. Available online: https://unhabitat.org/wcr/ (accessed on 20 January 2025).
- Wang, T.; Zhao, Q.; Gao, W.; He, X. Subdividing end-use energy consumption based on household characteristics and climate conditions: Insights from urban China. Front. Energy Res. 2023, 11, 1267975. [Google Scholar] [CrossRef]
- CESY. China Energy Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Zhao, Q.; Gao, W.; Su, Y.; Wang, T. Carbon emissions trajectory and driving force from the construction industry with a city-scale: A case study of Hangzhou, China. Sustain. Cities Soc. 2023, 88, 104283. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, Q.; Gao, W.; He, X. Research on Energy Consumption in Household Sector: A Comprehensive Review based on Bibliometric Analysis. Front. Energy Res. 2024, 11, 1209290. [Google Scholar] [CrossRef]
- He, X.; Guan, D.; Yang, X.; Zhou, L.; Gao, W. Quantifying the trends and affecting factors of CO2 emissions under different urban development patterns: An econometric study on the Yangtze river economic belt in China. Sustain. Cities Soc. 2024, 107, 105443. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, X.; Qi, H.; Qian, F. Low-carbon city planning based on collaborative analysis of supply and demand scenarios. City Built Environ. 2023, 1, 7. [Google Scholar] [CrossRef]
- Li, J.; Mao, Y.; Ouyang, J.; Zheng, S. A Review of Urban Microclimate Research Based on CiteSpace and VOSviewer Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4741. [Google Scholar] [CrossRef]
- Qin, X.; Wu, H.; Li, R. Digital finance and household carbon emissions in China. China Econ. Rev. 2022, 76, 101872. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Su, B. The impact of social awareness and lifestyles on household carbon emissions in China. Ecol. Econ. 2019, 160, 145–155. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, R.; Liu, T.; Zhao, J. Does urbanization lead to more direct and indirect household carbon dioxide emissions? Evidence from China during 1996–2012. J. Clean. Prod. 2015, 102, 103–114. [Google Scholar] [CrossRef]
- Ottelin, J.; Heinonen, J.; Nässén, J.; Junnila, S. Household carbon footprint patterns by the degree of urbanisation in Europe. Environ. Res. Lett. 2019, 14, 114016. [Google Scholar] [CrossRef]
- Wilson, J.; Tyedmers, P.; Spinney, J.E. An exploration of the relationship between socioeconomic and well-being variables and household greenhouse gas emissions. J. Ind. Ecol. 2013, 17, 880–891. [Google Scholar] [CrossRef]
- Liu, L.-C.; Wu, G.; Wang, J.-N.; Wei, Y.-M. China’s carbon emissions from urban and rural households during 1992–2007. J. Clean. Prod. 2011, 19, 1754–1762. [Google Scholar] [CrossRef]
- Wei, Y.-M.; Liu, L.-C.; Fan, Y.; Wu, G. The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents. Energy Policy 2007, 35, 247–257. [Google Scholar] [CrossRef]
- Feng, Z.-H.; Zou, L.-L.; Wei, Y.-M. The impact of household consumption on energy use and CO2 emissions in China. Energy 2011, 36, 656–670. [Google Scholar] [CrossRef]
- Donglan, Z.; Dequn, Z.; Peng, Z. Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis. Energy Policy 2010, 38, 3377–3383. [Google Scholar] [CrossRef]
- Zhao, X.; Li, N.; Ma, C. Residential energy consumption in urban China: A decomposition analysis. Energy Policy 2012, 41, 644–653. [Google Scholar] [CrossRef]
- Bin, S.; Dowlatabadi, H. Consumer lifestyle approach to US energy use and the related CO2 emissions. Energy Policy 2005, 33, 197–208. [Google Scholar] [CrossRef]
