Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = HAT therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1874 KiB  
Review
Histone Acetylation in Central and Peripheral Nervous System Injuries and Regeneration: Epigenetic Dynamics and Therapeutic Perspectives
by Georgina Palomés-Borrajo, Xavier Navarro and Clara Penas
Int. J. Mol. Sci. 2025, 26(13), 6277; https://doi.org/10.3390/ijms26136277 - 29 Jun 2025
Viewed by 606
Abstract
Traumatic injuries to the peripheral (PNS) and central nervous systems (CNS) trigger distinct regenerative responses, with the PNS displaying limited regenerative capacity and the CNS remaining largely refractory. Recent research highlights the role of epigenetic modifications, particularly histone acetylation, in modulating the gene [...] Read more.
Traumatic injuries to the peripheral (PNS) and central nervous systems (CNS) trigger distinct regenerative responses, with the PNS displaying limited regenerative capacity and the CNS remaining largely refractory. Recent research highlights the role of epigenetic modifications, particularly histone acetylation, in modulating the gene expression programs that drive axonal regeneration. This review synthesizes current findings on post-translational histone modifications, focusing on histone acetyltransferases (HATs), histone deacetylases (HDACs), and epigenetic readers, in addition to their impact on neuronal and non-neuronal cells following injury. While HATs like p300/CBP and PCAF promote the expression of regeneration-associated genes, HDAC inhibition has been shown to facilitate neurite outgrowth, neuroprotection, and functional recovery in both PNS and CNS models. However, HDAC3, HDAC5, and HDAC6 demonstrate context- and cell-type-specific roles in both promoting and limiting regenerative processes. The review also highlights cell-specific findings that have been scarcely covered in the previous literature. Thus, the immunomodulatory roles of epigenetic regulators in microglia and macrophages, their involvement in remyelination via Schwann cells and oligodendrocytes, and their impact on astrocyte function are within the scope of this review. Closely considering cell-context specificity is critical, as some targets can exert opposite effects depending on the cell type involved. This represents a major challenge for current pharmacological therapies, which often lack precision. This complexity underscores the need to develop strategies that allow for cell-specific delivery or target regulators with converging beneficial effects across cell types. Such approaches may enhance regenerative outcomes after CNS or PNS injury. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

