Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Guttiferone A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1135 KB  
Article
Constituents of the Stem Bark of Symphonia globulifera Linn. f. with Antileishmanial and Antibacterial Activities
by Ruland Tchuinkeu Nguengang, Billy Toussie Tchegnitegni, Eric Carly Nono Nono, Georges Bellier Tabekoueng, Yannick Stéphane Fotsing Fongang, Jean Jules Kezetas Bankeu, Jean Rodolphe Chouna, Céline Nguefeu Nkenfou, Fabrice Boyom Fekam, Norbert Sewald and Bruno Ndjakou Lenta
Molecules 2023, 28(6), 2473; https://doi.org/10.3390/molecules28062473 - 8 Mar 2023
Cited by 5 | Viewed by 2822
Abstract
The chemical investigation of the n-hexane fraction from the methanol extract of the stem bark of Symphonia globulifera Linn f., which displayed good in vitro activity against Leishmania donovani NR-48822 promastigotes (IC50 43.11 µg/mL), led to the isolation of three previously [...] Read more.
The chemical investigation of the n-hexane fraction from the methanol extract of the stem bark of Symphonia globulifera Linn f., which displayed good in vitro activity against Leishmania donovani NR-48822 promastigotes (IC50 43.11 µg/mL), led to the isolation of three previously unreported polyprenylated benzophenones, guttiferone U (1), V (2)/W (3), and a new tocotrienol derivative named globuliferanol (4), along with 11 known compounds (515). Their structures were elucidated based on their NMR and MS data. Some isolated compounds were assessed for both their antileishmanial and cytotoxic activities against L. donovani and Vero cells, respectively. Guttiferone K (5) exhibited the best potency (IC50 3.30 μg/mL), but with low selectivity to Vero cells. The n-hexane fraction and some compounds were also assessed in vitro for their antibacterial activity against seven bacterial strains. All the samples exhibited moderate to potent antibacterial activity (MICs ≤ 15.6 µg/mL) against at least one of the tested strains. Full article
(This article belongs to the Special Issue Biological Activity of Phenolics and Polyphenols in Nature Products)
Show Figures

Graphical abstract

27 pages, 10067 KB  
Article
α-Glucosidase Inhibitory and Antimicrobial Benzoylphloroglucinols from Garcinia schomburgakiana Fruits: In Vitro and In Silico Studies
by Huy Truong Nguyen, Thanh-Trung Nguyen, Thuc-Huy Duong, Nguyen-Minh-An Tran, Chuong Hoang Nguyen, Thi-Hong-Anh Nguyen and Jirapast Sichaem
Molecules 2022, 27(8), 2574; https://doi.org/10.3390/molecules27082574 - 15 Apr 2022
Cited by 19 | Viewed by 3383
Abstract
α-Glucosidase plays a role in hydrolyzing complex carbohydrates into glucose, which is easily absorbed, causing postprandial hyperglycemia. Inhibition of α-glucosidase is therefore an ideal approach to preventing this condition. A novel polyprenylated benzoylphloroglucinol, which we named schomburgkianone I (1), was isolated [...] Read more.
α-Glucosidase plays a role in hydrolyzing complex carbohydrates into glucose, which is easily absorbed, causing postprandial hyperglycemia. Inhibition of α-glucosidase is therefore an ideal approach to preventing this condition. A novel polyprenylated benzoylphloroglucinol, which we named schomburgkianone I (1), was isolated from the fruit of Garcinia schomburgkiana, along with an already-reported compound, guttiferone K (2). The structures of the two compounds were determined using NMR and HRESIMS analysis, and comparisons were made with previous studies. Compounds 1 and 2 exhibited potent α-glucosidase inhibition (IC50s of 21.2 and 34.8 µM, respectively), outperforming the acarbose positive control. Compound 1 produced wide zones of inhibition against Staphylococcus aureus and Enterococcus faecium (of 21 and 20 mm, respectively), compared with the 19 and 20 mm zones of compound 2, at a concentration of 50 µg/mL. The MIC value of compound 1 against S. aureus was 13.32 µM. An in silico molecular docking model suggested that both compounds are potent inhibitors of enzyme α-glucosidase and are therefore leading candidates as therapies for diabetes mellitus. Full article
Show Figures