- Fan, J.-L.; Liao, H.; Liang, Q.-M.; Tatano, H.; Liu, C.-F.; Wei, Y.-M. Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China—Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, T.; Gao, W.; Su, Y.; Wang, J.; Dai, J. The synergistic decarbonization potential from construction industry and upstream sectors with a city-scale: A case study of Hangzhou, China. J. Clean. Prod. 2024, 460, 142572. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Li, Y.; Xu, C.; Yang, S.; Liang, X. Driving forces and typologies behind household energy consumption disparities in China: A machine learning-based approach. J. Clean. Prod. 2024, 467, 142870. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, L.; Hu, L.; Cai, W.; Wang, L.; Dai, C.; Chen, J. How family structure type affects household energy consumption: A heterogeneous study based on Chinese household evidence. Energy 2023, 284, 129313. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, X.; Wu, S.; Ding, B.; Chen, Y. What factors affect household energy consumption in mega-cities? A case study of Guangzhou, China. J. Clean. Prod. 2022, 363, 132388. [Google Scholar] [CrossRef]
- Zhu, P.; Lin, B. Do the elderly consume more energy? Evidence from the retirement policy in urban China. Energy Policy 2022, 165, 112928. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, L.; Hu, L.; Cai, W.; Xiao, D.; Chen, J.; Wang, C. Do areas with a higher proportion of single-person households save more on electricity consumption? Evidence from the difference-in-differences model. Energy Sustain. Dev. 2023, 77, 101350. [Google Scholar] [CrossRef]
- Lei, M.; Cai, W.; Liu, W.; Wang, C. The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China. Energy 2022, 253, 124079. [Google Scholar] [CrossRef]
- Xing, R.; Hanaoka, T.; Kanamori, Y.; Masui, T. Greenhouse Gas and Air Pollutant Emissions of China’s Residential Sector: The Importance of Considering Energy Transition. Sustainability 2017, 9, 614. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, H.; Zhong, Q.; Chen, H.; Huang, T.; Liu, J.; Cheng, H.; Zeng, E.Y.; Smith, K.R.; Tao, S. Transition of household cookfuels in China from 2010 to 2012. Appl. Energy 2016, 184, 800–809. [Google Scholar] [CrossRef]
- Li, Q.; Long, R.; Chen, H. Measurements and Factors That Influence the Carbon Capability of Urban Residents in China. Sustainability 2018, 10, 1292. [Google Scholar] [CrossRef]
- Lyu, P.; Lin, Y.; Wang, Y. The impacts of household features on commuting carbon emissions: A case study of Xi’an, China. Transportation 2019, 46, 841–857. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y. Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China. Appl. Energy 2016, 180, 800–809. [Google Scholar] [CrossRef]
- Yang, T.; Liu, W. Inequality of household carbon emissions and its influencing factors: Case study of urban China. Habitat Int. 2017, 70, 61–71. [Google Scholar] [CrossRef]
- Xu, X.; Tan, Y.; Chen, S.; Yang, G.; Su, W. Urban Household Carbon Emission and Contributing Factors in the Yangtze River Delta, China. PLoS ONE 2015, 10, e0121604. [Google Scholar] [CrossRef]
- Gu, Z.H.; Sun, Q.; Wennersten, R. Impact of urban residences on energy consumption and carbon emissions: An investigation in Nanjing, China. Sustain. Cities Soc. 2013, 7, 52–61. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhang, Z. Carbon Emission Characteristics and Reduction Pathways of Urban Household in China. Front. Environ. Sci. 2022, 10, 896765. [Google Scholar] [CrossRef]
- Yang, A.; Wang, Y. Transition of household cooking energy in China since the 1980s. Energy 2023, 270, 126925. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, C. Exploring the influencing factors and decoupling state of residential energy consumption in Shandong. J. Clean. Prod. 2018, 194, 253–262. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Lo, K.; Wang, M.; Liu, L. Quantifying and mapping spatial variability of Shanghai household carbon footprints. Front. Energy 2015, 9, 115–124. [Google Scholar] [CrossRef]
- Wang, J.; Li, N.; Huang, M.; Zhao, Y.; Qiao, Y. The challenges of rising income on urban household carbon emission: Do savings matter? J. Clean. Prod. 2021, 326, 129295. [Google Scholar] [CrossRef]
- Cao, J.; Ho, M.S.; Li, Y.; Newell, R.G.; Pizer, W.A. Chinese residential electricity consumption: Estimation and forecast using micro-data. Resour. Energy Econ. 2019, 56, 6–27. [Google Scholar] [CrossRef]