18 pages, 1376 KiB  
Review
Emerging Epigenetic Therapies for the Treatment of Cardiac Fibrosis
by Nerea Garitano, Laura Pilar Aguado-Alvaro and Beatriz Pelacho
Biomedicines 2025, 13(5), 1170; https://doi.org/10.3390/biomedicines13051170 - 11 May 2025
Viewed by 953
Abstract
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis [...] Read more.
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis is particularly relevant due to its impact on cardiovascular diseases (CVDs), which remain the leading cause of morbidity and mortality worldwide. This process is driven by activated cardiac fibroblasts (CFs), which promote ECM accumulation in response to chronic stressors. Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are key regulators of fibroblast activation and fibrotic gene expression. Enzymes such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs) have emerged as potential therapeutic targets, and epigenetic inhibitors have shown promise in modulating these enzymes to attenuate fibrosis by controlling fibroblast function and ECM deposition. These small-molecule compounds offer advantages such as reversibility and precise temporal control, making them attractive candidates for therapeutic intervention. This review aims to provide a comprehensive overview of the mechanisms by which epigenetic regulators influence cardiac fibrosis and examines the latest advances in preclinical epigenetic therapies. By integrating recent data from functional studies, single-cell profiling, and drug development, it highlights key molecular targets, emerging therapeutic strategies, and current limitations, offering a critical framework to guide future research and clinical translation. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 269 KiB  
Article
“Wenn dunkel mir ist der Sinn,/Den Kunst und Sinnen hat Schmerzen/Gekostet von Anbeginn” (“When Dark Are My Mind and Heart/Which Paid from the Beginning/In Grief for Thought and Art”): Hölderlin in the “Hölderlin Tower”—Contemporary and Modern Diagnoses of His Illness, and Literary (Self-)Therapy
by Gabriele von Bassermann-Jordan
Humanities 2025, 14(5), 101; https://doi.org/10.3390/h14050101 - 28 Apr 2025
Viewed by 498
Abstract
In 1802, Friedrich Hölderlin experienced his first mental breakdown, which was followed by a second one in 1805. On 15th September 1806, he was admitted to the clinic of Johann Heinrich Ferdinand von Autenrieth in Tübingen who addressed Hölderlin’s illness as “madness” (“Wahnsinn”). [...] Read more.
In 1802, Friedrich Hölderlin experienced his first mental breakdown, which was followed by a second one in 1805. On 15th September 1806, he was admitted to the clinic of Johann Heinrich Ferdinand von Autenrieth in Tübingen who addressed Hölderlin’s illness as “madness” (“Wahnsinn”). On 3rd May 1807, the poet was discharged as “incurable” (“unheilbar”). Until his death on 7th June 1843, he was cared for by the carpenter Ernst Zimmer. From the period between 1807 and 1843, 50 poems by Hölderlin have been preserved, in German studies known as the “Turmdichtung” (“tower poetry”). These poems have long been relegated to the margins of scholarly research. In my essay, I will discuss the modern and contemporary diagnoses, as well as Hölderlin’s literary (self-) therapy of his illness. I am suggesting that Hölderlin’s tower poetry contains a thera-peutic–poetic concept that is intended to serve the treatment of his illness. Full article
(This article belongs to the Special Issue Hölderlin and Poetic Transport)
42 pages, 7901 KiB  
Review
Recent Progress in Thiazole, Thiosemicarbazone, and Semicarbazone Derivatives as Antiparasitic Agents Against Trypanosomatids and Plasmodium spp.
by Pamela Souza Tada da Cunha, Ana Luísa Rodriguez Gini, Chung Man Chin, Jean Leandro dos Santos and Cauê Benito Scarim
Molecules 2025, 30(8), 1788; https://doi.org/10.3390/molecules30081788 - 16 Apr 2025
Cited by 1 | Viewed by 2063
Abstract
Neglected tropical diseases (NTDs), including Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria, remain a major global health challenge, disproportionately affecting low-income populations. Current therapies for these diseases suffer from significant limitations, such as reduced efficacy, high toxicity, and emerging parasite resistance, [...] Read more.
Neglected tropical diseases (NTDs), including Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria, remain a major global health challenge, disproportionately affecting low-income populations. Current therapies for these diseases suffer from significant limitations, such as reduced efficacy, high toxicity, and emerging parasite resistance, highlighting the urgent need for new therapeutic strategies. In response, substantial efforts have been directed toward the synthesis of new molecules with improved potency, selectivity, and pharmacokinetic profiles. However, despite many of these compounds exhibiting favorable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles and strong in vitro activity, their translation into in vivo models remains limited. Key challenges include the lack of investment, the absence of fully representative experimental models, and difficulties in extrapolating cell-based assay results to more complex biological systems. In this review, we analyzed the latest advancements (2019–2024) in the development of these compound classes, correlating predictive parameters with their observed biological activity. Among these parameters, we highlighted the partition coefficient (LogP), which measures a compound’s lipophilicity and influences its ability to cross biological membranes, and Caco-2 cell permeability, an in vitro model widely used to predict intestinal drug absorption. Additionally, we prioritized the most promising molecules and structural classes for pharmaceutical development, discussing structure–activity relationships (SARs) and the remaining challenges that must be overcome to enable the clinical application of these compounds in the treatment of NTDs. Full article
(This article belongs to the Special Issue Molecular Approaches to Drug Discovery and Development)
Show Figures