Figure 1

13 pages, 3327 KB  
Article
A Photoalkylative Fluorogenic Probe of Guttiferone A for Live Cell Imaging and Proteome Labeling in Plasmodium falciparum
by Romain Duval, Kevin Cottet, Magali Blaud, Anaïs Merckx, Sandrine Houzé, Philippe Grellier, Marie-Christine Lallemand and Sylvie Michel
Molecules 2020, 25(21), 5139; https://doi.org/10.3390/molecules25215139 - 4 Nov 2020
Cited by 5 | Viewed by 3208
Abstract
Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed [...] Read more.
Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed and evaluated a natural product-derived photoactivatable probe AZC-GA 5, embedding a photoalkylative fluorogenic motif of the 7-azidocoumarin (AZC) type, devoted to studying the affinity proteins interacting with GA in Plasmodium falciparum. Probe 5 manifested a number of positive functional and biological features, such as (i) inhibitory activity in vitro against P. falciparum blood-stages that was superimposable to that of GA 1, dose–response photoalkylative fluorogenic properties (ii) in model conditions using bovine serum albumin (BSA) as an affinity protein surrogate, (iii) in live P. falciparum-infected erythrocytes, and (iv) in fresh P. falciparum cell lysate. Fluorogenic signals by photoactivated AZC-GA 5 in biological settings were markedly abolished in the presence of excess GA 1 as a competitor, indicating significant pharmacological specificity of the designed molecular probe relative to the native PPAP. These results open the way to identify the detected plasmodial proteins as putative drug targets for the natural product 1 by means of proteomic analysis. Full article
(This article belongs to the Special Issue Chemical Probe Synthesis and Applications in Chemical Biology)
Show Figures

Figure 1

17 pages, 6885 KB  
Article
Targeting MHC Regulation Using Polycyclic Polyprenylated Acylphloroglucinols Isolated from Garcinia bancana
by Chloé Coste, Nathalie Gérard, Chau Phi Dinh, Antoine Bruguière, Caroline Rouger, Sow Tein Leong, Khalijah Awang, Pascal Richomme, Séverine Derbré and Béatrice Charreau
Biomolecules 2020, 10(9), 1266; https://doi.org/10.3390/biom10091266 - 2 Sep 2020
Cited by 11 | Viewed by 3909
Abstract
Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory [...] Read more.
Modulation of major histocompatibility complex (MHC) expression using drugs has been proposed to control immunity. Phytochemical investigations on Garcinia species have allowed the isolation of bioactive compounds such as polycyclic polyprenylated acylphloroglucinols (PPAPs). PPAPs such as guttiferone J (1), display anti-inflammatory and immunoregulatory activities while garcinol (4) is a histone acetyltransferases (HAT) p300 inhibitor. This study reports on the isolation, identification and biological characterization of two other PPAPs, i.e., xanthochymol (2) and guttiferone F (3) from Garcinia bancana, sharing structural analogy with guttiferone J (1) and garcinol (4). We show that PPAPs 14 efficiently downregulated the expression of several MHC molecules (HLA-class I, -class II, MICA/B and HLA-E) at the surface of human primary endothelial cells upon inflammation. Mechanistically, PPAPs 14 reduce MHC proteins by decreasing the expression and phosphorylation of the transcription factor STAT1 involved in MHC upregulation mediated by IFN-γ. Loss of STAT1 activity results from inhibition of HAT CBP/p300 activity reflected by a hypoacetylation state. The binding interactions to p300 were confirmed through molecular docking. Loss of STAT1 impairs the expression of CIITA and GATA2 but also TAP1 and Tapasin required for peptide loading and transport of MHC. Overall, we identified new PPAPs issued from Garcinia bancana with potential immunoregulatory properties. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

7 pages, 885 KB  
Communication
Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The Botanical Sources of Isoflavonoids and Benzophenones in Brazilian Red Propolis
by Gari Vidal Ccana-Ccapatinta, Jennyfer Andrea Aldana Mejía, Matheus Hikaru Tanimoto, Milton Groppo, Jean Carlos Andrade Sarmento de Carvalho and Jairo Kenupp Bastos
Molecules 2020, 25(9), 2060; https://doi.org/10.3390/molecules25092060 - 28 Apr 2020
Cited by 70 | Viewed by 5744
Abstract
The Brazilian red propolis (BRP) constitutes an important commercial asset for northeast Brazilian beekeepers. The role of Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) as the main botanical source of this propolis has been previously confirmed. However, in addition to isoflavonoids and other phenolics, which [...] Read more.
The Brazilian red propolis (BRP) constitutes an important commercial asset for northeast Brazilian beekeepers. The role of Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) as the main botanical source of this propolis has been previously confirmed. However, in addition to isoflavonoids and other phenolics, which are present in the resin of D. ecastaphyllum, samples of BRP are reported to contain substantial amounts of polyprenylated benzophenones, whose botanical source was unknown. Therefore, field surveys, phytochemical and chromatographic analyses were undertaken to confirm the botanical sources of the red propolis produced in apiaries located in Canavieiras, Bahia, Brazil. The results confirmed D. ecastaphyllum as the botanical source of liquiritigenin (1), isoliquiritigenin (2), formononetin (3), vestitol (4), neovestitol (5), medicarpin (6), and 7-O-neovestitol (7), while Symphonia globulifera L.f. (Clusiaceae) is herein reported for the first time as the botanical source of polyprenylated benzophenones, mainly guttiferone E (8) and oblongifolin B (9), as well as the triterpenoids β-amyrin (10) and glutinol (11). The chemotaxonomic and economic significance of the occurrence of polyprenylated benzophenones in red propolis is discussed. Full article
Show Figures