- Zeqiong, X.; Xuenong, G.; Wenhui, Y.; Jundong, F.; Zongbin, J. Decomposition and prediction of direct residential carbon emission indicators in Guangdong Province of China. Ecol. Indic. 2020, 115, 106344. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, J.; Chen, C. Residential Energy-Related CO2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi. Sustainability 2020, 12, 2000. [Google Scholar] [CrossRef]
- Liu, J.-B.; Peng, X.-B.; Zhao, J. Analyzing the spatial association of household consumption carbon emission structure based on social network. J. Comb. Optim. 2023, 45, 79. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Zhao, E.; Wang, S. Regional variation in the drivers of China’s residential electricity consumption (REC) and policy orientation. Energy Sustain. Dev. 2022, 67, 112–124. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, T.; Yuan, R. Drivers of household decarbonization: Decoupling and decomposition analysis. J. Clean. Prod. 2021, 289, 125154. [Google Scholar] [CrossRef]
- Shi, X.; Cheong, T.S.; Yu, J.; Liu, X. Quality of Life and Relative Household Energy Consumption in China. China World Econ. 2021, 29, 127–147. [Google Scholar] [CrossRef]
- Mi, L.; Sun, Y.; Qiao, L.; Jia, T.; Yang, Y.; Lv, T. Analysis of the Cause of Household Carbon Lock-In for Chinese Urban Households. Int. J. Environ. Res. Public Health 2021, 18, 2201. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Zhao, E.; Wang, S. Urban and rural differences with regional assessment of household energy consumption in China. Energy 2021, 232, 121091. [Google Scholar] [CrossRef]
- Xu, S.-C.; He, Z.-X.; Long, R.-Y.; Chen, H. Factors that influence carbon emissions due to energy consumption based on different stages and sectors in China. J. Clean. Prod. 2016, 115, 139–148. [Google Scholar] [CrossRef]
- Yang, T.; Shu, Y.; Zhang, S.; Wang, H.; Zhu, J.; Wang, F. Impacts of end-use electrification on air quality and CO2 emissions in China’s northern cities in 2030. Energy 2023, 278, 127899. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Wang, S.; Liu, Y. Spatial-temporal characteristics and drivers of the regional residential CO2 emissions in China during 2000–2017. J. Clean. Prod. 2020, 276, 124116. [Google Scholar] [CrossRef]
- Jiang, L.; Ding, B.; Shi, X.; Li, C.; Chen, Y. Household Energy Consumption Patterns and Carbon Emissions for the Megacities-Evidence from Guangzhou, China. Energies 2022, 15, 2731. [Google Scholar] [CrossRef]
- Wang, X.; Ding, C.; Cai, W.; Luo, L.; Chen, M. Identifying household cooling savings potential in the hot summer and cold winter climate zone in China: A stochastic demand frontier approach. Energy 2021, 237, 121588. [Google Scholar] [CrossRef]
- Mi, L.; Xu, T.; Sun, Y.; Yang, H.; Wang, B.; Gan, X.; Qiao, L. Promoting differentiated energy savings: Analysis of the psychological motivation of households with different energy consumption levels. Energy 2021, 218, 119563. [Google Scholar] [CrossRef]
- Jiang, J. China’s urban residential carbon emission and energy efficiency policy. Energy 2016, 109, 866–875. [Google Scholar] [CrossRef]
- Yu, L.; Wu, S.; Jiang, L.; Ding, B.; Shi, X. Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China. Energy Policy 2022, 168, 113119. [Google Scholar] [CrossRef]
- Zang, X.; Zhao, T.; Wang, J.; Guo, F. The effects of urbanization and household-related factors on residential direct CO2 emissions in Shanxi, China from 1995 to 2014: A decomposition analysis. Atmos. Pollut. Res. 2017, 8, 297–309. [Google Scholar] [CrossRef]
- Chen, Q.; Zha, D.; Wang, L.; Yang, G. The direct CO2 rebound effect in households: Evidence from China’s provinces. Renew. Sustain. Energy Rev. 2022, 155, 111888. [Google Scholar] [CrossRef]
- Wang, L.; Zha, D.; O’Mahony, T.; Zhou, D. Energy efficiency lags and welfare boons: Understanding the rebound and welfare effects through China’s urban households. Renew. Sustain. Energy Rev. 2023, 188, 113816. [Google Scholar] [CrossRef]