Graphical abstract

27 pages, 2098 KiB  
Review
Histone Deacetylase Inhibitors Promote the Anticancer Activity of Cisplatin: Mechanisms and Potential
by Yang Zhou, Qun Luo, Liangzhen Gu, Xiao Tian, Yao Zhao, Yanyan Zhang and Fuyi Wang
Pharmaceuticals 2025, 18(4), 563; https://doi.org/10.3390/ph18040563 - 11 Apr 2025
Viewed by 965
Abstract
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter [...] Read more.
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter the action pathways of cisplatin to promote its anticancer activity have attracted increasing attention during the past decades. It has been commonly accepted that HDACi elevate the acetylation level of histones to release genomic DNA to cisplatin attack, increasing the level of cisplatin-induced DNA lesions to promote cisplatin cytotoxicity. However, how the HDACi-enhanced cisplatin lesion on DNA impacts the downstream biological processes, and whether the promotion of HDACi to cisplatin activity is attributed to their inherent anticancer activity or to their induced elevation of histone acetylation, have been in debate. Several studies showed that HDACi-enhanced DNA lesion could promote cisplatin-induced apoptosis, cell cycle arrest, and reactive oxygen species (ROS) generation, subsequently promoting cisplatin efficiency. In contrast, HDACi-induced elimination of ROS and inhibition of ferroptosis were thought to be the main ways by which HDACi protect kidneys from acute injury caused by cisplatin. Based on our recent research, we herein review and discuss the advances in research on the mechanisms of HDACi-induced enhancement in cisplatin cytotoxicity. Given that histone acetyltransferase (HAT) inhibitors also show an effect enhancing cisplatin cytotoxicity, we will discuss the diverse roles of histone acetylation in cancer therapy in addition to the synergistic anticancer effect and potential of HDACi with genotoxic drugs and radiotherapy. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment)
Show Figures

Graphical abstract

18 pages, 9608 KiB  
Article
The Activation of p300 Enhances the Sensitivity of Pituitary Adenomas to Dopamine Agonist Treatment by Regulating the Transcription of DRD2
by Sihan Li, Xingbo Li, Quanji Wang, Qian Jiang, Zihan Wang, Linpeng Xu, Yimin Huang and Ting Lei
Int. J. Mol. Sci. 2024, 25(23), 12483; https://doi.org/10.3390/ijms252312483 - 21 Nov 2024
Viewed by 1508
Abstract
Prolactinomas are commonly treated with dopamine receptor agonists (DAs), such as bromocriptine (BRC) and cabergoline (CAB). However, 10–30% of patients exhibit resistance to DA therapies. DA resistance is largely associated with reduced dopamine D2 receptor (DRD2) expression, potentially regulated by epigenetic modifications, though [...] Read more.
Prolactinomas are commonly treated with dopamine receptor agonists (DAs), such as bromocriptine (BRC) and cabergoline (CAB). However, 10–30% of patients exhibit resistance to DA therapies. DA resistance is largely associated with reduced dopamine D2 receptor (DRD2) expression, potentially regulated by epigenetic modifications, though the underlying mechanisms are still unclear. Clinical samples were assessed for p300 expression. MMQ and AtT-20 cells were engineered to overexpress either wild-type p300 or a histone acetyltransferase (HAT) domain-mutant form of p300. Mechanistic studies included cell proliferation assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, chromatin immunoprecipitation followed by quantitative PCR, reverse transcription quantitative PCR, and Western blotting. Additionally, an in vivo nude mouse xenograft model was used to confirm the in vitro findings. DAs downregulated p300 through the cAMP-PKA-CREB pathway. Activation of the HAT domain of p300 increased H3K18/27 acetylation, promoted DRD2 transcription, and worked synergistically with DA to exert anti-tumor effects both in vitro and in vivo. Tanshinone IIA (Tan IIA) upregulated p300 and DRD2, enhancing the therapeutic efficacy of BRC. These findings highlight the role of p300 in regulating DRD2 transcription in DA-resistant prolactinomas. Combining Tan IIA with BRC may offer a promising strategy to overcome DA resistance. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 867 KiB  
Review
Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis
by Laura Pilar Aguado-Alvaro, Nerea Garitano and Beatriz Pelacho
Int. J. Mol. Sci. 2024, 25(11), 6004; https://doi.org/10.3390/ijms25116004 - 30 May 2024
Cited by 8 | Viewed by 3791
Abstract
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response [...] Read more.
Cardiac fibrosis, a process characterized by excessive extracellular matrix (ECM) deposition, is a common pathological consequence of many cardiovascular diseases (CVDs) normally resulting in organ failure and death. Cardiac fibroblasts (CFs) play an essential role in deleterious cardiac remodeling and dysfunction. In response to injury, quiescent CFs become activated and adopt a collagen-secreting phenotype highly contributing to cardiac fibrosis. In recent years, studies have been focused on the exploration of molecular and cellular mechanisms implicated in the activation process of CFs, which allow the development of novel therapeutic approaches for the treatment of cardiac fibrosis. Transcriptomic analyses using single-cell RNA sequencing (RNA-seq) have helped to elucidate the high cellular diversity and complex intercellular communication networks that CFs establish in the mammalian heart. Furthermore, a significant body of work supports the critical role of epigenetic regulation on the expression of genes involved in the pathogenesis of cardiac fibrosis. The study of epigenetic mechanisms, including DNA methylation, histone modification, and chromatin remodeling, has provided more insights into CF activation and fibrotic processes. Targeting epigenetic regulators, especially DNA methyltransferases (DNMT), histone acetylases (HAT), or histone deacetylases (HDAC), has emerged as a promising approach for the development of novel anti-fibrotic therapies. This review focuses on recent transcriptomic advances regarding CF diversity and molecular and epigenetic mechanisms that modulate the activation process of CFs and their possible clinical applications for the treatment of cardiac fibrosis. Full article
Show Figures

