Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = HBV immune escape variants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2599 KiB  
Article
Immune Escape and Drug Resistance Mutations in Patients with Hepatitis B Virus Infection: Clinical and Epidemiological Implications
by Maria Antonia De Francesco, Franco Gargiulo, Francesca Dello Iaco, Laert Zeneli, Serena Zaltron, Giorgio Tiecco, Simone Pellizzeri, Emanuele Focà, Arnaldo Caruso and Eugenia Quiros-Roldan
Life 2025, 15(4), 672; https://doi.org/10.3390/life15040672 - 20 Apr 2025
Viewed by 768
Abstract
Hepatitis B virus (HBV) genetic variability, shaped by high mutation rates and selective pressures, complicates its management and increases the emergence of drug-resistant and immune-escape variants. This study aims to analyze immune escape mutations (IEMs) and drug resistance mutations (DRMs) in patients with [...] Read more.
Hepatitis B virus (HBV) genetic variability, shaped by high mutation rates and selective pressures, complicates its management and increases the emergence of drug-resistant and immune-escape variants. This study aims to analyze immune escape mutations (IEMs) and drug resistance mutations (DRMs) in patients with HBV infection exposed to antiviral therapies and exhibiting detectable plasma HBV viremia. This monocentric retrospective real-life study was carried out at the ASST Spedali Civili di Brescia, Italy, from 2015 to 2023. A total of 102 consecutive patients with detectable serum HBV-DNA exposed to at least one NA and for whom a drug resistance assay was available were included in our study. HBV sequences were amplified, sequenced, and analyzed for mutations using Geno2pheno and Stanford University tools. Phylogenetic analysis and statistical regression were performed to confirm genotypes and identify mutation patterns and associated risk factors. Our study shows a 38.2% prevalence of DRMs, with M204I/V (95%) and L180M (64%) being the most common, and a 43% prevalence of IEMs, primarily in the major hydrophilic region. Genotype D3 exhibited a higher mutation burden than other genotypes. Significant associations were found between HBsAb presence and increased IEM burden, while HBeAg was protective against DRMs. Atypical serological profiles were observed in 18.6% of patients, including cases of HBV reactivation under immunosuppressive therapy. This study highlights the high prevalence of IEMs and DRMs in a real-world setting, particularly among HBV genotype D3 carriers. These findings underscore the importance of mutation surveillance to guide therapeutic strategies, vaccine design, and public health policies to address the challenges posed by HBV genetic variability. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

16 pages, 2893 KiB  
Article
Molecular Epidemiology, Drug-Resistant Variants, and Therapeutic Implications of Hepatitis B Virus and Hepatitis D Virus Prevalence in Nigeria: A National Study
by Oludare ‘Sunbo Adewuyi, Muhammad Shakir Balogun, Hirono Otomaru, Alash’le Abimiku, Anthony Agbakizu Ahumibe, Elsie Ilori, Que Anh Luong, Nwando Mba, James Christopher Avong, John Olaide, Oyeladun Okunromade, Adama Ahmad, Afolabi Akinpelu, Chinwe Lucia Ochu, Babatunde Olajumoke, Haruka Abe, Chikwe Ihekweazu, Adetifa Ifedayo, Michiko Toizumi, Hiroyuki Moriuchi, Katsunori Yanagihara, Jide Idris and Lay-Myint Yoshidaadd Show full author list remove Hide full author list
Pathogens 2025, 14(1), 101; https://doi.org/10.3390/pathogens14010101 - 20 Jan 2025
Viewed by 3077
Abstract
Information on circulating HBV (sub-)genotype, variants, and hepatitis D virus (HDV) coinfection, which vary by geographical area, is crucial for the efficient control and management of HBV. We investigated the genomic characteristics of HBV (with a prevalence of 8.1%) and the prevalence of [...] Read more.
Information on circulating HBV (sub-)genotype, variants, and hepatitis D virus (HDV) coinfection, which vary by geographical area, is crucial for the efficient control and management of HBV. We investigated the genomic characteristics of HBV (with a prevalence of 8.1%) and the prevalence of HDV in Nigeria. We utilised 777 HBV-positive samples and epidemiological data from the two-stage sampled population-based, nationally representative Nigeria HIV/AIDS Indicator and Impact Survey conducted in 2018. We assessed 732 HBV DNA-extracted samples with detectable viral loads (VLs) for (sub-)genotypes and variants by whole-genome pre-amplification, nested PCR of the s-and pol-gene, and BigDye Terminator sequencing. We conducted HDV serology. In total, 19 out of the 36 + 1 states in Nigeria had a high prevalence of HBV (≥8%), with the highest prevalence (10.4%) in the north-central geopolitical zone. Up to 33.2% (95% CI 30.0–36.6) of the participants had detectable VLs of ≥300 copies/mL. The predominant circulating HBV genotype was E with 98.4% (95% CI 97.1–99.1), followed by A with 1.6% (95% CI 0.9–2.9). Drug-resistant associated variants and immune escape variants were detected in 9.3% and 0.4%, respectively. The seroprevalence of HDV was 7.34% (95% CI 5.5–9.2). Nigeria has subtype E as the major genotype with many variants. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