- Miao, L.; Gu, H.; Zhang, X.; Zhen, W.; Wang, M. Factors causing regional differences in China’s residential CO2 emissions-evidence from provincial data. J. Clean. Prod. 2019, 224, 852–863. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, M.; Chen, W. Spatial effect of factors affecting household CO2 emissions at the provincial level in China: A geographically weighted regression model. Carbon Manag. 2018, 9, 187–200. [Google Scholar] [CrossRef]
- Rong, P.; Zhang, Y.; Qin, Y.; Liu, G.; Liu, R. Spatial differentiation of carbon emissions from residential energy consumption: A case study in Kaifeng, China. J. Environ. Manag. 2020, 271, 110895. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Pathways to mitigate household carbon emissions in Chinese cities: Intentions, actions, and environments. Urban Clim. 2024, 55, 101953. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Li, H.; Wu, J.; Zheng, S. Environmental ideology and household energy conservation in Beijing. J. Clean. Prod. 2018, 195, 1600–1608. [Google Scholar] [CrossRef]
- Xu, J.; Qian, Y.; He, B.; Xiang, H.; Ling, R.; Xu, G. Strategies for Mitigating Urban Residential Carbon Emissions: A System Dynamics Analysis of Kunming, China. Buildings 2024, 14, 982. [Google Scholar] [CrossRef]
- Fan, J.; Ran, A.; Li, X. A Study on the Factors Affecting China’s Direct Household Carbon Emission and Comparison of Regional Differences. Sustainability 2019, 11, 4919. [Google Scholar] [CrossRef]
- Li, R.; Fang, D.; Xu, J. Does China’s carbon inclusion policy promote household carbon emissions reduction? Theoretical mechanisms and empirical evidence. Energy Econ. 2024, 132, 107462. [Google Scholar] [CrossRef]
- Kuai, P.; Zhang, X.; Zhang, S.; Li, J. Environmental awareness and household energy saving of Chinese residents: Unity of knowing and doing or easier said than done? J. Asian Econ. 2022, 82, 101534. [Google Scholar] [CrossRef]
- Chatzigeorgiou, I.M.; Andreou, G.T. A systematic review on feedback research for residential energy behavior change through mobile and web interfaces. Renew. Sustain. Energy Rev. 2021, 135, 110187. [Google Scholar] [CrossRef]
- Cattaneo, C. Internal and external barriers to energy efficiency: Which role for policy interventions? Energy Effic. 2019, 12, 1293–1311. [Google Scholar] [CrossRef]
- Avancini, D.B.; Rodrigues, J.J.P.C.; Martins, S.G.B.; Rabêlo, R.A.L.; Al-Muhtadi, J.; Solic, P. Energy meters evolution in smart grids: A review. J. Clean. Prod. 2019, 217, 702–715. [Google Scholar] [CrossRef]
- Sintov, N.D.; Schultz, P.W. Adjustable Green Defaults Can Help Make Smart Homes More Sustainable. Sustainability 2017, 9, 622. [Google Scholar] [CrossRef]
- Xing, H.; Li, X. Drivers of behaviors: How do city pilots shape residential energy-related emissions through perceptions? Front. Psychol. 2023, 14, 1127227. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, B. Impact of tiered pricing system on China’s urban residential electricity consumption: Survey evidences from 14 cities in Guangxi Province. J. Clean. Prod. 2018, 170, 1404–1412. [Google Scholar] [CrossRef]
- Sloot, D.; Scheibehenne, B. Understanding the financial incentive conundrum: A meta-analysis of the effectiveness of financial incentive interventions in promoting energy conservation behavior. Renew. Sustain. Energy Rev. 2022, 168, 112761. [Google Scholar] [CrossRef]
- Mahmoodi, J.; Hille, S.; Patel, M.K.; Brosch, T. Using rewards and penalties to promote sustainability: Who chooses incentive-based electricity products and why? J. Consum. Behav. 2021, 20, 381–398. [Google Scholar] [CrossRef]
- Liu, R.; Ham, J.; Ding, Z.; Jiang, X.; Zhang, H. Sustainable family development: How changes in family life cycle influence household low-carbon use behavior through changing motivations. Sustain. Prod. Consum. 2022, 34, 271–284. [Google Scholar] [CrossRef]
- Tan, Y.; Ying, X.; Ge, J.; Gao, W.; Zhang, L.; Wang, S. Driving role of perceived psychological factors in households’ low-carbon behaviors: A study based on the Chinese household carbon generalized system of preferences. Energy 2024, 303, 131937. [Google Scholar] [CrossRef]