Figure 1

27 pages, 10477 KiB  
Article
Prognostic Value of Histone Acetyl Transferase 1 (HAT-1) and Inflammatory Signatures in Pancreatic Cancer
by Miguel A. Ortega, Laura Jiménez-Álvarez, Oscar Fraile-Martinez, Cielo Garcia-Montero, Luis G. Guijarro, Leonel Pekarek, Silvestra Barrena-Blázquez, Ángel Asúnsolo, Laura López-González, María Del Val Toledo-Lobo, Melchor Álvarez-Mon, Miguel A. Saez, Alberto Gutiérrez-Calvo and Raúl Díaz-Pedrero
Curr. Issues Mol. Biol. 2024, 46(5), 3839-3865; https://doi.org/10.3390/cimb46050239 - 25 Apr 2024
Cited by 2 | Viewed by 2028
Abstract
Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use [...] Read more.
Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use of biomarkers has different proven translational applications, facilitating early diagnosis, accurate prognosis and identification of potential therapeutic targets. Several studies have shown a correlation between the tissue expression levels of various molecules, measured through immunohistochemistry (IHC), and survival rates in PDAC. Following the hallmarks of cancer, epigenetic and metabolic reprogramming, together with immune evasion and tumor-promoted inflammation, plays a critical role in cancer initiation and development. In this study, we aim to explore via IHC and Kaplan–Meier analyses the prognostic value of various epigenetic-related markers (histones 3 and 4 (H3/H4), histone acetyl transferase 1 (HAT-1), Anti-Silencing Function 1 protein (ASF1), Nuclear Autoantigenic Sperm Protein (NASP), Retinol Binding Protein 7 (RBBP7), importin 4 (IPO4) and IPO5), metabolic regulators (Phosphoglycerate mutase (PGAM)) and inflammatory mediators (allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A and IL-18) in patients with PDAC. Also, through a correlation analysis, we have explored the possible interconnections in the expression levels of these molecules. Our results show that higher expression levels of these molecules are directly associated with poorer survival rates in PDAC patients, except in the case of IL-10, which shows an inverse association with mortality. HAT1 was the molecule more clearly associated with mortality, with a hazard risk of 21.74. The correlogram demonstrates an important correlation between almost all molecules studied (except in the case of IL-18), highlighting potential interactions between these molecules. Overall, our study demonstrates the relevance of including different markers from IHC techniques in order to identify unexplored molecules to develop more accurate prognosis methods and possible targeted therapies. Additionally, our correlation analysis reveals potential interactions among these markers, offering insights into PDAC’s pathogenesis and paving the way for targeted therapies tailored to individual patient profiles. Future studies should be conducted to confirm the prognostic value of these components in PDAC in a broader sample size, as well as to evaluate the possible biological networks connecting them. Full article
(This article belongs to the Special Issue Molecular Advances in Cancer and the Tumor Microenvironment)
Show Figures