Graphical abstract

14 pages, 1735 KB  
Article
Molecularly Imprinted Polymers for Selective Extraction of Oblongifolin C from Garcinia yunnanensis Hu
by Liping Wang, Wenwei Fu, Yunhui Shen, Hongsheng Tan and Hongxi Xu
Molecules 2017, 22(4), 508; https://doi.org/10.3390/molecules22040508 - 23 Mar 2017
Cited by 22 | Viewed by 6250
Abstract
Molecularly imprinted polymers (MIPs) were synthesized and applied for the selective extraction of oblongifolin C (OC) from fruit extracts of Garcinia yunnanensis Hu. A series of experiments and computational approaches were employed to improve the efficiency of screening for optimal MIP systems in [...] Read more.
Molecularly imprinted polymers (MIPs) were synthesized and applied for the selective extraction of oblongifolin C (OC) from fruit extracts of Garcinia yunnanensis Hu. A series of experiments and computational approaches were employed to improve the efficiency of screening for optimal MIP systems in the study. The molar ratio (1:4) was eventually chosen based on the comparison of the binding energy of the complexes between the template (OC) and the functional monomers using density functional theory (DFT) at the RI-PBE-D3-gCP/def2-TZVP level of theory. The binding characterization and the molecular recognition mechanism of MIPs were further explained using the molecular modeling method along with NMR and IR spectra data. The reusability of this approach was demonstrated in over 20 batch rebinding experiments. A mass of 140.5 mg of OC (>95% purity) was obtained from the 5 g extracts, with 2 g of MIPs with the best binding properties, through a gradient elution program from 35% to 70% methanol-water solution. At the same time, another structural analog, 46.5 mg of guttiferone K (GK) (>88% purity), was also obtained by the gradient elution procedure. Our results showed that the structural analogs could be separated from the crude extracts by the molecularly imprinted solid-phase extraction (MISPE) using a gradient elution procedure for the first time. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

10 pages, 68 KB  
Article
Leishmanicidal and Cholinesterase Inhibiting Activities of Phenolic Compounds from Allanblackia monticola and Symphonia globulifera
by Bruno Ndjakou Lenta, Catherine Vonthron-Sénécheau, Bernard Weniger, Krishna Prasad Devkota, Joseph Ngoupayo, Marcel Kaiser, Qamar Naz, Muhammad Iqbal Choudhary, Etienne Tsamo and Norbert Sewald
Molecules 2007, 12(8), 1548-1557; https://doi.org/10.3390/12081548 - 20 Jul 2007
Cited by 96 | Viewed by 15052
Abstract
In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1), garcinol (2), cambogin (3) and [...] Read more.
In a preliminary antiprotozoal screening of several Clusiaceae species, the methanolic extracts of Allanblackia monticola and Symphonia globulifera showed high in vitro leishmanicidal activity. Further bioguided phytochemical investigation led to the isolation of four benzophenones: guttiferone A (1), garcinol (2), cambogin (3) and guttiferone F (4), along with three xanthones: allanxanthone A (5), xanthone V1 (6) and globulixanthone C (7) as active constituents. Compounds 1 and 6 were isolated from S. globulifera leaves, while compounds 2-5 were obtained from A. monticola fruits. Guttiferone A (1) and F (4) showed particulary strong leishmanicidal activity in vitro, with IC50 values (0.2 μM and 0.16 μM, respectively) comparable to that of the reference compound, miltefosine (0.46 μM). Although the leishmanicidal activity is promising, the cytotoxicity profile of these compounds prevent at this state further in vivo biological evaluation. In addition, all the isolated compounds were tested in vitro for their anticholinesterase properties. The four benzophenones showed potent anticholinesterase properties towards acetylcholinesterase (AChE) and butylcholinesterase (AChE). For AChE, the IC50 value (0.66 μM) of garcinol (2) was almost equal to that of the reference compound galanthamine (0.50 μM). Furthermore, guttiferone A (1) and guttiferone F (4) (IC50 = 2.77 and 3.50 μM, respectively) were more active than galanthamine (IC50 = 8.5) against BChE. Full article
(This article belongs to the Special Issue Phenolics and Polyphenolics)
Show Figures

Figure 1

Back to TopTop