- Li, S.; Ji, L.; Wang, Y.; Zhou, X.; Wang, X.; Jiang, S.; Sun, Q. Can China’s carbon generalized system of preferences reduce urban residents’ carbon emissions? Evidence from a quasi-natural experiment. J. Environ. Manag. 2024, 362, 121222. [Google Scholar] [CrossRef]
- Xing, R.; Hanaoka, T.; Kanamori, Y.; Masui, T. Achieving China’s Intended Nationally Determined Contribution and its co-benefits: Effects of the residential sector. J. Clean. Prod. 2018, 172, 2964–2977. [Google Scholar] [CrossRef]
- Yu, H.; Tang, B.-J.; Yuan, X.-C.; Wang, S.; Wei, Y.-M. How do the appliance energy standards work in China? Evidence from room air conditioners. Energy Build. 2015, 86, 833–840. [Google Scholar] [CrossRef]
- Huang, Y.-H. Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data. Energy 2020, 213, 119067. [Google Scholar] [CrossRef]
- Wu, H.; Hao, Y.; Ren, S. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Li, L.; Song, X.; Li, J.; Li, K.; Jiao, J. The impacts of temperature on residential electricity consumption in Anhui, China: Does the electricity price matter? Clim. Chang. 2023, 176, 26. [Google Scholar] [CrossRef]
- Liu, J.; Gong, N.; Qin, J. How would the carbon tax on energy commodities affect consumer welfare? Evidence from China’s household energy consumption system. J. Environ. Manag. 2022, 317, 115466. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, K.; Meng, F.; Liu, G.; An, J. The unanticipated role of fiscal environmental expenditure in accelerating household carbon emissions: Evidence from China. Energy Policy 2024, 185, 113962. [Google Scholar] [CrossRef]
- Liu, G.; Dong, X.; Jiang, Q.; Dong, C.; Li, J. Natural gas consumption of urban households in China and corresponding influencing factors. Energy Policy 2018, 122, 17–26. [Google Scholar] [CrossRef]
- Wu, S.; Han, H. Energy transition, intensity growth, and policy evolution: Evidence from rural China. Energy Econ. 2022, 105, 105746. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Ji, Q.; Shi, X. Regional renewable energy development in China: A multidimensional assessment. Renew. Sustain. Energy Rev. 2020, 124, 109797. [Google Scholar] [CrossRef]
- Yan, Y.; Jiao, W.; Wang, K.; Huang, Y.; Chen, J.; Han, Q. Coal-to-gas heating compensation standard and willingness to make clean energy choices in typical rural areas of northern China. Energy Policy 2020, 145, 111698. [Google Scholar] [CrossRef]
- Li, L.; Fan, F.; Liu, X. Determinants of rural household clean energy adoption intention: Evidence from 72 typical villages in ecologically fragile regions of western China. J. Clean. Prod. 2022, 347, 131296. [Google Scholar] [CrossRef]
- Xu, F.; Shu, C.; Shao, J.; Xiang, N. Uncovering urban residents’ electricity conservation and carbon reduction potentials in megacities of China-A systematic path of behavioural interventions. Resour. Conserv. Recycl. 2021, 173, 105703. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Liang, Q.; Liu, L.-J. Impact of population ageing on carbon emissions: A case of China’s urban households. Struct. Chang. Econ. Dyn. 2023, 64, 86–100. [Google Scholar] [CrossRef]
- Huo, T.; Xu, L.; Feng, W.; Cai, W.; Liu, B. Dynamic scenario simulations of carbon emission peak in China’s city-scale urban residential building sector through 2050. Energy Policy 2021, 159, 112612. [Google Scholar] [CrossRef]
- An, N.; Huang, C.; Shen, Y.; Wang, J.; Yu, Z.; Fu, J.; Liu, X.; Yao, J. Efficient data-driven prediction of household carbon footprint in China with limited features. Energy Policy 2024, 185, 113926. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, T.; Yuan, R. Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model. Sci. Total Environ. 2022, 809, 151098. [Google Scholar] [CrossRef]
- Lin, C.; Li, X. Carbon peak prediction and emission reduction pathways exploration for provincial residential buildings: Evidence from Fujian Province. Sustain. Cities Soc. 2024, 102, 105239. [Google Scholar] [CrossRef]