Figure 1

17 pages, 2906 KiB  
Article
Anserine, a Histidine-Containing Dipeptide, Suppresses Pressure Overload-Induced Systolic Dysfunction by Inhibiting Histone Acetyltransferase Activity of p300 in Mice
by Yoichi Sunagawa, Ryosuke Tsukabe, Yudai Irokawa, Masafumi Funamoto, Yuto Suzuki, Miho Yamada, Satoshi Shimizu, Yasufumi Katanasaka, Toshihide Hamabe-Horiike, Yuto Kawase, Ryuya Naruta, Kana Shimizu, Kiyoshi Mori, Ryota Hosomi, Maki Komiyama, Koji Hasegawa and Tatsuya Morimoto
Int. J. Mol. Sci. 2024, 25(4), 2344; https://doi.org/10.3390/ijms25042344 - 16 Feb 2024
Cited by 3 | Viewed by 2846
Abstract
Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM [...] Read more.
Anserine, an imidazole dipeptide, is present in the muscles of birds and fish and has various bioactivities, such as anti-inflammatory and anti-fatigue effects. However, the effect of anserine on the development of heart failure remains unknown. We cultured primary cardiomyocytes with 0.03 mM to 10 mM anserine and stimulated them with phenylephrine for 48 h. Anserine significantly suppressed the phenylephrine-induced increases in cardiomyocyte hypertrophy, ANF and BNP mRNA levels, and histone H3K9 acetylation. An in vitro histone acetyltransferase (HAT) assay showed that anserine directly suppressed p300-HAT activity with an IC50 of 1.87 mM. Subsequently, 8-week-old male C57BL/6J mice were subjected to transverse aortic constriction (TAC) and were randomly assigned to receive daily oral treatment with anserine-containing material, Marine Active® (60 or 200 mg/kg anserine) or vehicle for 8 weeks. Echocardiography revealed that anserine 200 mg/kg significantly prevented the TAC-induced increase in left ventricular posterior wall thickness and the decrease in left ventricular fractional shortening. Moreover, anserine significantly suppressed the TAC-induced acetylation of histone H3K9. These results indicate that anserine suppresses TAC-induced systolic dysfunction, at least in part, by inhibiting p300-HAT activity. Anserine may be used as a pharmacological agent for human heart failure therapy. Full article
(This article belongs to the Special Issue Current Research for Heart Disease Biology and Therapeutics)
Show Figures

Figure 1

21 pages, 1045 KiB  
Article
An Effective, Green Synthesis Procedure for Obtaining Coumarin–Hydroxybenzohydrazide Derivatives and Assessment of Their Antioxidant Activity and Redox Status
by Edina H. Avdović, Žiko Milanović, Dušica Simijonović, Marko Antonijević, Milena Milutinović, Danijela Nikodijević, Nenad Filipović, Zoran Marković and Radiša Vojinović
Antioxidants 2023, 12(12), 2070; https://doi.org/10.3390/antiox12122070 - 1 Dec 2023
Cited by 10 | Viewed by 2164
Abstract
In this study, green synthesis of two derivatives of coumarin–hydroxybenzohydrazide, (E)-2,4-dioxo-3-(1-(2-(2,3,4-trihydroxybenzoyl)hydrazyl)ethylidene)-chroman-7-yl acetate (C–HB1), and (E)-2,4-dioxo-3-(1-(2-(3,4,5-trihydroxybenzoyl)hydrazyl)ethylidene)chroman-7-yl acetate (C–HB2) is reported. Using vinegar and ethanol as a catalyst and solvent, the reactions were carried out [...] Read more.
In this study, green synthesis of two derivatives of coumarin–hydroxybenzohydrazide, (E)-2,4-dioxo-3-(1-(2-(2,3,4-trihydroxybenzoyl)hydrazyl)ethylidene)-chroman-7-yl acetate (C–HB1), and (E)-2,4-dioxo-3-(1-(2-(3,4,5-trihydroxybenzoyl)hydrazyl)ethylidene)chroman-7-yl acetate (C–HB2) is reported. Using vinegar and ethanol as a catalyst and solvent, the reactions were carried out between 3-acetyl-4-hydroxy-coumarin acetate and corresponding trihydroxybenzoyl hydrazide. The antioxidant potential of these compounds was investigated using the DPPH and ABTS assays, as well as the FRAP test. The obtained results reveal that even at very low concentrations, these compounds show excellent radical scavenging potential. The IC50 values for C-HB1 and C-HB2 in relation to the DPPH radical are 6.4 and 2.5 μM, respectively, while they are 4.5 and 2.0 μM in relation to the ABTS radical. These compounds have antioxidant activity that is comparable to well-known antioxidants such as gallic acid, NDGA, and trolox. These results are in good correlation with theoretical parameters describing these reactions. Moreover, it was found that inhibition of DPPH follows HAT, while inactivation of ABTS+● follows SET-PT and HAT mechanisms. Additionally, coumarin–hydroxybenzohydrazide derivatives induced moderate cytotoxic activity and show significant potential to modulate redox status in HCT-116 colorectal cancer cells. The cytotoxicity was achieved via their prooxidative activity and ability to induce oxidative stress in cancer cells by increasing O2˙ concentrations, indicated by increased MDA and GSH levels. Thus, ROS manipulation can be a potential target for cancer therapies by coumarins, as cancer cells possess an altered redox balance in comparison to normal cells. According to the ADMET analysis, the compounds investigated show good pharmacokinetic and toxicological profiles similar to vitamin C and gallic acid, which makes them good candidates for application in various fields of industry and medicine. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