14 pages, 2666 KiB  
Article
Detection of Immune Escape and Basal Core Promoter/Precore Gene Mutations in Hepatitis B Virus Isolated from Asymptomatic Hospital Attendees in Two Southwestern States in Nigeria
by Oguntope Adeorike Sobajo, Judith Uche Oguzie, Benjamin Adegboyega, Philomena Eromon, Christian Happi, Isaac Komolafe and Onikepe Folarin
Viruses 2023, 15(11), 2188; https://doi.org/10.3390/v15112188 - 31 Oct 2023
Cited by 1 | Viewed by 2658
Abstract
Several mutations in the surface (S), basal core promoter (BCP), and precore (PC) genes of the hepatitis B virus have been linked to inaccurate diagnosis and the development of immune escape mutants (IEMs) of the infection, which can lead to chronic infection. Understanding [...] Read more.
Several mutations in the surface (S), basal core promoter (BCP), and precore (PC) genes of the hepatitis B virus have been linked to inaccurate diagnosis and the development of immune escape mutants (IEMs) of the infection, which can lead to chronic infection. Understanding the prevalence and spread of these mutations is critical in the global effort to eliminate HBV. Blood samples were collected from 410 people in Osun and Ekiti states, southwest Nigeria, between 2019 and 2021. Participants were drawn from a group of asymptomatic people who were either blood donors, outpatients, or antenatal patients with no record of HBV infection at the medical outpatients’ unit of the hospital. DNA was extracted from plasma using a Qiagen DNEasy kit, followed by nested PCR targeting HBV S and BCP/PC genes. The Sanger sequencing method was used to sequence the positive PCR amplicons, which were further analyzed for IEMs, BCP, and PC mutations. HBV-DNA was detected in 12.4% (51/410) of individuals. After DNA amplification and purification, 47.1% (24) of the S gene and 76.5% (39) of the BCP/PC gene amplicons were successfully sequenced. Phylogenetic analysis showed that all the HBV sequences obtained in this study were classified as HBV genotype E. Mutational analysis of the major hydrophilic region (MHR) and a-determinant domain of S gene sequences revealed the presence of three immune escape mutations: two samples harbored a T116N substitution, six samples had heterogenous D144A/N/S/H substitution, and one sample had a G145E substitution, respectively. The BCP/PC region analysis revealed a preponderance of major BCP mutants, with the prevalence of BCP double substitutions ranging from 38.5% (A1762T) to 43.6% (G1764A). Previously reported classical PC mutant variants were observed in high proportion, including G1896A (33.3%) and G1899A (12.8%) mutations. This study confirms the strong presence of HBV genotype E in Nigeria, the ongoing circulation of HBV IEMs, and a high prevalence of BCP/PC mutants in the cohorts. This has implications for diagnosis and vaccine efficacy for efficient management and control of HBV in the country. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 2335 KiB  
Article
Are International Units of Anti-HBs Antibodies Always Indicative of Hepatitis B Virus Neutralizing Activity?
by Yada Aronthippaitoon, Nathan Szerman, Nicole Ngo-Giang-Huong, Syria Laperche, Marie-Noelle Ungeheuer, Camille Sureau, Woottichai Khamduang and Catherine Gaudy-Graffin
Vaccines 2023, 11(4), 791; https://doi.org/10.3390/vaccines11040791 - 4 Apr 2023
Viewed by 3229
Abstract
Objective: Anti-HBs antibodies are elicited upon hepatitis B vaccination, and concentrations above 10 mIU/mL are considered protective. Our aim was to assess the relationship between IU/mL of anti-HBs and neutralization activity. Methods: Immunoglobulins G (IgGs) were purified from individuals who received a serum-derived [...] Read more.
Objective: Anti-HBs antibodies are elicited upon hepatitis B vaccination, and concentrations above 10 mIU/mL are considered protective. Our aim was to assess the relationship between IU/mL of anti-HBs and neutralization activity. Methods: Immunoglobulins G (IgGs) were purified from individuals who received a serum-derived vaccine (Group 1), a recombinant vaccine, Genevac-B or Engerix-B (Group 2), or who recovered from acute infection (Group 3). IgGs were tested for anti-HBs, anti-preS1, and anti-preS2 antibodies and for their neutralizing activity in an in vitro infection assay. Results: Anti-HBs IUs/mL value did not strictly correlate with neutralization activity. The Group 1 antibodies demonstrated a greater neutralizing activity than those of Group 2. Anti-preS1 antibodies were detected in Groups 1 and 3, and anti-preS2 in Group 1 and Group 2/Genhevac-B, but the contribution of anti-preS antibodies to neutralization could not be demonstrated. Virions bearing immune escape HBsAg variants were less susceptible to neutralization than wild-type virions. Conclusion. The level of anti-HBs antibodies in IUs is not sufficient to assess neutralizing activity. Consequently, (i) an in vitro neutralization assay should be included in the quality control procedures of antibody preparations intended for HB prophylaxis or immunotherapy, and (ii) a greater emphasis should be placed on ensuring that vaccine genotype/subtype matches with that of the circulating HBV. Full article
(This article belongs to the Section Hepatitis Virus Vaccines)
Show Figures