- Bei, L.; Yang, W.; Wang, B.; Gao, Y.; Wang, A.; Lu, T.; Liu, H.; Sun, L. Characteristics of residents’ carbon emission and driving factors for carbon peaking: A case study in Wuhan, China. Energy Sustain. Dev. 2024, 81, 101471. [Google Scholar] [CrossRef]
- Cui, T.; Pan, K. An analysis and prediction of carbon emissions in the sphere of consumer lifestyles in Beijing. Environ. Sci. Pollut. Res. 2024, 31, 9596–9613. [Google Scholar] [CrossRef]
- Su, S.; Ding, Y.; Li, G.; Li, X.; Li, H.; Skitmore, M.; Menadue, V. Temporal dynamic assessment of household energy consumption and carbon emissions in China: From the perspective of occupants. Sustain. Prod. Consum. 2023, 37, 142–155. [Google Scholar] [CrossRef]
- Chen, L.; You, K.; Lv, G.; Cai, W.; Zhang, J.; Zhang, Y. The influence of demographic structure on residential buildings’ carbon emissions in China. J. Build. Eng. 2024, 87, 108951. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Pan, H.; Yuan, Z.; Feng, K. Changes in the socio-economic characteristics of households can decouple carbon emissions and consumption growth in China. Sustain. Prod. Consum. 2023, 43, 168–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Zhang, B. The impacts of household structure transitions on household carbon emissions in China. Ecol. Econ. 2023, 206, 107734. [Google Scholar] [CrossRef]
- Liu, M.; Huang, X.; Chen, Z.; Zhang, L.; Qin, Y.; Liu, L.; Zhang, S.; Zhang, M.; Lv, X.; Zhang, Y. The transmission mechanism of household lifestyle to energy consumption from the input-output subsystem perspective: China as an example. Ecol. Indic. 2021, 122, 107234. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, H.; Liu, W. The indirect carbon emission from household consumption in China between 1995–2009 and 2010–2030: A decomposition and prediction analysis. Comput. Ind. Eng. 2019, 128, 264–276. [Google Scholar] [CrossRef]
- Zhang, C.; Luo, H. Research on carbon emission peak prediction and path of China’s public buildings: Scenario analysis based on LEAP model. Energy Build. 2023, 289, 113053. [Google Scholar] [CrossRef]
- Valdiserri, P.; Ballerini, V.; Rossi Di Schio, E. Interpolating functions for CO2 emission factors in dynamic simulations: The special case of a heat pump. Sustain. Energy Technol. Assess. 2022, 53, 102725. [Google Scholar] [CrossRef]
- Song, C.; Guo, Z.; Liu, Z.; Hongyun, Z.; Liu, R.; Zhang, H. Application of photovoltaics on different types of land in China: Opportunities, status and challenges. Renew. Sustain. Energy Rev. 2024, 191, 114146. [Google Scholar] [CrossRef]
- Ala-Mantila, S.; Ottelin, J.; Heinonen, J.; Junnila, S. To each their own? The greenhouse gas impacts of intra-household sharing in different urban zones. J. Clean. Prod. 2016, 135, 356–367. [Google Scholar] [CrossRef]
No. | Journal | TP | TC | AC | APY | IF |
---|---|---|---|---|---|---|
1 | Journal of cleaner production | 15 | 548 | 36.5 | 2019.9 | 9.8 |
2 | Energy | 9 | 225 | 25.0 | 2021.1 | 9.0 |
3 | Sustainability | 6 | 122 | 20.3 | 2018.3 | 3.3 |
4 | Energy policy | 5 | 355 | 71.0 | 2019.2 | 9.3 |
5 | Energy and buildings | 5 | 266 | 53.2 | 2014.4 | 6.6 |
6 | Journal of environmental management | 5 | 108 | 21.6 | 2022.6 | 8.0 |
7 | Applied energy | 4 | 366 | 91.5 | 2017.3 | 10.1 |
8 | Environmental science and pollution research | 3 | 39 | 13.0 | 2020.3 | - |
9 | Energy economics | 2 | 134 | 67.0 | 2022.5 | 13.6 |
10 | Atmospheric pollution research | 2 | 80 | 40.0 | 2017.5 | 3.9 |
No. | Cited References | Co-Citation Times | Citation Times | Mark |
---|---|---|---|---|
Authors, Year, Source | ||||
1 | Liu et al., 2011, Journal of cleaner production | 19 | 261 | [18] |
2 | Wei et al., 2007, Energy policy | 17 | 293 | [19] |
3 | Feng et al., 2011, Energy | 16 | 238 | [20] |
4 | Donglan et al., 2010, Energy policy | 14 | 223 | [21] |
5 | Zhao et al., 2012, Energy policy | 14 | 182 | [22] |