14 pages, 2392 KiB  
Article
A Novel Acetylation-Immune Subtyping for the Identification of a BET Inhibitor-Sensitive Subgroup in Melanoma
by Liuying Wang, Liuchao Zhang, Shuang Li, Lei Cao, Kang Li and Weiwei Zhao
Pharmaceuticals 2023, 16(7), 1037; https://doi.org/10.3390/ph16071037 - 21 Jul 2023
Cited by 2 | Viewed by 2385
Abstract
Background: There have been significant advancements in melanoma therapies. BET inhibitors (BETis) show promise in impairing melanoma growth. However, identifying BETi-sensitive melanoma subtypes is challenging. Methods and Results: We analyzed 48 melanoma cell lines and 104 patients and identified two acetylation-immune subtypes (ALISs) [...] Read more.
Background: There have been significant advancements in melanoma therapies. BET inhibitors (BETis) show promise in impairing melanoma growth. However, identifying BETi-sensitive melanoma subtypes is challenging. Methods and Results: We analyzed 48 melanoma cell lines and 104 patients and identified two acetylation-immune subtypes (ALISs) in the cell lines and three ALISs in the patients. ALIS I, with high HAT1 and low KAT2A expression, showed a higher sensitivity to the BETi JQ-1 than ALIS II. ALIS III had low HAT1 expression. The TAD2B expression was low in ALIS I and II. KAT2A and HAT1 expressions were negatively correlated with the methylation levels of their CG sites (p = 0.0004 and 0.0003). Immunological gene sets, including B cell metagenes, activated stroma-related genes, fibroblast TGF response signatures (TBRS), and T cell TBRS-related genes, were up-regulated in ALIS I. Furthermore, KAT2A played a key role in regulating BETi sensitivity. Conclusions: The sensitivity of ALIS I to the BETi JQ-1 may be due to the inhibition of BETi resistance pathways and genes by low KAT2A expression and the dysregulation of the immune microenvironment by high HAT1 expression resulting from the absence of immune cells. ALIS I had the worst progression but showed sensitivity to BETi and B-cell-related immunotherapy, despite not responding to BRAF inhibitors. Full article
(This article belongs to the Special Issue Pharmacological Treatments for Melanoma)
Show Figures