Figure 1

16 pages, 1686 KiB  
Article
A Novel Insertion in the Hepatitis B Virus Surface Protein Leading to Hyperglycosylation Causes Diagnostic and Immune Escape
by Felix Lehmann, Heiko Slanina, Martin Roderfeld, Elke Roeb, Jonel Trebicka, John Ziebuhr, Wolfram H. Gerlich, Christian G. Schüttler, Bernhard Schlevogt and Dieter Glebe
Viruses 2023, 15(4), 838; https://doi.org/10.3390/v15040838 - 25 Mar 2023
Cited by 5 | Viewed by 2912
Abstract
Chronic hepatitis B virus (HBV) infection is a global health threat. Mutations in the surface antigen of HBV (HBsAg) may alter its antigenicity, infectivity, and transmissibility. A patient positive for HBV DNA and detectable but low-level HBsAg in parallel with anti-HBs suggested the [...] Read more.
Chronic hepatitis B virus (HBV) infection is a global health threat. Mutations in the surface antigen of HBV (HBsAg) may alter its antigenicity, infectivity, and transmissibility. A patient positive for HBV DNA and detectable but low-level HBsAg in parallel with anti-HBs suggested the presence of immune and/or diagnostic escape variants. To support this hypothesis, serum-derived HBs gene sequences were amplified and cloned for sequencing, which revealed infection with exclusively non-wildtype HBV subgenotype (sgt) D3. Three distinct mutations in the antigenic loop of HBsAg that caused additional N-glycosylation were found in the variant sequences, including a previously undescribed six-nucleotide insertion. Cellular and secreted HBsAg was analyzed for N-glycosylation in Western blot after expression in human hepatoma cells. Secreted HBsAg was also subjected to four widely used, state-of-the-art diagnostic assays, which all failed to detect the hyperglycosylated insertion variant. Additionally, the recognition of mutant HBsAg by vaccine- and natural infection-induced anti-HBs antibodies was severely impaired. Taken together, these data suggest that the novel six-nucleotide insertion as well as two other previously described mutations causing hyperglycosylation in combination with immune escape mutations have a critical impact on in vitro diagnostics and likely increase the risk of breakthrough infection by evasion of vaccine-induced immunity. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