6 | J. Li et al., 2019, Ecological Economics | 12 | 188 | [14] |
7 | Y. Li et al., 2015, Journal of cleaner production | 12 | 163 | [15] |
8 | Bin and Dowlatabadi, 2005, Energy Policy | 11 | 497 | [23] |
9 | Fan et al., 2013, Applied energy | 11 | 157 | [24] |
10 | Miao, 2017, Ecological Indicators | 11 | 147 | [25] |
Main Category | Subcategory | Description |
---|---|---|
I. Household characteristics | a. Household structure | Family structure type, family life cycle, etc. |
b. Household size | The number of people in a family | |
c. Education level | Education level of household members | |
II. Economic attributes | a. Income level | Per capita income, household income, etc. |
b. Household assets | Assets (car, house ownership), savings accumulation, etc. | |
c. Household expenditures | Energy expenditures, expenditure patterns, etc. | |
III. Energy consumption features | a. Source and structure | Primary energy demand, fuel mix, energy structure, etc. |
b. Energy use behavior | Energy end-use, energy-saving behaviors etc. | |
c. Intensity and efficiency | Energy intensity, efficiency, building energy intensity, etc. | |
IV. Awareness and norms | a. Environmental ideology | Lifestyle, environmental awareness, etc. |
b. Behavioral attitudes | Behavioral attitudes, subjective norms, etc. | |
c. Social norms | Normative motivation and cultural attitudes, etc. | |
V. Policies and interventions | a. Energy policy | Carbon tax, green policies, fiscal expenditure policies, etc. |
b. Price elasticity | Low-carbon incentives, energy price and subsidies, etc. | |
c. Government service | Housing policies, public service satisfaction, etc. |
Category | Advantages | Disadvantages | Predictive Accuracy |
---|---|---|---|
Machine Learning | Handles high-dimensional, non-linear data; fits complex relationships. | Requires large datasets; lacks interpretability; prone to overfitting. | High accuracy with sufficient data; good for medium/short-term predictions. |
Traditional Statistical Models | Interpretable; robust with small datasets. | Difficulty with non-linear relationships; relies on assumptions. | Accurate for simple/linear relationships; limited in complex contexts. |
Top-Down Approach | Captures macro-level drivers like population and economy. | Fails to capture household-level behaviors. | Good for trend estimation; weak for specific details. |
Bottom-Up Approach | Provides detailed insights into household energy use. | Needs high-quality data; hard to generalize. | Accurate with sufficient data; limited scalability. |
Coupled Models | Combines strengths of different models; addresses both macro and micro perspectives. | Complex structure; high costs; dependent on assumptions. | Improves accuracy by integrating models; sensitive to data quality. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Huang, S.; Wang, T.; Yu, Y.; Wang, Y.; Li, Y.; Gao, W. The Influencing Factors and Future Development of Energy Consumption and Carbon Emissions in Urban Households: A Review of China’s Experience. Appl. Sci. 2025, 15, 2961. https://doi.org/10.3390/app15062961
Zhao Q, Huang S, Wang T, Yu Y, Wang Y, Li Y, Gao W. The Influencing Factors and Future Development of Energy Consumption and Carbon Emissions in Urban Households: A Review of China’s Experience. Applied Sciences. 2025; 15(6):2961. https://doi.org/10.3390/app15062961
Chicago/Turabian StyleZhao, Qinfeng, Shan Huang, Tian Wang, Yi Yu, Yuhan Wang, Yonghua Li, and Weijun Gao. 2025. "The Influencing Factors and Future Development of Energy Consumption and Carbon Emissions in Urban Households: A Review of China’s Experience" Applied Sciences 15, no. 6: 2961. https://doi.org/10.3390/app15062961
APA StyleZhao, Q., Huang, S., Wang, T., Yu, Y., Wang, Y., Li, Y., & Gao, W. (2025). The Influencing Factors and Future Development of Energy Consumption and Carbon Emissions in Urban Households: A Review of China’s Experience. Applied Sciences, 15(6), 2961. https://doi.org/10.3390/app15062961