Figure 1

15 pages, 1680 KiB  
Article
COPD Patients Exhibit Distinct Gene Expression, Accelerated Cellular Aging, and Bias to M2 Macrophages
by Camila Oliveira da Silva, Jeane de Souza Nogueira, Adriana Paulino do Nascimento, Tatiana Victoni, Thiago Prudente Bártholo, Cláudia Henrique da Costa, Andrea Monte Alto Costa, Samuel dos Santos Valença, Martina Schmidt and Luís Cristóvão Porto
Int. J. Mol. Sci. 2023, 24(12), 9913; https://doi.org/10.3390/ijms24129913 - 8 Jun 2023
Cited by 8 | Viewed by 2948
Abstract
COPD, one of world’s leading contributors to morbidity and mortality, is characterized by airflow limitation and heterogeneous clinical features. Three main phenotypes are proposed: overlapping asthma/COPD (ACO), exacerbator, and emphysema. Disease severity can be classified as mild, moderate, severe, and very severe. The [...] Read more.
COPD, one of world’s leading contributors to morbidity and mortality, is characterized by airflow limitation and heterogeneous clinical features. Three main phenotypes are proposed: overlapping asthma/COPD (ACO), exacerbator, and emphysema. Disease severity can be classified as mild, moderate, severe, and very severe. The molecular basis of inflammatory amplification, cellular aging, and immune response are critical to COPD pathogenesis. Our aim was to investigate EP300 (histone acetylase, HAT), HDAC 2 (histone deacetylase), HDAC3, and HDAC4 gene expression, telomere length, and differentiation ability to M1/M2 macrophages. For this investigation, 105 COPD patients, 42 smokers, and 73 non-smoker controls were evaluated. We identified a reduced HDAC2 expression in patients with mild, moderate, and severe severity; a reduced HDAC3 expression in patients with moderate and severe severity; an increased HDAC4 expression in patients with mild severity; and a reduced EP300 expression in patients with severe severity. Additionally, HDAC2 expression was reduced in patients with emphysema and exacerbator, along with a reduced HDAC3 expression in patients with emphysema. Surprisingly, smokers and all COPD patients showed telomere shortening. COPD patients showed a higher tendency toward M2 markers. Our data implicate genetic changes in COPD phenotypes and severity, in addition to M2 prevalence, that might influence future treatments and personalized therapies. Full article
(This article belongs to the Special Issue Immune Regulation in Respiratory Diseases)
Show Figures

Figure 1

17 pages, 2478 KiB  
Article
6-Shogaol, an Active Component of Ginger, Inhibits p300 Histone Acetyltransferase Activity and Attenuates the Development of Pressure-Overload-Induced Heart Failure
by Yuto Kawase, Yoichi Sunagawa, Kana Shimizu, Masafumi Funamoto, Toshihide Hamabe-Horiike, Yasufumi Katanasaka, Satoshi Shimizu, Philip Hawke, Kiyoshi Mori, Maki Komiyama, Koji Hasegawa and Tatsuya Morimoto
Nutrients 2023, 15(9), 2232; https://doi.org/10.3390/nu15092232 - 8 May 2023
Cited by 7 | Viewed by 3587
Abstract
Hypertrophic stress-induced cardiac remodeling is a compensatory mechanism associated with cardiomyocyte hypertrophy and cardiac fibrosis. Continuation of this response eventually leads to heart failure. The histone acetyltransferase p300 plays an important role in the development of heart failure, and may be a target [...] Read more.
Hypertrophic stress-induced cardiac remodeling is a compensatory mechanism associated with cardiomyocyte hypertrophy and cardiac fibrosis. Continuation of this response eventually leads to heart failure. The histone acetyltransferase p300 plays an important role in the development of heart failure, and may be a target for heart failure therapy. The phenolic phytochemical 6-shogaol, a pungent component of raw ginger, has various bioactive effects; however, its effect on cardiovascular diseases has not been investigated. One micromolar of 6-shogaol suppressed phenylephrine (PE)-induced increases in cardiomyocyte hypertrophy in rat primary cultured cardiomyocytes. In rat primary cultured cardiac fibroblasts, 6-shogaol suppressed transforming growth factor-beta (TGF-β)-induced increases in L-proline incorporation. It also blocked PE- and TGF-β-induced increases in histone H3K9 acetylation in the same cells and in vitro. An in vitro p300-HAT assay revealed that 6-shogaol suppressed histone acetylation. The mice underwent transverse aortic constriction (TAC) surgery, and were administered 0.2 or 1 mg/kg of 6-shogaol daily for 8 weeks. 6-shogaol prevented TAC-induced systolic dysfunction and cardiac hypertrophy in a dose-dependent manner. Furthermore, it also significantly inhibited TAC-induced increases in histone H3K9 acetylation. These results suggest that 6-shogaol may ameliorate heart failure through a variety of mechanisms, including the inhibition of p300-HAT activity. Full article
(This article belongs to the Special Issue Bioactive Foods and Ingredients for Cardiovascular Diseases)
Show Figures