21 pages, 10613 KiB  
Article
Post-Vaccination and Post-Infection Immunity to the Hepatitis B Virus and Circulation of Immune-Escape Variants in the Russian Federation 20 Years after the Start of Mass Vaccination
by Fedor A. Asadi Mobarkhan, Victor A. Manuylov, Anastasia A. Karlsen, Vera S. Kichatova, Ilya A. Potemkin, Maria A. Lopatukhina, Olga V. Isaeva, Eugeniy V. Mullin, Elena P. Mazunina, Evgeniia N. Bykonia, Denis A. Kleymenov, Liubov I. Popova, Vladimir A. Gushchin, Artem P. Tkachuk, Anna A. Saryglar, Irina E. Kravchenko, Snezhana S. Sleptsova, Victor V. Romanenko, Anna V. Kuznetsova, Sergey A. Solonin, Tatyana A. Semenenko, Mikhail I. Mikhailov and Karen K. Kyuregyanadd Show full author list remove Hide full author list
Vaccines 2023, 11(2), 430; https://doi.org/10.3390/vaccines11020430 - 13 Feb 2023
Cited by 3 | Viewed by 3101
Abstract
A neonatal vaccination against the Hepatitis B virus (HBV) infection was initiated in Russia 20 years ago, with catch-up immunization for adolescents and adults under the age of 60 years launched in 2006. Here, we have assessed the humoral immunity to HBV in [...] Read more.
A neonatal vaccination against the Hepatitis B virus (HBV) infection was initiated in Russia 20 years ago, with catch-up immunization for adolescents and adults under the age of 60 years launched in 2006. Here, we have assessed the humoral immunity to HBV in different regions of Russia, as well as the infection frequency following 20 years of a nationwide vaccination campaign. We have also evaluated the role of immune-escape variants in continuing HBV circulation. A total of 36,149 healthy volunteers from nine regions spanning the Russian Federation from west to east were tested for HBV surface antigen (HBsAg), antibodies to HBV capsid protein (anti-HBc), and antibodies to HBsAg (anti-HBs). HBV sequences from 481 chronic Hepatitis B patients collected from 2018–2022 were analyzed for HBsAg immune-escape variants, compared with 205 sequences obtained prior to 2010. Overall, the HBsAg detection rate was 0.8%, with this level significantly exceeded only in one study region, the Republic of Dagestan (2.4%, p < 0.0001). Among the generation vaccinated at birth, the average HBsAg detection rate was below 0.3%, ranging from 0% to 0.7% depending on the region. The anti-HBc detection rate in subjects under 20 years was 7.4%, indicating ongoing HBV circulation. The overall proportion of participants under 20 years with vaccine-induced HBV immunity (anti-HBs positive, anti-HBc negative) was 41.7% but below 10% in the Tuva Republic and below 25% in the Sverdlovsk and Kaliningrad regions. The overall prevalence of immune-escape HBsAg variants was 25.2% in sequences obtained from 2018–2022, similar to the prevalence of 25.8% in sequences collected prior to 2010 (p > 0.05). The population dynamics of immune-escape variants predicted by Bayesian analysis have remained stable over the last 20 years, indicating the absence of vaccine-driven positive selection. In contrast, the wild-type HBV population size experienced a rapid decrease starting in the mid-1990s, following the introduction of mass immunization, but it subsequently began to recover, reaching pre-vaccination levels by 2020. Taken together, these data indicate that it is gaps in vaccination, and not virus evolution, that may be responsible for the continued virus circulation despite 20 years of mass vaccination. Full article
(This article belongs to the Special Issue Dynamic Models in Viral Immunology)
Show Figures