Figure 1

20 pages, 5510 KiB  
Article
More than Ninety Percent of the Light Energy Emitted by Near-Infrared Laser Therapy Devices Used to Treat Musculoskeletal Disorders Is Absorbed within the First Ten Millimeters of Biological Tissue
by Leon Kaub and Christoph Schmitz
Biomedicines 2022, 10(12), 3204; https://doi.org/10.3390/biomedicines10123204 - 9 Dec 2022
Cited by 13 | Viewed by 3957
Abstract
There is increasing interest in the application of near-infrared (NIR) laser light for the treatment of various musculoskeletal disorders. The present study thoroughly examined the physical characteristics of laser beams from two different laser therapy devices that are commercially available for the treatment [...] Read more.
There is increasing interest in the application of near-infrared (NIR) laser light for the treatment of various musculoskeletal disorders. The present study thoroughly examined the physical characteristics of laser beams from two different laser therapy devices that are commercially available for the treatment of musculoskeletal disorders. Then, these laser beams were used to measure the penetration depth in various biological tissues from different animal species. The key result of the present study was the finding that for all investigated tissues, most of the initial light energy was lost in the first one to two millimeters, more than 90% of the light energy was absorbed within the first ten millimeters, and there was hardly any light energy left after 15–20 mm of tissue. Furthermore, the investigated laser therapy devices fundamentally differed in several laser beam parameters that can have an influence on how light is transmitted through tissue. Overall, the present study showed that a laser therapy device that is supposed to reach deep layers of tissue for treatments of musculoskeletal disorders should operate with a wavelength between 800 nm and 905 nm, a top-hat beam profile, and it should emit very short pulses with a large peak power. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapeutics in Musculoskeletal Conditions)
Show Figures

Figure 1

17 pages, 4660 KiB  
Article
Identification of Unique and Conserved Neutralizing Epitopes of Vestigial Esterase Domain in HA Protein of the H9N2 Subtype of Avian Influenza Virus
by Xiangyu Huang, Guihu Yin, Yiqin Cai, Jianing Hu, Jingwen Huang, Qingtao Liu and Xiuli Feng
Viruses 2022, 14(12), 2739; https://doi.org/10.3390/v14122739 - 8 Dec 2022
Cited by 4 | Viewed by 2396 | Correction
Abstract
The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and [...] Read more.
The H9N2 subtype of avian influenza virus (AIV) has been reported to infect not only birds, but also humans. The hemagglutinin (HA) protein is the main surface antigen of AIV and plays an important role in the viral infection. For treatment strategies and vaccine development, HA protein has been an important target for the development of broadly neutralizing antibodies against influenza A virus. To investigate the vital target determinant cluster in HA protein in this work, HA gene was cloned and expressed in the prokaryotic expression vector pET28a. The spleen lymphocytes from BALC/c mice immunized with the purified recombinant HA protein were fused with SP2/0 cells. After Hypoxanthine-Aminopterin-Thymidine (HAT) medium screening and indirect ELISA detection, six hybridoma cell lines producing anti-HA monoclonal antibodies were screened. The gradually truncated HA gene expression and western blotting were used to identify their major locations in epitopes specific to these monoclonal antibodies. It was found that the epitopes were located in three areas: 112NVENLEEL119, 117EELRSLFS124, and 170PIQDAQ175. Epitope 112NVENLEEL119 has a partial amino acid crossover with 117EELRSLFS124, which is located in the vestigial esterase domain “110-helix” of HA, and the monoclonal antibody recognizing these epitopes showed the neutralizing activity, suggesting that the region 112NVENLEELRSLFS124 might be a novel neutralizing epitope. The results of the homology analysis showed that these three epitopes were generally conserved in H9N2 subtype AIV, and will provide valuable insights into H9N2 vaccine design and improvement, as well as antibody-based therapies for treatment of H9N2 AIV infection. Full article
(This article belongs to the Topic Strategies for Prevention and Control of Influenza)
Show Figures

Figure 1

Back to TopTop