Figure 1

15 pages, 2603 KiB  
Article
Genomic Variability of Hepatitis B Virus Circulating in Brazilian Western Amazon
by Tárcio Peixoto Roca, Livia Melo Villar, Felipe Souza Nogueira Lima, Mariana Pinheiro Alves Vasconcelos, Lourdes Maria Pinheiro Borzacov, Eugênia de Castro e Silva, Bárbara Vieira do Lago, Mayara Torquato Lima da Silva, Luan Felipo Botelho Souza, Juan Miguel Villalobos Salcedo, Alcione de Oliveira dos Santos and Deusilene Souza Vieira
Viruses 2022, 14(10), 2100; https://doi.org/10.3390/v14102100 - 22 Sep 2022
Cited by 3 | Viewed by 2538
Abstract
The emergence of clinically relevant mutations in the hepatitis B virus (HBV) genome has been a matter of great debate because of the possibility of escape from the host’s immune system, the potential to cause more severe progression of liver diseases and the [...] Read more.
The emergence of clinically relevant mutations in the hepatitis B virus (HBV) genome has been a matter of great debate because of the possibility of escape from the host’s immune system, the potential to cause more severe progression of liver diseases and the emergence of treatment-resistant variants. Here we characterized the circulating variants of HBV in Rondônia State, in the north of Brazil. Serum samples of 62 chronic HBV carriers were subjected to PCR assays and clinical data were collected. Mutations and genotypes were characterized through direct sequencing. The findings show the presence of subgenotypes A1 (54.83%, 34/62), D3 (16.13%, 10/62), F2 (16.13%, 10/62), A2 (4.84%, 3/62), D2 (3.23%, 2/62), D1 (1.61%, 1/62), D4 (1.61%, 1/62) and F4 (1.61%, 1/62). Deletions in the pre-S2 region were found in 13.79% (8/58) of the samples, mutations in the S gene in 59.68% (37/62) and RT mutations in 48.39% (30/62). We found a variable genotypic distribution in different locations and important mutations related to immune escape and drug resistance in Western Amazonia, which contributed to genetic surveillance and provided important information to help control the disease. Full article
(This article belongs to the Special Issue Viral Hepatitis in Brazil)
Show Figures

Figure 1

18 pages, 2824 KiB  
Article
rt269I Type of Hepatitis B Virus (HBV) Polymerase versus rt269L Is More Prone to Mutations within HBV Genome in Chronic Patients Infected with Genotype C2: Evidence from Analysis of Full HBV Genotype C2 Genome
by Hyein Jeong, Dong Hyun Kim, Yu-Min Choi, HyeLim Choi, Donghyun Kim and Bum-Joon Kim
Microorganisms 2021, 9(3), 601; https://doi.org/10.3390/microorganisms9030601 - 15 Mar 2021
Cited by 4 | Viewed by 3496
Abstract
Recently, it has been reported that the rt269I type of hepatitis B virus (HBV) polymerase (Pol) versus the rt269L type is more significantly related to lower viral replication and HBeAg negative infections in chronic hepatitis B (CHB) patients of genotype C2. In this [...] Read more.
Recently, it has been reported that the rt269I type of hepatitis B virus (HBV) polymerase (Pol) versus the rt269L type is more significantly related to lower viral replication and HBeAg negative infections in chronic hepatitis B (CHB) patients of genotype C2. In this study, we compared mutation rates within HBV genomes between rt269L and rt269I using a total of 234 HBV genotype C2 full genome sequences randomly selected from the HBV database (115 of rt269L and 119 of rt269I type). When we applied the Benjamini and Hochberg procedure for multiple comparisons, two parameters, dN and d, at the amino acids level in the Pol region were significantly higher in the rt269I type than in the rt269L type. Although it could not reach statistical significance from the Benjamini and Hochberg procedure, nonsynonymous (NS) mutations in the major hydrophilic region (MHR) or “a” determinant in the surface antigens (HBsAg ORF) related to host immune escape or vaccine escape are more frequently generated in rt269I strains than in rt269L. We also found that there are a total of 19 signature single nucleotide polymorphisms (SNPs), of which 2 and 17 nonsynonymous mutation types were specific to rt269L and rt269I, respectively: Of these, most are HBeAg negative infections (preC-W28*, X-V5M and V131I), lowered HBV DNA or virion production (C-I97F/L, rtM204I/V) or preexisting nucleot(s)ide analog resistance (NAr) (rtN139K/H, rtM204I/V and rtI224V) or disease severity (preC-W28*, C-I97F/L, C-Q182K/*, preS2-F141L, S-L213I/S, V/L5M, T36P/S/A, V131I, rtN139K/H, rtM204I/V and rtI224V). In conclusion, our data showed that rt269I types versus rt269L types are more prone to overall genome mutations, particularly in the Pol region and in the MHR or “a” determinant in genotype C2 infections and are more prevalent in signature NS mutations related to lowered HBV DNA replication, HBsAg and HBeAg secretion and potential NAr variants and hepatocellular carcinoma (HCC), possibly via type I interferon (IFN-I)-mediated enhanced inflammation. Our data suggest that rt269L types could contribute to liver disease progression via the generation of immune escape or enhanced persistent infection in chronic patients of genotype C2. Full article
(This article belongs to the Section Systems Microbiology)
Show Figures

Figure 1

Back to TopTop